Madhav Institute of Technology & Science, Gwalior

(A Govt. Aided UGC Autonomous & NAAC accredited Institute Affiliated to RGPV, Bhopal)

Chemical Engineering

Course Outcome Attainment & Gap Analysis of July - Dec 2021 Semester

		Name of the Course & Code				CO At	tainment					
Semeste r	S. No.			Course Outcomes	Direct attainmen t (%)	Indirect attainmen t (%)	Overal l	Target	Gap	Corrective Actions		
			COL	Explain the processing of natural products	2,1	2.5	2.18	2	-0.18	Seminar Presentation to be taken		
			CO2	Describe about microbial processes and edible oil refining process	2	2.3	2.06	2	-0.06	Assignments to be included		
			CO3	Elaborate the processes for producing petrochemicals	2	2.5	2.1	2	-0.1	Mini project to be included		
	ı	Organic Process Technology (170312)	CO4	Characterize polymers and elaborate its production processes.	2.2	1.9	2.14	2	-0.14	Questions with more difficulty level to be included		
			CO5	Describe the production processes of fibers	2.3	2.5	2.34	2	-0.34	Quiz to be included		
Semester III			CO6	Evaluate the different processes from economical aspects	2.1	1.9	2.06	2	-0.06	Case study can be given Application based tutorial to be given		
			COI	Explain the basic fundamentals of fluid statics & fluid flow.	3	2.9	2.98	2.5	-0.48			
			CO2	Estimate pressure drops, forces acting on bodies & power and head requirements of pumps.	2.8	2.7	2.78	2.5	-0.28	Numerical based tutorial to be given		
		Fluid Mechanics	CO3	Apply equations of change to various fluid flow systems.	3	2.7	2.94	2.5	-0.44	Application based tutorial to be given		
	2	(170311)	CO4	Formulate the inter-dependency of various parameters using dimensional analysis.	3	2.9	2.98	2.5	-0.48	Explanation should be given with more illustrations		
			CO5	Determine the flow rate through different flow measuring devices.	2.9	3	2.92	2.5	-0.42	Teaching along with experimentation		
			CO6	Examine the losses due to friction in pipes and other fluid machinery.	2.6	2.9	2.66	2.5	-0.16	Mini project to be included		
	3	Fluid Mechanics Lab (170311)	COI	Analyze the effects of flow measurement by flow measuring devices.	2.4	1.8	2.28	2.2	-0.08	Skill based project to be given		
		(170311)	CO2	Calculate the degree of error in discharge rate of rotameter.	2.6	2.4	2.56	2.2	-0.36	Practical demonstrations to be given		
	وليا		CO3	Calculate the coefficient of discharge for venturimeter and orifice meter.	2.4	1.8	2.28	2.2	-0.08	Skill based project to be given		

Anish P. Jacob Dept. OBE Coordinator Dr. Sulochana Wadhwani OBF Manager

			Calculate the coefficient of discharge for	2.9	1.8	2.6	2.2	-0,4	
		CO4	rectangular notch.	2.8	1.0				
			Calculate the coefficient of discharge for triangular notch.	2.3	1.8	2.2	2.2	0	
			Calibrate the flow measuring instruments.	2.2	1.8	2.12	2.2	80.0	Practical demonstrations to be given
		COI	Infer the fundamental concepts of thermodynamics to chemical engineering applications.	2.6	3	2.68	2.6	-0.08	Weekly quizzes to be conducted
		CO2	Explain the first and second laws of thermodynamics with their practical implications.	2.5	3	2.6	2.6	0	Tutorial to be given along with practice problems
	Chemical Engineering	CO3	Analyze the processes involving refrigeration and compression.	2.4	2.8	2.48	2.6	0.12	Analysis based questions to be given
4	Thermodynamics (170313)	CO4	Classify the thermodynamic properties of solutions with their relationships.	2.6	2.8	2.64	2.6	-0.04	Tutorial to be given along with practice problems
		CO5	Infer the detail of vapour liquid equilibria and its use in practical situations.	2.5	2	2.4	2.6	0.2	Analysis based questions to be given
		CO6	Analyze the chemical equilibrium with thermodynamics for predicting behavior of reacting systems.	2.4	2.2	2.36	2.6	0.24	Analysis based questions to be given
		CO1	Rephrase the application of Screen Analysis in Industry.	2.8	3	2.84	2.6	-0.24	Tutorial to be given along with practice problems
5		CO2	Describe the various methods of size reduction and to list the various principles.	2.4	2.8	2.48	2.6	0.12	Case study can be given
		CO3	Explain the separation techniques and equipments.	2.8	2.8	2.8	2.6	-0.2	Seminar presentation to be included
	Fluid Particle Mechanics (170314)	CO4	Illustrate the various process like sedimentation, filtration etc.	2.7	3	2.76	2.6	-0.16	Teaching along with experimentation
		CO5	Compare the various conveying devices.	1.9	3	2.12	2.6	0.48	Mini project work to b
		CO6	Illustrate the fluidization and fluid catalytic process.	2.8	2.8	2.8	2.6	-0.2	Analysis based questions to be given
6	Fluid Particle Mechanics Lab (170314)	COI	Analyse the effectiveness of a given	3	1.6	2.72	2.2	-0.5	labs to be conducted
	Mechanics Lab (1/0314)	CO2	A maly caparation technique	2.9	2.3	2.78	2.2	-0.5	8 More sessions on virtuals to be conducted
		CO3	Design size reduction ratio, grindability	2.6	1.7	2.42	2.2	-0.2	labs to be contine to
e, w.l		CO4		3	1.8	2.76	2.2	-0.5	More sessions on virt labs to be conducted

Dr. Sulochana Wadhwam OBE Manager

			CO5	Design the plate and frame filter press,	2.8	2.2	2.68	2.2	-0.48	More sessions on virtual labs to be conducted
			CO6	and thickener. Solve mathematical descriptions of	2.9	1.9	2.7	2.2	-0.5	More sessions on virtual labs to be conducted
			coı	mixing processes. Research a specific compound, or a family of compounds, to propose a synthetic route for isolation of this	2	1.1	1.82	2.2	0.38	Application based explanation to be given
			CO2	compound. Perform advanced manipulations of apparatus relevant to a synthetic chemistry laboratory, use a Schlenk line to synthesize oxygen- and moisture-sensitive products.	2.3	1.8	2.2	2.2	0	Practical demonstrations to be given
	8	9	CO3	Characterize chemical compounds using modern spectroscopic techniques.	2.4	1.5	2.22	2.2	-0.02	Practical demonstrations to be given
And a second sec		Chemical Synthesis Lab (170315)	CO4	Maintain a laboratory notebook following scientific best practices.	2.1	1.9	2.06	2.2	0.14	Practical demonstrations to be given
			CO5	Communicate findings in a format consistent with the scholarly standards of the chemical sciences.	2.4	1.2	2.16	2.2	0.04	Practical demonstrations to be given Practical demonstrations to be given
			CO6	Articulate and follow ethical principles in a scientific context, including professional standards of laboratory practice, the communication of literature research without plagiarism, and the crediting of collaborators	2.4	1.6	2.24	2.2	-0.04	
			COI	Infer the fundamental concepts of thermodynamics to chemical engineering applications.	2.6	3	2.68	2.5	-0.18	Tutorial to be given along with practice problems
	1		CO2	Explain the first and second laws of thermodynamics with their practical implications.	1.6	3	1.88	2.5	0.62	More practice numerical problems to be given
>		Chemical Engineering Thermodynamics	CO3	Analyze the processes involving refrigeration and compression.	1.9	3	2.12	2.5	0.38	Analysis based questions to be given
ster		(170501)	CO4	Classify the thermodynamic properties of solutions with their relationships.	3	3	3	2.5	-0.5	Analysis based questions to be given
Semester V			CO5	Infer the detail of vapour liquid equilibria and its use in practical situations.	3	3	3	2.5	-0.5	Analysis based questions to be given
S			CO6	Analyze the chemical equilibrium with thermodynamics for predicting behavior of reacting systems.	3	2.6	2.92	2.5	-0.42	Application based tutorial to be given
	2	Mass Transfer - II (170502)	COI	Examine the basics of adsorption, leaching, distillation, liquid-liquid extraction & the principle of diffusion underlying them.	2.7	2.4	2.64	2.5	-0.14	Explanation should be given with more illustrations

Dr. Sulochana Wadhwani OBT Manager

		CO2	Infer the necessary information useful in design of mass transfer equipment.	3	2.4	2.88	2.5	-0.38	More practice numerical problems to be given
		CO3	Analyze the different contacting patterns & Analogies in transfer process.	2.4	2	2.32	2.5	0.18	Explanation should be given with more illustrations
		CO4	Apply the theoretical concepts for solving practical problems.	3	1.8	2.76	2.5	-0.26	Tutorial to be given along with practice problems
		CO5	Interpret the equilibrium data obtained in various mass transfer operations.	2.9	2	2.72	2.5	-0.22	Analysis based questions to be given
		CO6	Propose favourable conditions for a separation to be carried out.	2.5	1.7	2.34	2.5	0.16	Analysis based questions to be given
		COI	Design calculation of distillation column	2.3	2.6	2.36	2.2	-0.16	More sessions on virtual labs to be conducted
		CO2	Estimation of number of theoretical stages and composition of each plate	1.5	2.2	1.64	2.2	0.56	More sessions on virtual labs to be conducted
		CO3	Analyze the separation by adsorption and design of adsorber	2.4	1.3	2.18	2.2	0.02	More sessions on virtual labs to be conducted
3	Mass Transfer - II Lab (170502)	CO4	Design the spray and packed tower separation by liquid liquid extraction	2.3	1.8	2.2	2.2	0	More sessions on virtual labs to be conducted
		CO5	Analyze the separation by leaching	2.5	1	2.2	2.2	0	More sessions on virtual labs to be conducted
		CO6	Analyze the industrial application of separation equipments in process plant	2.7	1.5	2.46	2.2	-0.26	More sessions on virtual labs to be conducted
		COI	Apply the basic concepts in the analysis of homogenous system and deviation from ideal behavior.	2.5	2.7	2.54	2.5	-0.04	
4	Chemical Reaction Engineering - I (170503)	CO2	Explain the different steps in reaction mechanisms and identify the Rate-determining step.	2.4	2.4	2.4	2.5	0.1	Explanation should be given with more illustrations
		CO3	Develop Batch, CSTR, and PFR performance equations from general material balances.	2.4	2.5	2.41	2.5	0.0	8 Application based tutorial to be given
		CO4	Analyze Non-Isothermal operation in industrial Reactors	1.3	2.8	1.6	2.5	5 0.	Explanation should be given with more illustrations
		CO5	Determine conversion, selectivity & yield for Multiple chemical reactions.	2.4	2.9	2.	5 2.	5	More practice numerical problems to be given
		CO6	Discuss the Non-Ideal Behaviour for any flow reactor.	1.5	2.6	1.	72 2	.5 0	Explanation should be given with more illustrations
5	Chemical Reaction	CO1	Analyze the chemical reactors and	2.4	2.3	2.	38 2	.2 -	0.18 More sessions on virtua labs to be conducted
, he h	Engineering - I Lab (170503)	CO2	reaction systems Examine the design of experiments	2.1	1.8	2.	.04	2.2	D.16 More sessions on virtus

Dr. Sulochana Wadhwani OBE Manager

			involving chemical reactors	1					labs to be conducted
		CO3	Analyze non ideality in real reactors.	2.4	2.2	2.36	2.2	-0.16	More sessions on virtual labs to be conducted
		CO4	Examine the experimental analysis of batch reactor, plug flow reactor and CSTR.	2.4	1.5	2.22	2.22	o	More sessions on virtual labs to be conducted
		CO5	Examine the design and sizing of industrial scale reactor on the basis of kmetic data obtained at lab scale.	2.5	1.5	2.3	2.2	-0.1	More sessions on virtual labs to be conducted
		CO6	Interpret the experimental data for useful purposes.	1.9	1.6	1.84	2.2	0.36	More sessions on virtual labs to be conducted
		COI	Explain mathematical problems as applied to Chemical Engineering.	1.9	2	1.92	2	80.0	Analysis based questions to be given
		CO2	Interpret the engineering data & the features of different numerical methods.	1.2	3	1.56	2	0.44	Tutorial to be given along with practice problems
		CO3	Illustrate the use of numerical methods in Chemical Engineering scenario.	2.7	2.3	2.62	2	-0.62	Tutorial to be given along with practice problems
6	Computational Methods in Chemical Engineering (170504)	CO4	Outline the scope of optimization in chemical processes & use of numerical solution of the ODEs.	3	2.5	2.9	2.5	-0.4	Tutorial to be given along with practice problems
		CO5	Simplify the solution of engineering problems using PDEs & ODEs.	3	2.1	2.82	2.5	-0.32	Tutorial to be given along with practice problems
		CO6	Solve PDEs & ODEs in various physico- chemical systems.	2.6	2.4	2.56	2.5	-0.06	Tutorial to be given along with practice problems
7		COI	Choose between various computational methods to solve a process problem.	2.4	2.2	2.36	2.2	-0.16	More simulation exercises be given
	Computational Methods in Chemical Engineering Lab (170504)	CO2	Present a contrast between analytical & numerical solutions.	1.3	1.9	1.42	2.2	0.78	More simulation exercises be given
		CO3	Construct functions & codes for different numerical methods.	3	1.7	2.74	2.2	-0.54	More simulation exercises be given
		CO4	Solve ordinary & partial differential equations using the solvers in MATLAB.	1.5	1.4	1.48	2.2	0.72	More simulation exercises be given
		CO5	Analyze the solution of engineering problems using ordinary differential equations.	2.8	2.1	2.66	2.2	-0.46	More simulation exercises be given
		CO6	Make use of numerical integration & interpolation while solving chemical engineering problems	2.3	2.1	2.26	2.2	-0.06	exercises be given
8	Inorganic Process Technology (170505)	COI	Explain the basics of heavy and inorganic chemical industry	2.2	2	2.16	2.2	0.04	Explanation should be given with more

Dr. Sulochana Wadhwam OBE Manager

1	1	1		1	1	1		1		industrial examples
			CO2	Relate the importance of different unit operation and different unit processes involved in heavy and inorganic chemical	2.2	2.7	2.3	2.2	-0.1	Explanation should be given with more industrial examples
1			CO3	industry Develop process flow diagram	2	2.8	2.16	2.2	0.04	Explanation should be given with more industrial examples
			CO4	Analyze the major engineering problems	2.9	2.9	2.9	2.2	-0.7	Explanation should be given with more industrial examples
			COS	involved in the process Evaluate different types of processes based on theconversion and yield of	3	3	3	2.2	-0.8	Explanation should be given with more industrial examples
			CO6	Analyze the importance of Fertilizer and	2.6	2.8	2.64	2.2	-0.44	Explanation should be given with more industrial examples
			COI	Tell the basics of various unit operations & unit processes.	2.8	2.3	2.7	2.2	-0.5	Topic with practical relevance to be encouraged
		Minor Project - I (170506)	CO2	Outline the necessary features to be utilized in undergoing any project work.	2.9	1.5	2.62	2.2	-0.42	Outline of the work to be clearly specified
ت ۱۱۷	9		CO3	Choose among experimental work, modeling & a combination of both for any problem statement.	2	1.7	1.94	2.2	0.26	Proper guidelines to be given
			CO4	Justify the background for selecting a suitable project title.	2.3	2.7	2.38	2.2	-0.18	Proper guidelines to be given
			CO5	Plan the work in phases for accomplishment of the project objective.	2.4	2.3	2.38	2.2	-0.18	Proper guidelines to be given
			COI	Describe the industrial activities and fates of industrial contaminants.	3	2.3	2.86	2.5	-0.36	Case studies to be given
	1	Industrial Pollution Prevention & Control	CO2	Describe the concept of pollution prevention, control and sustainability	2.7	2.8	2.72	2.5	-0.22	Mini project & prsentation to be given
			CO3	development Identify the laws and regulations pertained to pollution prevention and	2.8	2	2.64	2.5	-0.14	Case studies to be given
Semester VII		(170713)	CO4	control Analyze the significance of different industrial pollution	3	2.5	2.9	2.5	-0.4	Case studies to be given
Sen			CO5	Identify the concepts of air pollution and methods	3	2.7	2.94	2.5	-0.44	Case studies to be given
,			CO6	Apply the principles of industrial water treatment methods	3	2.4	2.88	2.5	-0.38	Case studies to be given Explanation should be
	, ²	Petrochemical	COI	Identify the suitable feedstock and predict	2.9	2.5	2.82	2.5	-0.32	Explanation should be

Dr. Sulochana Wadhwani OBE Manager

Dr. Suiochana W						allaly sis and issue			-
4	0.00		2.68	w	2.6	Formulate the HAZOP study, event tree	C06		
Assignment to be given	-0 68	. 1	2.90	2.9	w	Analyze the risk analysis and plant reliability to reduce the hazard	C05		
given Case studies can be	.0 98				2.0	related to the plant management and maintenance to reduce energy hazard	CO4	Hazards (900223)	1
Practical illustrations with explanation to be	-0.68	2	7 68			used in chemical industries		Industrial Safety &	
with explanation to be given	-0.92	13	2.92	w	2.9	Explain the fire & explosion hazard and the controlling measurement techniques	СОЗ		
Practical illustrations			1.76	U	1.7	minimize the toxicants dose	C02		
Case studies can be	0.04	12	1.96		;	fundamental principles of safety	C01		
Mini project & prsentation to be given	-0.12	2	2.12	w	1.9	environment in petrochemical industries. A nature the origin of hazards and	C06		
Assignment to be given	-0.04	2.5	2.54	2.3	2.6	Design the parameters for safe, healthy	3		
questions to be given	-0.1	2.5	2.6	w	2.5	Analyze the systems for ensuring safe, reliable design and operation of process	C05		
Analysis based	-0.26	2.5	2.76	w	2.7	Evaluate the application of advance technologies for petroleum exploration, production and economics of energy sector.	C04	Technology (900211)	ω
given	-0.24	2.5	2.74	1.7	ω	Analyze the improvement for the profitability of refining and petrochemical complexes.	CO3	Petroloum Processing	
Case studies can be						scenario.			
be shown	-0.3	2.5	2.8	2	ω	Analyze the petroleum refining and petrochemical processing and current	C02		
be included	1	۲۰	2.76		ω	its characterization.	CO1		
More HOT questions to	-0 26	2			,	petrochemical industries	C06		
Explanation should be correlated with industry	-0.36	2.5	2.86	2.3	w	Identify the concepts of quality and	2		
correlated with industry	-0.26	2.5	2.76	w	2.7	Identify the manufacturing methods of importance for petrochemical industries	COS		
correlated with industry Explanation should be	-0.42	2.5	2.92	ω	2.9	Analyze the various aspects of cracking and polymerization processes.	CO4		,
Explanation should be correlated with industry Explanation should be	-0.42	2.5	2.92	2.6	ω	Identify the various aspects of important intermediate material for petrochemical industries	CO3		
correlated with industry	-0.32	2.5	2.82	2.5	2.9	Describe the various aspects of production of olefin containing gases	C02		
correlated with industry						potential growth of petrochemical industries		Technology (170714)	

					1.8		201	2	0.04	More simulation
1			CO1	Operate and program in MS Excel	1.8	3	2.04	2	-0.04	exercises be given
			CO2	Construct the flowsheets of chemical process unit.	2.2	1.9	2.14	2	-0.14	More simulation exercises be given
	5	Process Computation	CO3	Apply mass balance for a process situation using excel.	1.5	2.3	1.66	2	0.34	More simulation exercises be given
		Lab (170706)	CO4	Apply energy balance for a process situation using excel.	1.5	2.4	1.68	2	0.32	More simulation exercises be given
			CO5	Construct various time changing plots for parameters involved in a process.	1.6	2.1	1.7	2	0.3	More simulation exercises be given
			CO6	Carry out data validation and consolidation in excel.	2	2.2	2.04	2	-0.04	More simulation exercises be given
			CO1	Imbibe the knowledge of Intellectual Property and its protection through various laws	2.9	2.7	2.86	2.5	-0.36	Practical oriented quizzes to be scheduled
			CO2	Apply the knowledge of IPR for professional development	2.9	3	2.92	2.5	-0.42	Practical oriented quizzes to be scheduled
	6	Intellectual Property Rights (100008)	CO3	Develop a platform for protection and compliance of Intellectual Property Rights & knowledge	2.6	3	2.68	2.5	-0.18	Practical oriented quizzes to be scheduled
			CO4	Create awareness amidst academia and industry of IPR and Copyright compliance	2.2	2.3	2.22	2.5	0.28	Practical oriented quizzes to be scheduled
			CO5	Deliver the purpose and function of IPR and patenting.	2.2	2.8	2.32	2.5	0.18	Practical oriented quizzes to be scheduled
			CO1	Interpret about contemporary issues in chemical engineering & its allied areas through literature survey.	2.5	2	2.4	2.5	0.1	Practical oriented quizzes to be scheduled Case studies can be
			CO2	Distinguish state of art & relevance of the topic in national & international arena	3	2.5	2.9	2.5	-0.4	Assignment to be given
	7	Creative Problem Solving (170708)	CO3	Demonstrate written communication skills	3	2.7	2.94	2.5	-0.44	Case studies can be given
		(170700)	CO4	Practice in lifelong learning	3	2.4	2.88	2.5	-0.38	Case studies can be given
			CO5	Simplify complex problems in Chemical Engineering	2.5 .	2.5	2.5	2.5	0	Case studies can be given
-			CO6	Summarize different aspects involved in a particular field of study	2.8	2.8	2.8	2.5	-0.3	Case studies can be given

Dr. Suloehana Wadhwani OBE Manager