Madhav Institute of Technology & Science, Gwalior											
(A Govt. Aided UGC Autonomous & NAAC accredited Institute Affiliated to RGPV, Bhopal)											
<u>Chemical Engineering</u>											
Course Outcome Attainment of Mid Semester Examinations (Jan - June 2020)											
			CO Attainment (%)								
Semester	S. No.	Name of the Course & Code		Course Outcomes	Mid Sem	Mid Sem Mid Sem		Overall Target		Gan	Corrective Actions
				Explain the mechanism of heat transfer by	Test 1 Test 2 Test 3	o vorum	Turger	oup			
			CO1	conduction, convection and radiation	83	64.67	63.33	70.3333	70	-0.333333	-
			CO2	Interpret the dimensionless Numbers applicable in heat transfer and their physical significance	75	69.67	61.67	68.78	70	1.22	More questions to be given based on CO2
	1	Heat Transfer (170402)	CO3	Apply the concept of the individual and overall heat transfer coefficient	83	65.25	59.25	69.1667	70	0.833333	Assignment based on CO3 to be given
			CO4	Analyze the design & operation of Heat Exchangers	-	65.25	61.75	63.5	65	1.5	More practice numerical problems to be given
			CO5	Calculate the temperature profile of the various types Heat exchangers	-	74	70.67	72.335	70	-2.335	-
			CO6	Solve the problems of Evaporators and condensers	-	70	72	71	70	-1	-
	2	Mass Transfer - I (170403)	CO1	Apply the basics of absorption, humidification, drying, crystallization & the principle of diffusion underlying them.	83	86	65.67	78.2233	75	-3.223333	-
			CO2	Choose the necessary information useful in design of mass transfer equipment.	-	85	67.25	76.125	75	-1.125	-
			CO3	Analyze the different cases of diffusion phenomena.	75	80.67	74.12	76.5967	75	-1.596667	-
			CO4	Apply the theoretical concepts for solving practical problems.	75	76.25	70.57	73.94	75	1.06	More practice numerical problems to be given
>			CO5	Interpret psychometric charts & equilibrium data.	-	75	68	71.5	75	3.5	Tutorial to be given along with practice problems
ester l			CO6	Propose favorable conditions for a separation to be carried out.	-	68	71.91	69.955	75	5.045	More lectures to be engaged along with mini project
eme			CO1	Explain the basic principles & importance of process control in industrial process plants.	75	86	80.5	80.5	75	-5.5	-
5	CO2 Explain the use of block diagra mathematical basis for the design systems	Explain the use of block diagrams & the mathematical basis for the design of control systems.	75	76.5	80.5	77.3333	75	-2.333333	-		
	2	Instrumentation & Process Control (170404)	CO3	Identify controller that can be used for specific problems in chemical industry.	83	75	82	80	75	-5	-
	3		CO4	Analyze the Dynamic behavior of first and second order control system.	67	72	82.67	73.89	75	1.11	More questions to be given based on CO4
			CO5	Compare the Linear open loop and Closed loop system.	-	54.5	79.67	67.085	70	2.915	More practice numerical problems to be given
			CO6	Test the stability of a given system & Analyze the transient and frequency response of systems.	-	47.5	82.67	65.085	65	-0.085	-

				Bacall basics of Mechanical Design in the							
			CO1	industrial problems	75	84.5	64.25	74.5833	70	-4.583333	-
				Experiment with different heads, closures and	-		40 F				
			CO2	other accessories involved during design.	67	88.5	68.5	74.6667	70	-4.666667	-
		Machanical Design of	CO3	Decide on general design considerations	-	82	79.33	80.665	80	-0.665	-
	4	Process Equipment	CO4	Make use of IS Codes in design of Pressure	-	64	78	71	70	-1	-
		(170405)		vessel							
			CO5	Tall Vertical & Horizontal Vessels	-	71.33	56	63.665	65	1.335	More practice numerical problems to be given
				Outline the design of bolted flanges for							P
			CO6	determining suitable material of construction	- 83.33	83.33	57.33	70.33	70	-0.33	-
				for specific service.							
			CO1	Explain the basic concepts involved in process	92	61.67	66.67	73.4467	70	-3.446667	-
				analysis & simulation.							
			CO2	a mathematical model from basic engineering	67 57 33	72	65 4433	65	-0.443333	-	
			002	principles.	07	1 51.55	12	00.1400	05	0	
		Deserve Madalina P	CO2	Apply the conservation equations in various	02	62	51.22	66 1122	65	4 442222	
	1	Simulation (170602)	005	physio – chemical systems.	63	02	54.55	00.4455	03	-1.445555	-
			CO4	Examine the experimental data for further	-	87.2	68	77.6	75	-2.6	-
				Compare various iterative convergence							
			CO5	methods and numerical solution of ODEs.	-	71.33	69.67	70.5	70	-0.5	-
			606	Analyze different approaches involved in		60 70	(0.5	70	0.5	Explanation should be given	
			006	dynamic modelling of process systems.	-	69	70	09.5	70	0.5	with illustration
			CO1	Explain the basics of fluidization	67	62.42	60.5	63.3067	60	-3.306667	-
		DE 1: Fluidization Engineering (170612)	CO2	Describe the various industrial application of	67	55.15	66.5	62.8833	60	-2.883333	-
				Function Function regimes	in the various fluidization regimes						
			CO3	classification of particles	83	53.94	60.33	65.7567	65	-0.756667	-
	2		CO4	Analyze Heat and Mass Transfer between fluid	83	71.51	69.67	74 7267	75	0 273333	Tutorial to be given along
				and solid	85	/1.51	09.07	74.7207	15	0.273333	with practice problems
			CO5	Estimate Voidage, TDH, size distribution with	83	61.21	65	69.7367	70	0.263333	Tutorial to be given along
				Evaluate Heat transfer coefficients in fluidized							Tutorial to be given along
			CO6	beds	-	79.39	57.33	68.36	70	1.64	with practice problems
			CO1	Check processing technique for the given	92	56	68.5	72.1667	70	-2.166667	-
			Describe different types of processing 83 53 52 25 62 75 60						60	-2.75	_
			002	techniques of polymers	83 53 52.25 62.75				00	-2.75	-
_			CO3	Explain the structure and properties of	-	52	64	58	60	2	More lectures to be engaged
Semester V				polymers Explain the forming techniques for plastics							
	3	DE 1: Polymer Technology (170614)	y CO4	(compression molding injection molding)	-	63.14	63.67	63.405	60	-3.405	-
				Test the synthesis of polymers and their		52.00	<i>c</i> 1		60		More questions to be given
			COS	commercial applications.	-	52.33	61	50.005	60	3.335	based on CO5
				Explain the properties that these materials							
			CO6	posses, including their molecular, physical,	-	55.83	61	58.415	60	1.585	More lectures to be engaged
				properties							-
			CO1	Explain the origin of fossil fuels	80	79.5	73	77.5	75	-25	-
			0.01	Explain the origin of rossil fuels	00	, 7.5			15		

		OC 1: Fuels & Combustion (900109)	CO2	Classify fossil fuels	80	92.5	82.5	85	80	-5	_
			CO3	Analyze the various alternate energy options available in earth	60	57.5	65	60.8333	60	-0.833333	-
	4		CO4	Explain various fuel-processing techniques used in solid, liquid and gaseous fuels	70	75	72	72.3333	70	-2.333333	-
			CO5	Explain the characterization techniques of fuels	75	70.5	73.5	73	75	2	Group assignment cum presentation to be given
			CO6	Examine quality of fuels based on its properties and possible utilization	-	67	69	68	70	2	Group assignment cum presentation to be given
			CO1	Analyze the nanostructures and their properties	67	74.5	76	72.5	70	-2.5	-
			CO2	Examine the principles of processing, manufacturing of nanomaterials.	75	77	78.75	76.9167	75	-1.916667	-
			CO3	Examine the nanomaterials and nanostructures characterization techniques.	75	82	74	77	75	-2	-
	5	OC 1: Nanotechnology (900110)	CO4	Examine the mechanical properties of bulk nanostructured metals, alloys, nanocomposites and carbon nanotubes.	75	60	77.67	70.89	70	-0.89	-
			CO5	Analyze the structure of materials down to the nanometer (atomic) level, with particular emphasis on crystal structure, nano-defects and their kinetics	-	61.33	74.33	67.83	70	2.17	Detailed study notes to be provided
			CO6	Analyze the application of nanomaterial and nanostructure.	-	51.33	81.33	66.33	70	3.67	Detailed study notes to be provided
		Bio Process Technology (BCHL 801)	CO1	Describe basic concepts of thermodynamics, mass and energy balances, reaction kinetics and	-	70	62	66	65	-1	-
			CO2	Analyze bioreactors, upstream and downstream processes in production of bio-products	-	68.57	60.75	64.66	65	0.34	Detailed study notes to be provided
	1		CO3	Demonstrate the fermentation process and its products for the latest industrial revolution:	-	60.14	61.67	60.905	65	4.095	Detailed study notes to be provided
			CO4	Explain the different cells and their use in biochemical process:	-	63.57	61.33	62.45	60	-2.45	-
			CO5	Identify the role of enzymes in kinetic analysis of bio-reactions:	-	69	60.67	67 64.835 65	65	0.165	Doubt sessions to be conducted
			CO6	Design an experiment with step-by-step instructions to address a research problem:	-	66.15	61.67	63.91	60	-3.91	-
		Membrane Separation Processes (BCHL 802)	CO1	Explain the membrane processes and transport mechanism in membranes	-	64	65.25	64.625	65	0.375	Doubt sessions to be conducted
			CO2	Explain the preparation methods for membranes and their characterization.	-	63.5	57.5	60.5	60	-0.5	-
			CO3	Explain various pressure driven membrane processes and membrane modules.	-	61.75	65	63.375	65	1.625	Detailed study notes to be provided
	2		CO4	Analyze the concentration polarizations, fouling phenomena in membrane.	-	71	60.67	65.835	65	-0.835	-
			CO5	Evaluate design calculations of reverse osmosis, nano-filtration, and ultra/microfiltration.	-	67.5	50.67	59.085	60	0.915	Detailed study notes to be provided & doubt sessions to be conducted
_			CO6	Explain the membrane technology application in industry.	-	62	60	61	60	-1	-

۲	3	Process Safety & Hazard Management (BCHL 803)	CO1	Analyze the origin of hazards and fundamental principles of safety	-	73.94	69.75	71.845	70	-1.845	-	
este			CO2	Analyze the issues related to toxicants and minimize the toxicants dose.	-	72.73	88.5	80.615	75	-5.615	-	
Sem			CO3	Explain the fire & explosion hazard and the controlling measurement techniques used in the chemical industries	-	87.27	90	88.635	80	-8.635	-	
			CO4	Evaluate the professional obligations related to the plant management and maintains to reduce energy hazard.	-	92.12	96.67	94.395	85	-9.395	-	
			CO5	Analyze the risk analysis and plant reliability to reduce the hazard	-	83.64	90.33	86.985	85	-1.985	-	
			C06	Formulate the HAZOP study, event tree analysis and faulty tree analysis	-	87.88	95.33	91.605	85	-6.605	-	
	4	Environmental Engineering (BCHL 804)	CO1	Explain the water and air quality criteria, characteristics of Air and water pollutants,	-	96	72.5	84.25	80	-4.25	-	
			CO2	Describe the measuring and sampling of gaseous and particulate pollutants, water pollutants, BOD, COD and other quality parameters	-	94	72	83	80	-3	-	
			CO3	Examine the classification, selection of air pollution controlling techniques and design of equipments	-	96	77.67	86.835	85	-1.835	-	
			(BCHL 804)	CO4	Examine the classification, selection of water pollution controlling techniques and design of equipments	-	97.33	75.67	86.5	85	-1.5	-
			CO5	Explain the methods and various processing techniques used for solid waste management.	-	97.33	72.33	84.83	85	0.17	Detailed study notes to be provided	
			CO6	Describe the Soil pollution, Marine pollution, Noise pollution, Thermal pollution and Nuclear hazards	-	96.67	73	84.835	85	0.165	Detailed study notes to be provided	