Madhav Institute of Technology & Science, Gwalior

(A Govt. Aided UGC Autonomous & NAAC accredited Institute Affiliated to RGPV, Bhopal)

Chemical Engineering

Course Outcome Attainment & Gap Analysis of Jan - June 2021 Semester

			Course Outcomes		CO Attainment							
Semester	S. No.	Name of the Course & Code			Direct attainment (%)	Attainment Level	Indirect attainment	Attainment Level	Overall	Target	Gap	Corrective Actions
		Heat Transfer (170402)	CO1	Explain the mechanism of heat transfer by conduction, convection and radiation	74.5149	3	66.67	2.7	2.94	2.5	-0.44	Questions with more difficulty level to be included
IV	1		CO2	Interpret the dimensionless Numbers applicable in heat transfer and their physical significance	76.8855	3	75.00	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO3	Apply the concept of the individual and overall heat transfer coefficient	74.8177	3	61.11	2.1	2.82	2.5	-0.32	Questions with more difficulty level to be included
			CO4	Analyze the design & operation of Heat Exchangers	71.9945	3	63.89	2.4	2.88	2.5	-0.38	Questions with more difficulty level to be included
Semester			CO5	Calculate the temperature profile of the various types Heat exchangers	78.5651	3	69.44	2.9	2.98	2.5	-0.48	Questions with more difficulty level to be included
Sej			CO6	Solve the problems of Evaporators and condensers	77.8496	3	66.67	2.7	2.94	2.5	-0.44	Questions with more difficulty level to be included
		Heat Transfer Lab (170402)	CO1	Analyze the various modes of heat transfer in chemical industries	76	3	93	3	3	2.5	-0.5	Application based viva to be conducted
	2		CO2	Optimize design of the heat exchangers for industrial chemical processes	70	3	87	3	3	2.5	-0.5	Application based viva to be conducted
			CO3	Examine the heat transfer coefficients in chemical industries.	76	3	93	3	3	2.5	-0.5	Application based viva to be conducted
			CO4	Analyze the application of advanced heat exchanging equipment in chemical industry	70	3	87	3	3	2.5	-0.5	Application based viva to be conducted

			CO5	Analyze the different laws of basic heat transfer used in chemical processes	85	3	87	3	3	2.5	-0.5	Application based viva to be conducted
			CO1	Apply the basics of absorption, humidification, drying, crystallization & the principle of diffusion underlying them.	81	3	81.0	3	3	2.5	-0.5	Application based tutorial to be given
			CO2	Choose the necessary information useful in design of mass transfer equipment.	82	3	81.0	3	3	2.5	-0.5	More HOT questions to be included
	2	Mass Transfer - I	CO3	Analyze the different cases of diffusion phenomena.	81	3	78.6	3	3	2.5	-0.5	Application based tutorial to be given
	3	(170403)	CO4	Apply the theoretical concepts for solving practical problems.	83	3	83.3	3	3	2.5	-0.5	Application based tutorial to be given
			CO5	Interpret psychometric charts & equilibrium data.	82	3	81.0	3	3	2.5	-0.5	Application based tutorial to be given
			CO6	Propose favorable conditions for a separation to be carried out.	80	3	71.4	3	3	2.5	-0.5	Application based tutorial to be given
		Mass Transfer - I Lab (170403)	CO1	Analyze the various applications of modern separation technique	80.5	3	70	3	3	3	0	Practical oriented quizzes to be scheduled
			CO2	Design novel drying equipments for intended application.	80.5	3	73	3	3	3	0	Practical oriented quizzes to be scheduled
			CO3	Evaluate the diffusion application in chemical industries	82	3	77.8	3	3	3	0	Practical oriented quizzes to be scheduled
	4		CO4	Analyze the ability to know the application of humidification operation in chemical industry	82.67	3	77.8	3	3	3	0	Practical oriented quizzes to be scheduled
			CO5	Evaluate the appropriate application equipment in a process	79.67	3	72.2	3	3	3	0	Practical oriented quizzes to be scheduled
			CO6	Analyze the design of the mass transfer equipments used in crystallization processes	82.67	3	83.3	3	3	3	0	Practical oriented quizzes to be scheduled
		Instrumentation & Process Control (170404)	CO1	Explain the basic principles & importance of process control in industrial process plants.	78.535	3	85	3	3	2.5	-0.5	More HOT questions to be included
	5		CO2	Explain the use of block diagrams & the mathematical basis for the design of control systems.	79.5185	3	79	3	3	2.5	-0.5	More HOT questions to be included
			CO3	Identify controller that can be used for specific problems in chemical industry.	81.552	3	67	2.7	2.94	2.5	-0.44	More HOT questions to be included

			CO4	Analyze the Dynamic behavior of first and second order control system.	76.6745	3	73	3	3	2.5	-0.5	More HOT questions to be included
			CO5	Compare the Linear open loop and Closed loop system.	78.2425	3	70	3	3	2.5	-0.5	More HOT questions to be included
			CO6	Test the stability of a given system & Analyze the transient and frequency response of systems.	81.125	3	73	3	3	2.5	-0.5	More HOT questions to be included
			CO1	Recall basics of Mechanical Design in the industrial problems	63.59	2.4	73	3	2.52	3	0.48	More lectures to be engaged
	6		CO2	Experiment with different heads, closures and other accessories involved during design.	67.901	2.8	82.5	3	2.84	3	0.16	tutorial sessions to be scheduled
		Mechanical Design of Process Equipment (170405)	CO3	Decide on general design considerations	65.545	2.5	65	2.5	2.5	3	0.5	tutorial sessions to be scheduled
			CO4	Make use of IS Codes in design of Pressure vessel	66.091	2.6	72	3	2.68	3	0.32	tutorial sessions to be scheduled
			CO5	Distinguish between design procedures for Tall Vertical & Horizontal Vessels	64.94	2.5	73.5	3	2.6	3	0.4	More lectures to be engaged along with mini project
			CO6	Outline the design of bolted flanges for determining suitable material of construction for specific service.	65.706	2.6	69	2.9	2.66	3	0.34	Detailed notes to be provided
			CO1	Tell the importance of process control in industrial process plants	73	3	75	3	3	3	0	Application based viva to be conducted
			CO2	Explain the working of a flow control trainer and its applications	82	3	75	3	3	3	0	Application based viva to be conducted
	7	Process Control Lab	CO3	Explain the working of a level control trainer and its applications	76	3	71	3	3	3	0	Application based viva to be conducted
	,	(170407)	CO4	Identify controller that can be used for specific problems in chemical industry	70	3	71	3	3	3	0	Application based viva to be conducted
			CO5	Analyze the Dynamic behavior of first and second order control system	71	3	83	3	3	3	0	Application based viva to be conducted
			CO6	Differentiate between interaction and non-interacting systems	72	3	75	3	3	3	0	Application based tutorial to be given
Seme ster VI	1	Process Modeling & Simulation (170602)	CO1	Explain the basic concepts involved in process analysis & simulation.	65.944	2.6	80.56	3	2.68	3	0.32	Explanation should be given with illustration

		CO2	Formulate a chemical engineering problem as a mathematical model from basic engineering principles.	66.6335	2.7	77.78	3	2.76	3	0.24	Tutorial to be given along with practice problems
		CO3	Apply the conservation equations in various physio – chemical systems.	75.9785	3	75	3	3	3	0	More HOT questions to be included
		CO4	Examine the experimental data for further processing.	76.4645	3	77.78	3	3	3	0	More HOT questions to be included
		CO5	Compare various iterative convergence methods and numerical solution of ODEs.	78.8215	3	81.94	3	3	3	0	More HOT questions to be included
		CO6	Analyze different approaches involved in dynamic modelling of process systems.	63.161	2.3	73.61	3	2.44	3	0.56	Tutorial to be given along with practice problems
	Process Modeling & Simulation Lab (170602)	CO1	Develop fundamental understanding of chemical engineering problems	85	3	76	3	3	3	0	Practical oriented quizzes to be scheduled
		CO2	Develop dynamic model equations of chemical engineering systems	79	3	69.33	2.9	2.98	3	0.02	More lab sessions to be conducted
2		CO3	Solve the differential equations by using different convergence methods	83	3	73.33	3	3	3	0	More HOT questions to be included
2		CO4	Develop MATLAB code to solve dynamic model equations	84	3	73.33	3	3	3	0	More HOT questions to be included
		CO5	Analyze the plotted data generated by MATLAB code	84	3	74.67	3	3	3	0	More HOT questions to be included
		CO6	Analyze the variation of state variable with respect to time	86	3	74.67	3	3	3	0	More HOT questions to be included
	DE 1: Process Equipment Design (170611)	CO1	Explain the basics of process equipment design and important parameters of equipment design	77.1825	3	83.33	3	3	2.5	-0.5	More HOT questions to be included
3		CO2	Describe the scale up criteria	78.5535	3	77.78	3	3	2.5	-0.5	More HOT questions to be included
		CO3	Explain the various supports and closures and their appropriate selections for given process equipment	74.3345	3	81.48	3	3	2.5	-0.5	More HOT questions to be included
		CO4	Analyze the concept of internal and external pressure conditions (Tube and Shell side)	80.2235	3	75.93	3	3	2.5	-0.5	More HOT questions to be included

			CO5	Develop the designing concept and flow-sheeting (for given process)	77.0655	3	83.33	3	3	2.5	-0.5	More HOT questions to be included
			CO6	Design the various process equipments	73.3285	3	77.78	3	3	2.5	-0.5	More HOT questions to be included
			CO1	Check processing technique for the given polymer for a particular application	80.552	3	82.67	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO2	Describe different types of processing techniques of polymers	77.812	3	79.67	3	3	2.5	-0.5	Questions with more difficulty level to be included
		DE 1: Polymer Technology (170614)	CO3	Explain the structure and properties of polymers	78.292	3	82.67	3	3	2.5	-0.5	Questions with more difficulty level to be included
	4		CO4	Explain the forming techniques for plastics (compression molding, injection molding)	80.2755	3	64.25	2.4	2.88	2.5	-0.38	Questions with more difficulty level to be included
			CO5	Test the synthesis of polymers and their commercial applications.	76.896	3	68.5	2.8	2.96	2.5	-0.46	Questions with more difficulty level to be included
			CO6	Explain the properties that these materials posses, including their molecular, physical, chemical, thermal, mechanical and electrical properties.	75.8005	3	79.33	3	3	2.5	-0.5	Questions with more difficulty level to be included
		OC 1: Fuels & Combustion (900109)	CO1	Explain the origin of fossil fuels	77.1835	3	82.05	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO2	Classify fossil fuels	77.8545	3	82.91	3	3	2.5	-0.5	Questions with more difficulty level to be included
	5		CO3	Analyze the various alternate energy options available in earth	71.027	3	83.76	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO4	Explain various fuel-processing techniques used in solid, liquid and gaseous fuels	77.048	3	84.61	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO5	Explain the characterization techniques of fuels	73.0705	3	82.91	3	3	2.5	-0.5	Questions with more difficulty level to be

											included
		CO6	Examine quality of fuels based on its properties and possible utilization	74.523	3	82.91	3	3	2.5	-0.5	Questions with more difficulty level to be included
		CO1	Analyze the nanostructures and their properties	80.0175	3	75	3	3	2.5	-0.5	Target to be increased
		CO2	Examine the principles of processing, manufacturing of nanomaterials.	83.3105	3	75	3	3	2.5	-0.5	Target to be increased
		СОЗ	Examine the nanomaterials and nanostructures characterization techniques.	69.958	3	71	3	3	2.5	-0.5	Target to be increased
6	OC 1: Nanotechnology (900110)	CO4	Examine the mechanical properties of bulk nanostructured metals, alloys, nanocomposites and carbon nanotubes.	73.333	3	71	3	3	2.5	-0.5	Target to be increased
		CO5	Analyze the structure of materials down to the nanometer (atomic) level, with particular emphasis on crystal structure, nano-defects and their kinetics	80.43	3	83	3	3	2.5	-0.5	Target to be increased
		CO6	Analyze the application of nanomaterial and nanostructure.	78.367	3	75	3	3	2.5	-0.5	Target to be increased
		CO1	Explain the basics of various unit operations & unit processes.	86	3	80.5	3	3	3	0	Practical oriented topics should be encouraged
		CO2	Outline the necessary features to be utilized in undergoing any project work.	85	3	80.5	3	3	3	0	Practical oriented topics should be encouraged
_	Minor Project - II	CO3	Choose among experimental work, modeling & a combination of both for any problem statement.	80.67	3	82	3	3	3	0	Practical oriented topics should be encouraged
7	(170607)	CO4	Examine the literature for useful information regarding the project.	76.25	3	82.67	3	3	3	0	Practical oriented topics should be encouraged
		CO5	Justify the background for selecting a suitable project title.	75	3	79.67	3	3	3	0	Practical oriented topics should be encouraged
		CO6	Plan the work in phases for accomplishment of the project objective.	73	3	82.67	3	3	3	0	Practical oriented topics should be encouraged

		Disaster Management (100007)	CO1	Identify disaster prevention and mitigation approaches.	79.967	3	82.72	3	3	2.5	-0.5	Questions with more difficulty level to be included
	8		CO2	Classify global and national disasters, their trends and profiles.	81.4275	3	81.48	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO3	Determine the impacts of various disasters	79.8525	3	80.25	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO4	Apply Disaster Risk Reduction in management	81.3525	3	81.48	3	3	2.5	-0.5	Questions with more difficulty level to be included
			CO5	Infer the linkage between disasters, environment and development	69.421	2.9	79.01	3	2.92	2.5	-0.42	Questions with more difficulty level to be included
			CO6	Identify Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders	70.4875	3	76.54	3	3	2.5	-0.5	Questions with more difficulty level to be included