(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP) **MECHANICAL ENGINEERING DEPARTMENT**

Flexible Scheme: Course Outcomes (COs) The course outcomes of the courses of 2020 admitted batch from 1st year to 3rd year of the undergraduate course of mechanical Engineering Program are given below:

Course		Course Outcomes
	CO1	Visualize the geometric details of engineering objects
	CO2	Translate the geometric information of engineering objects into
		engineering drawings
100014: Engineering	CO3	Draw orthographic projections and sections
Graphics (ESC-1)	CO4	Develop knowledge to read, understand and explain drawing
	CO5	Improve their skills so that they can apply these skills in
		developing new products
	CO6	Prepare simple layout of factory, machine and buildings
	CO1	State the principles of diffusion theory and various types of
		defects in materials
120211: Material	CO2	Discuss mechanical properties of materials
Science	CO3	Compare the different processes to alter the material properties
(DC-1)	CO4	Determine the effect of different phases, impurities on the
		behavior of materials
	CO5	Analyze crystal structure and composition of different materials
	CO6	Create the different engineering materials and alloys
	CO1	Define the essential concepts of thermal, design and production
		used in Mechanical Engineering
	CO2	Summarize fundamental techniques and process used in power
		generating machines
100021: Basic	CO3	Solve the various problems based on basic concepts of
Mechanical	604	Mechanical Engineering
Engineering (ESC-4)	CO4	Analyze the various gas, steam and air cycles
	CO5	Evaluate the problems of Steam Generator, Thermodynamics,
	CO6	Steam and I.C. engines Generate the skills to demonstrate steam Generator and
	000	reciprocating machine in depth
-		
	CO1	Discuss the hand tools, machine tools and power tools
	CO2	Utilize appropriate tools required for specific operation.
	CO3	Apply safety measures required to be taken while using the tools
100024:		in floor shops, Machine ships and carpentry shop
Manufacturing	CO4	Use the techniques, skills, and modern engineering tools
Practices (ESC-7)		necessary for manufacturing and production engineering
	CO5	Conduct experiments in the field of Production engineering
	CO6	Design a system, components, or process to meet desired needs,
		ethical, health and safety, manufacturability and sustainability

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

		NICAL ENGINEERING DEPARTMENT
	CO1	Visualize the geometric details of engineering objects
	CO2	Translate the geometric information of engineering objects into
		engineering drawings
100018: Engineering	CO3	Draw orthographic projections and sections
Graphics Lab	CO4	Develop knowledge to read, understand and explain drawing
	CO5	Improve their skills so that they can apply these skills in
		developing new products
	CO6	Prepare simple layout of factory, machine and buildings
	CO1	Define the essential concepts of thermal, design and production
	001	used in Mechanical Engineering
	CO2	Summarize fundamental techniques and process used in power
	02	generating machines
100026: Basic	CO3	Solve the various problems based on basic concepts of
Mechanical	005	Mechanical Engineering
Engineering Lab	CO4	Analyze the various gas, steam and air cycles
	CO5	Evaluate the problems of Steam Generator, Thermodynamics,
		Steam and I.C. engines
	CO6	Generate the skills to demonstrate steam Generator and
		reciprocating machine in depth
	CO1	Describe the different types of manufacturing processes and their
	01	applications
	CO2	Identify suitable manufacturing process to achieve the required
	002	product shape with the aim of avoid defects, material and time
		wastage
	CO3	Illustrate the advantage and limitations of various manufacturing
120311:		processes with regard to shape formation and surface quality.
Manufacturing	CO4	Analyse the manufacturing processes for given problem and able
Process (DC-2)		to select an appropriate process according to a specific
		requirement.
	CO5	Evaluate the procedures and techniques involved for the
		manufacturing of components for its optimization.
	CO6	Propose a simplified manufacturing processes with the aim of
		reduction of cost and manpower.
	CO1	Identify various structural elements and its application
	CO2	Illustrate different types of stress and strain on various types of
		structural elements like beam, shaft column etc
	CO3	Calculate principal stresses, maximum shearing stress, and the
120312: Mechanics of		different stresses acting on a structural member.
Materials (DC-3)	CO4	Analyse stresses and deflection for beam, shaft, long
		columns, thin cylinder etc
	CO5	Select appropriate materials in design considering engineering
		properties, sustainability, cost and weight
	CO6	Design simple bars, beams, and circular shafts to meet desired
		needs in terms of strength and deformation

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

	CO1	Evaluate the values of yield stress, breaking stress and ultimate stress of the given specimen under tension test
	CO2	Conduct the torsion test to determine the modulus of rigidity of given specimen
120312(P): Mechanics	CO3	Perform compression tests on spring and wood
of Materials lab	CO4	Justify the Rockwell hardness test over with Brinell hardness and
of Waterials lab	04	measure the hardness of the given specimen
	CO5	Determine elastic constants using flexural and torsion tests
	CO6	Examine the stiffness of the open coil and closed coil spring and grade them
	C01	Identify basic mechanisms in real life applications
	CO1	Discuss about mechanics of various machines
	CO2	Apply fundamental principles of statics and dynamics to
120313: Theory of Machines –I	003	machinery.
(DC-4)	CO4	Analyse various types of motions and mechanisms of machinery
	CO5	Compare various components suitable for different applications. e.g. different types of governor, clutch, brakes, flywheel etc
	CO6	Create the mechanism or components to justify the demands of work
	CO1	Design and analyze mechanism required for the specified type of motion
	CO2	Draw inversions and determine velocity and acceleration of different mechanisms
120313(P): Theory of	CO3	Construct different types of cam profile for a given data.
Machines –I lab	CO4	Analyze various motion transmission elements like gears, gear trains, cams, belt drive and rope drive.
	CO5	Compare the various components related to machines and mechanism
	CO6	Determine the degrees-of-freedom (mobility) of a mechanism
	601	Define the fundamental even entire of fluids
	CO1	Define the fundamental properties of fluids
	CO2	Relate the concepts of mechanics with various laws of fluid mechanics.
120314: Fluid Mechanics and	CO3	Identify the laws of fluid mechanics applicable for the body in various fluids under different conditions
Hydraulic Machines (DC-5)	CO4	Analyse various forces and their effects, related to fluids mechanics
	CO5	Measure and compare losses in different fluid flow conditions
	CO6	Compare different turbo machines depending on their behaviour and their merits and demerits

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

		INICAL ENGINEERING DEPARTIVIENT
120314(P): Fluid Mechanics and Hydraulic Machines lab	CO1	Conduct experiment with flow measurement devices like Venturi meter and orifice meter
	CO2	Estimate the friction and measure the frictional losses in fluid flow.
	CO3	Predict the coefficient of discharge for flow through pipes
	CO4	Evaluate pressure drop in pipe flow using Hagen-Poiseuille's equation for laminar flow in a pipe
	CO5	Calculate the Critical Reynolds's Number through Pipe Set Apparatus
	CO6	Apply thermodynamic concepts to analyze Fluid machines
	CO1	Describe AutoCAD and CATIA toolbars
	CO2	Summarize 2D and 3D commands
	CO3	Solve real time problems using AutoCAD and CATIA software
120315: Software Lab	CO4	Analyse various mechanical engineering problems
(DLC-1)	C04	Evaluate technical drawings of machine assemblies as a design
	005	engineer
	CO6	Generate 2D and 3D solid models with new features in machine
		elements
	CO1	Identify the motion and the dynamical forces acting on
		mechanical systems composed of linkages, gears and cams
	CO2	Classify various components of machines like gear, gear train cam
		etc
120411: Theory of	CO3	Solve numerical problems of various components of machines
Machines –II		like gear, gear train cam etc
(DC-6)	CO4	Analyze the forces and motion of complex systems of linkages, gears and cams
	CO5	Evaluate the applications of components e.g. gear, gear train,
		balancing, cam etc. and select appropriate machine elements for the required applications
	CO6	Design the mechanism or components to justify the demands of
		work such as linkage, cam, gear, gear train mechanism etc
	CO1	Identify the kinematic chain and mobility, and perform the
		kinematic analysis of a given mechanism
	CO2	Analyze various motion transmission elements like gears, gear
	602	trains, cams, belt drive and rope drive
120411(P): Theory of Machines –II lab	CO3	Determine the degrees-of-freedom (mobility) of a mechanism
	CO4	Apply the fundamental principles of statics and dynamics to machinery
	CO5	Evaluate the dynamic forces for various machines
	CO6	Analyze the fundamentals of machines for desired kinematic or dynamic performance.

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

MECHANICAL ENGINEERING DEPARTMENT		
	CO1	Describe the basic design process and function of Permanent and temporary joints used in Machine Design
120412: Design of Machine Elements (DC-7)	CO2	Summarize the design techniques, skills and tools used in design
	CO3	Solve the various design engineering problems by formulate and proper assumptions for practice
	CO4	Analyze the stress and strain on mechanical components; and understand, identify and quantify failure modes for mechanical parts
	CO5	Evaluate the cases of Temporary and permanent joints problems successfully
	CO6	Create design techniques for a mechanical component under variety of environmental and service conditions
	CO1	Design and analysis the different part of an I.C Engine like Piston, cylinder, connecting rod , crank shafts , flywheel
	CO2	Compare the materials used in designing the automobile engine parts
	CO3	Use the software like AUTO CAD , CATIA , PRO/E, SOLID WORKS
120412(P): Design of Machine Elements lab	CO4	Select the spring for a proper application also can select the proper material of spring
	CO5	Design the different types of gear like spur gear, helical gear, worm gear, bevel gear and also able to know their practical applications.
	CO6	Create a gear box for modern Automotive vehicles and can use this for the benefits of society.
	CO1	Apply cutting mechanics to metal machining based on cutting force and power consumption
	CO2	Operate lathe, milling machines, drill press, grinding machines, etc
120413: Metal Cutting	CO3	Select cutting tool materials and tool geometries for different metals
and Machine Tools (DC-8)	CO4	Choose appropriate machining processes and conditions for different metals
	CO5	Optimize parameters for material removal in unconventional machining processes
	CO6	Identify the process parameters, their effect and applications of different processes
	CO1	Define energy interactions between system and surroundings
	CO2	Correlate the law of thermodynamics to real life applications
120414: Engineering Thermodynamics	CO3	Apply the laws of thermodynamics to analyze boilers, heat pumps, refrigerators, heat engines, compressors and nozzles
(DC-9)	CO4	Investigate the effectiveness of energy conversion device in mechanical power generation
	CO5	Analyze air standard cycles applied in prime movers
	CO6	Describe benefits of improvements to thermodynamic systems

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

120415: Production Lab (DLC-2)	CO1	Define the different conventional method of material removal and function of different parts
	CO2	Apply the theory of metal cutting in experiments
		Perform step, taper turning, knurling and threading
	CO3	
	CO4	Produce stepped surface using shaper and keyway using milling machine
	CO5	Demonstrate knowledge of different machine tools used in
		machine shop
	CO6	Evaluate the chip thickness ratio, shear angle and material
		removal rate
	CO1	Define and measure productivity
	CO2	Understand Production planning and control required for industry to analyze the engineering problems.
	CO3	Apply engineering design to produce solutions that meet
		specified needs of manufacturing industry
	CO4	Analyze practice through various Management and Operation
120511: Industrial		Tools for Improving Quality and Quantity.
Engineering	CO5	Evaluate various kinds of problems or issues faced by service and
		manufacturing industries like Inventory control, sales forcasting
		economic consideration, optimum utilization of resources,
		productivity.
	CO6	Create new mathematical models for efficient production
		planning and control.
	CO1	Formulate and solve one-dimensional conduction with and
		without heat generation
	CO2	Apply the empirical equations to analyze various convection
	602	problems
120513: Heat and	CO3	Evaluate the performance of various types of heat exchangers
Mass Transfer	CO4	Develop the mathematical and physical concept of radiation heat transfer
	CO5	Apply the physics of heat transfer in the processes like
		Condensation and Boiling
	CO6	Analyze and solve the problems in diffusion and convective mass
		transfer
	CO1	
	CO1	Analyze the performance of steam power plant
	CO2	Describe the working principles of internal combustion engines
120514: Thermal	602	and combustion phenomena
Engineering	CO3	Analyze the performance of gas turbine power plant
	CO4	Describe the working of various types of steam turbine
	CO5	Solve analytical problems of nozzles and diffusers

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

		NICAL ENGINEERING DEPARTMENT
	CO1	Describe the design procedure used in automotive industry to
		design the engine parts
	CO2	Classify the different types of spring, bearing and Gears
	CO3	Choose the right strategy for designing the machine components
120515: Machine		based on material and methods
Design	CO4	Apply the design procedure for solving and drafting the different
		design of machine elements
	CO5	Compare the various curves and design procedure used
	CO6	Selection of machine elements under various loading and
		environmental conditions
	CO1	Understand basics concept of mechanical vibration
	CO2	Define the physical systems in to spring-mass-damper systems
120615: Mechanical	CO3	U se different methods and principles applicable to dynamic
Vibrations		systems.
	CO4	Determine responses of vibrating systems
	CO5	Analyse the behaviours of physical systems
	CO6	Design the mechanical systems by considering vibration.
	CO1	Understand vapour compression refrigeration system
	CO2	Describe the working principles of air, vapour absorption,
		thermoelectric and steam-jet refrigeration systems
	CO3	Obtain cooling capacity and coefficient of performance by
120616: Refrigeration		conducting test on vapor compression refrigeration systems
and Air-conditioning	CO4	Analyze the basic air conditioning processes on psychometric
		charts, calculate cooling load for its applications in comfort and
	0.05	industrial air conditioning
	CO5	Develop thermal comfort conditions with respect to temperature
	CO6	and humidity Estimate cooling and heating loads in an air-conditioning system
	CO1	Analyze the demands and needs of customers to conceptualize
		product
	CO2	Describe the different steps involved in the product design
910108 (OC-1):	CO2	Analyze the shortcoming in the product development
Product Design	CO3	Identify the opportunities to develop the product
FIGURE DESIGN		Utilize the recourses available in efficient manner for maximum
	CO5	productivity
	CO6	Forecast the impact of product on the surrounding environment
	000	Torcease the impact of product on the surrounding environment

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

	CO1	Understand importance of robotics and its impact on human
		safety, quality of life, economy, environment, etc.; basics of open-
		ended type of Robotic manipulators
910109 (OC-1): Robotics	CO2	Discuss Kinematics and dynamics of open-ended robotic
		mechanisms; Fixing frames
	CO3	Ability to formulate, derive, analyse, design and synthesize
		kinematics and dynamics of open-ended robotic mechanisms
	CO4	Apply detailed concepts relating to various actuators, sensors,
		and their integration with drives and signal conditioning for
		robotics
	CO5	Impart knowledge on the basic concepts of measurement, static
		and dynamic characteristics of measurement systems. control
		theory and applying them to design and development of robots
		theory and applying them to design and development of robots