

Centre for Artificial Intelligence

ANNEXURE-II

Experiment list/ Lab manual for

Departmental Laboratory Course (DLC) of
B. Tech. VII Semester

[Information Technology (Artificial Intelligence and
Robotics)/ Artificial Intelligence (AI) and Data
Science/ Artificial Intelligence (AI) and Machine

Learning]

(Batch admitted in academic session 2022 – 23)

Deemed University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Centre for Artificial Intelligence

DEPARTMENTAL LAB (AR-VR Lab) (2240721/2270721/2280721)

COURSE OBJECTIVES

- Enable students to develop practical skills in creating and manipulating 3D models and animations for use in AR and VR environments.
- Enable students to create intuitive and responsive user interfaces for interacting with virtual
- Support students in developing projects that showcase their ability to innovate and think critically.

List of Experiments

- 1. Overview and setting up Unity for AR/ VR development
- 2. Develop a scene in Unity that includes: cube, plane and sphere, apply transformations on the 3 game objects.
- 3. Develop a scene in Unity that includes a cube, plane and sphere. Create a new material and texture separately for three Game objects. Change the color, material and texture of each Game object separately in the scene.
- 4. Develop a scene in Unity that includes a sphere and plane. Apply Rigid body component, material and Box collider to the game Objects
- 5. Study on enhancement and improving markers with Vuforia engine.
- 6. Implement and visualize scaling and rotation transformations on a 3D object in an AR environment.
- 7. Implementing Marker-less and Marker-Based AR with Vuforia engine
- 8. Implementing Animations in AR/VR Using Vuforia
- 9. Creating 3D objects using Blender.

COURSE OUTCOMES

After completing this, the students will be able to:

- CO1. Create new projects and properly configure them for AR/VR application development
- CO2. Develop Marker-Based and Markerless AR Applications
- CO3. Develop and import 3D models into AR/VR environments
- CO4. Integrate VR input and output hardware to enhance the user experience.
- CO5. Develop applications that simulate real-world scenarios, such as a virtual gym or training simulations.
- CO6. Identify areas for improvement and implement changes to optimize performance and user satisfaction.

	CO-PO Mapping Matrix													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	1	3				2	1	2	2	2	1
CO2	3	2	3	2	3				2	1	2	2	2	1
CO3	3	2	3	1	3				2	1	2	2	2	1
CO4	3	2	3	1	3				2	1	2	2	2	1
CO5	3	3	3	2	3	2	1		2	3	2	3	2	1
CO6	3	3	3	3	3	2	1		2	3	3	3	2	1

Centre for Artificial Intelligence

DEPARTMENTAL LAB (AR-VR Lab) (2240721/2270721/2280721) Skill based Mini Projects

Micro/ Macro Projects: Game Development

(The developed game should be a single player game .Score Card is to be displayed for each game. Apply your creativity for making game interesting)

- 1. Develop a VR Golf Game. The scene should contain a play area (golf course), which consists of a series of cups/holes each having different scores. Display the score card.
- 2. Develop a VR game in Unity such that on each gun trigger click, destroy the cubes placed on the plane and gain a score point.
- 3. Develop a VR Basketball Game.
- 4. Develop an AR bowling game with one image target.

Mini Projects

- 1. Develop a VR environment for flying helicopter
- 2. Develop a VR environment for moving car simulation.
- 3. Develop a VR environment to visit a zoo
- 4. Develop a VR environment for virtual Gym
- 5. Create a multiplayer VR game (battlefield game).

Deemed University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Centre for Artificial Intelligence

CREATIVE PROBLEM SOLVING (2240722/2270722/2280722)

COURSE OBJECTIVES

- To solve open-ended, real-world problems using systematic problem-solving methods.
- To apply interdisciplinary approaches to problem-solving.
- To develop team-based solutions through collaborative projects.

List of Experiments

- 1. Choose a standard algorithm (e.g., Dijkstra, Quicksort) and propose a modification to improve performance in a specific use case.
- 2. Reimagine a common app (e.g., calendar, to-do list, news reader) using SCAMPER to generate at least 3 innovative features.
- 3. Identify the root causes behind a known software/system failure (e.g., a crash in Zoom, data breach, etc.) using Fishbone Diagram.
- 4. Take a vague problem like "Improve online education" and generate 3-5 concrete, solvable, and measurable AI/CS problem statements.
- 5. Interview 3–5 users of the college ERP system and ideate improvements. Propose a new user interface or feature using design thinking.
- 6. Create a wireframe/prototype (on paper or Figma) for an app that supports mental wellness in students using AI recommendations.
- 7. Given sample data (e.g., books, movies, courses), design a simple rule-based or collaborative filtering recommender.
- 8. Analyze a small dataset (e.g., hiring, lending) and identify potential biases. Suggest methods to reduce bias in training.
- 9. Analyze an AI failure (e.g., facial recognition bias, chatbot toxicity) and propose a creative solution to prevent such issues.
- 10. Design a smart system (e.g., smart parking, fire alert, air quality monitoring) using sensor data simulation and basic ML classification.
- 11. Develop a Python automation script to extract and process data from a website or automate repetitive desktop tasks.

COURSE OUTCOMES

After completing this, the students will be able to:

- CO1 Apply creative thinking tools to reimagine and improve existing software applications.
- CO2 Analyze the root causes of failures in software systems and datasets using structured problem-solving techniques.
- CO3 Design innovative AI-based systems and interfaces that address real user needs, ensuring usability and ethical AI integration.

	CO-PO Mapping Matrix													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	1	2	1			1	2	1	2	1	2
CO2	2	3	2	3	2			1	1	2	2	2	3	3
CO3	2	2	3	2	3	1	1	2	2	2	3	2	3	3

Deemed University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Centre for Artificial Intelligence

PROFESSIONAL SKILLS & COMPETENCIES (2240723/ 2270723/ 2280723) (Activity Based Learning)

COURSE OBJECTIVES

- To equip students with essential professional competencies.
- To develop analytical and technical skills.

Module 1: Communication Skills

Verbal Communication: Public speaking, Group discussions, and Interview handling. Non-verbal Communication: Body language, Gestures, Listening skills. Written Communication: Résumé writing, Email etiquette, Cover letters, Report Writing. Presentation Skills: Visual aids, Audience engagement, Delivery techniques. English (Verbal Ability): Passage/Sentence Rearrangement, Error Detection and Correction, fill in the Blanks, Reading Comprehension Passages, Sentence Completion, Synonyms and Antonyms, Words Completion, Para jumbles etc.

Activities: Mock interviews and GDs, Email & résumé writing workshops, Peer review and instructor feedback.

Module 2: General Aptitude

Quantitative Aptitude: Number systems, Ratios, Percentages, Averages, Time & Work, Probability. Logical Reasoning: Series, Puzzles, Syllogisms, Direction sense, Blood relations. Data Interpretation: Tables, Pie charts, Graphs.

Activities: Weekly quizzes, Group problem-solving sessions, Timed mock aptitude tests.

Module 3: Basic Coding Skills

Basic Programming Concepts, Syntax and semantics, Input/output handling, Variables, data types, Loops. Functions and recursion. Arrays, strings. Sorting and searching, Pointers (C/C++) / References (Java/Python). Exception handling (Java, Python).

Activities: Technical round based Weekly coding exercises, Mini hands-on projects, Error debugging practice, Mock technical tests.

Module 4: Competitive Coding Skills

Introduction to Data Structures: Linked Lists (Singly, Doubly), Problem solving using linked lists. Stacks, Queues, Trees (Binary, BST, basic traversals), Heaps (Min/Max heap concepts), Graphs (Adjacency list/matrix, BFS, DFS), Sets (HashSet, TreeSet). OOPS concepts: Encapsulation, Abstraction, Inheritance and Polymorphism. Introduction to Databases, ER-model, basics of SQL. Version Control: Git, GitHub.

Activities: Weekly coding contests, Problem solving on competitive coding platforms like Leetcode, Codeforces, Hackerrank etc., Peer-to-peer code review, Mock technical interviews.

Module 5: Discipline Specific Tools*

Docker, Postman, MySQL, VS Code, Linux Shell, Jupyter Notebook, Pandas, Scikit-learn, TensorFlow, Tableau, Kaggle.

Activities: Tool-based lab exercises, Branch-specific mini projects, Short presentations on use-cases of tools in industry.

Deemed University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Centre for Artificial Intelligence

COURSE OUTCOMES

After completion of the course students will be able to:

- CO1 Demonstrate effective communication strategies in professional scenarios including interviews and group discussions.
- CO2 Solve real-world quantitative and logical reasoning problems with time-bound accuracy.
- CO3 Implement basic algorithms using standard programming languages.
- CO4 Design efficient algorithmic solutions to solve coding problems.
- CO5 Apply discipline-specific tools to simulate, model, or develop solutions relevant to core engineering problems.

CO-PO Mapping Matrix													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1								1	3	3		2	
CO2	2	3				2		1				2	
CO3	3	2			2							2	
CO4	3	3	3	2	2							2	
CO5	2	2	2	2	3	3	1				1	2	