(Deemed to be University)
NAAC Accredited with A++ Grade
Department of Civil Engineering

ANNEXURE – VIII

(CO-PO mapping matrix and PO ATTAINMENT for 2020-2024 Batch)

(Deemed to be University)
NAAC Accredited with A++ Grade

Department of Civil Engineering

ANNEXURE – VIII CO-PO mapping matrix and PO Attainment

Subjects & Course Code		Course Outcomes	PO1	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO 1	PSO 2
Society	CO1	Describe various energy resources, their conversion to electrical power and role in technological & economic development		3	3	3					2					
100015: Energy, Environment, Ecology & Society	CO2	Update with national/international power status and renewable power development targets & missions						3	3							
onment, F	СОЗ	Recognize the impact of pollution on the ecosystem and control policies adopted at national/international levels							3				3	2		
/, Envii	CO4	Illustrate the concepts of ecosystems and their conservation							3	3	2			2		
Energy	CO5	Solve practical problems of society in a sustainable and ethical manner							3	3	3			2		
100015:	CO6	Fulfill professional duties keeping in mind the environmental safety, health, and welfare of public												2		
1: ng ng & Jin	CO1	Explain basics of building planning & design.	2		1		1	1	2	2				1	2	2
110211: Building Planning & Design	CO2	Illustrate sustainability principle, by laws & characteristics of thermal and sound insulation in building planning & design.	2		1	1	1	3	3	2			2	3	3	2

	СОЗ	Apply sustainability concepts & principles in planning & design of buildings.	2	1	2	1	2	2	2	2	1	2	2	3	2	2
	CO4	Evaluate environmental, sustainable & safety aspects of a building.	2	2	1	2	1	3	3		2	2	2	3	2	2
	CO5	Plan different types of buildings as per by laws & codal provisions.	2	1	1	1	1	2	2	3	2	2	2	3	3	2
100020: Basic Civil Engineering & Mechanics	CO1	Explain concepts and terminologies of building materials, surveying and mechanics	2	2				1	1	1				2		1
l Engii	CO2	Illustrate various methods for surveying and mechanics	2	2		2	1			1	1	1		2		1
asic Civil En & Mechanics	CO3	Determine the location, area and volume of objects on ground surface	3	3		3	2							2		
0: Bas	CO4	Solve the problems of surveying and mechanics by using various methods	3	3	1	2	2	1		1		1		2		1
10002	CO5	Analyse the effects of system of forces on rigid bodies in static conditions	3	3	1	2	2	1		1		1		3		2
	CO1	Follow the guidelines for field surveying.	2	1		2	1			3	3	2	1	2		2
civil Lab	CO2	Follow the working principlesof survey instruments for measurements.	3	1		2	1			3	3	2	1	2		2
100026: Basic Civil Engineering Lab	CO3	Measure the horizontal distances, difference in elevation and angles of various points	3	3		3	2				2	3		2		2
1000; Eng	CO4	Detect measurement errors and accordingly suggest corrections	3	3		3	2	1			2	2		2		2
	CO5	Interpret survey data and compute areas	3	3	1	3	3				2	3		2		2
1: ng nl & stion	CO1	Explain the basic elements of buildings, engg. materials & construction.	2	1		1			1					1		
110311: Building Material & Construction	CO2	Evaluate the properties of various materials like cement, aggregate, concrete, admixture, brick, stone etc.	2	1		3	2	2	2	2				2	2	1

(Deemed to be University) NAAC Accredited with A++ Grade

	СОЗ	Distinguish the suitability of building materials in the construction of elements of buildings.	2	2	1	2	1	2	2				2		1
	CO4	Evaluate various types of concrete in building construction accordingly.	2	2	1	2	1		1				2	2	1
	CO5	Apply various techniques for finishing & protection works of various elements of building.	2		1	1		2	1	1			2		
ం ర	CO1	Determine the properties of cement, sand & aggregate as per IS code	2	1	1	3	2	2	2	2	2	3	2	2	1
110311: Building Material & Construction (Lab)	CO2	Determine the workability of concrete for suitability of concrete mix in different construction works	2	1	1	3	2	2	2	2	2	3	2	3	2
uilding	СОЗ	Evaluate compressive strength of various concrete mixes	3	2	2	3	2	2	2	2	2	3	2	3	2
311: B Const	CO4	Determine physical properties of brick by experiment and practice accordingly	1			3	2	2	1	2	2	3	2	1	1
110	CO5	Examine the properties of the cement mortar for various elements of the buildings	1	1		3	2	2	1	2	2	3	2	1	1
	CO1	Define various fluid properties & states of fluid	1					1					1		
chanie	CO2	Apply principles of fluid flow & dimensional analysis	2	1	1	2	1	1	1				2		1
uid Me	CO3	Solve fluid flow problems	2	2	1	2	2	2	2				2		2
110312: Fluid Mechanics-l	CO4	Analyze characteristics of fluid at rest, fluid at motion & dimensionless numbers	2	3	1	2	1	2	2				2		2
1103	CO5	Discriminate different types of fluid flow, measurement techniques & principles	2	2		2	2	2	2				2		

	_	1	ı	1	ı	1	ı	ı	1	1		ı	ı	, ,	
	CO6	Apply the concepts of laminar flow in solving various fluid flow problems	2	2	1	2	1	1	1				2		2
nics-I	CO1	Differentiate between different flow measurement devices	2	2		3	2	2		2	2	2	2		1
Mecha b)	CO2	Notice flow through pipes & fall velocity of particle	2		1	3	2	2			2	2	2		2
: Fluid M	СОЗ	Correct the instrumental errors	2	2		2	2				2	2	2		
110312: Fluid Mechanics-I (Lab)	CO4	Apply Stoke's law to calculate terminal velocity	2	2	1	3	2			2	2	2	2		2
,	CO1	Explain the techniques used for linear & angular measurements in surveying.	2	2		2	1						2		1
110313: Surveying	CO2	Analyse different geodetic methods of survey such as triangulation, trignometric levelling, tachometry, photographic & GIS.	2	3		2	2			2	2	2	2		1
<u>ਲ</u>	CO3	Apply methods in control surveys.	2	3		3	2				1	1	2		2
11037	CO4	Apply tachometry in traverse computations.	3	3		3	2				1	1	2		2
	CO5	Apply various methods for setting curves, area & volume computations.	2	3		3	2				1	1	2		2
ıterial	CO1	Explain the concepts of stress, strains, bending, deflection, buckling & torsion.	2	1		2	1	1					1		1
110314: Strength of Material	CO2	Explain various theories for determining stress, buckling of columns & deflections of structures.	2	1		2	1	1		2			2		1
4: Strenç	CO3	Apply various theories for determining stress, buckling of columns & deflections of structures.	3	3	2	3	2	2	1				2		2
11031	CO4	Evaluate the stresses in bending, shear and torsion.	3	3	2	3	2	2					2		2

	CO5	Analyze various sections for stresses, strain, bending, torsion, buckling & deflections.	3	3	2	3	2	2						2		2
o	CO1	Evaluate properties of material by impact test	2	2		3	2	2	2	2	2	3		2	2	2
110314: Strength Material (Lab)	CO2	Evaluate properties of material by hardness test	2	2		3	2	2	2	2	2	3		2	2	2
314: S	СОЗ	Evaluate properties of material by tensile test	2	2		3	2	2	2	2	2	3		2	2	2
110	CO4	Determine compressive & flexural strength of materials	2	2	2	3	2	2	2	2	2	3		2	2	2
	CO1	Observe topographical characteristics	2		1	1	1	1			2	2		2		1
e Lab	CO2	Differentiate methods to perform ground survey	2	1		2	1			1	2	2		2		1
Practic	CO3	Prepare longitudinal & cross section profiles	2	2	1	3	2	1		2	2	3		3		2
110315: Survey Practice Lab	CO4	Develop contour map by using tachometer & total station	2	2	1	3	3			2	3	3		3		2
315: St	CO5	Prepare the details of features using Plane table surveying	2	2	1	3	2			2	2	3		2		2
110	CO6	Produce a simple circular curve by using Rankine's method for alignment	2	2	1	3	2	1		2	2	3		2		2
Self- ng/ ation	CO1	Analyze contemporary issues in civil engineering & its allied areas through literature survey	1	1		2	1	2	2	1	2	2	1	2	1	2
110316: Self- Learning/ Presentation	CO2	Distinguish state of art & relevance of the topic in national & international arena	1			2	1	2	2	1	2	2	1	2		1
<u> </u>	СОЗ	Demonstrate good oral & written communication skills									3	3		2		

1	i	1	1	ı	i	i	i	i	i	i	i	Ì	i i	1	I 1	
	CO4	Develop poster and power point presentations for effective communication									3	3		2		
	CO5	Display lifelong learning	2	2	2	2	2	2	2	2	2	2	1	3	2	2
ering-l	CO1	Evaluate different properties of soil, types of foundations and its classifications	2	2		2		2	2					2	1	2
:ngine	CO2	Examine flow and shear parameters & their effects on various types of soil	2	2		2	1	2	2					2		2
110411: Geotechnical Engineering-l	CO3	Determine the stress distribution & shear strength parameter of soil by various methods	2	3	1	2	2	2	2	1				2	1	2
1: Geote	CO4	Analyse the stability of slopes, earth pressures & retaining walls using analytical methods	2	3	1	3	2	2	2	1				2	1	2
11041	CO5	Evaluate suitable foundation system for various site conditions.	2	2	1	3	2	2	1					2		2
ll -ab)	CO1	Check physical properties of soil	2	1		3	2	2	2	2	2	3		2		1
11: hnica ng-I (l	CO2	Check strength properties of soil	2	2		3	2	2	2	2	2	3		2		2
110411: Geotechnical Engineering-l (Lab)	соз	Differentiate the flow properties and stresses of soil	2	2		3	2	2		2	2	3		2		1
Eng	CO4	Check shear strength of soil	2	2		3	2	2		2	2	3		2		2
of	CO1	Classify different type of structures based on support conditions	2	1		2		1						2		2
heory c	CO2	Explain various methods & principles for analysis of structures.	1			2		1		1				1		1
110412: Theory Structures-I	соз	Apply various methods & principles for structural analysis	2	2		2	2			1				2		2
110	CO4	Analyse various structures using various methods, principle & theorems	2	3	1	3	1	2	1	1				2		2

	CO5	Evaluate different methods of structural analysis.	2	2	1	3	1	2						2		2
ering	CO1	Explain the principles of highway planning & their geometrical design.	2		1			1	1					1		1
110413: Transportation Engineering	CO2	Evaluate physical properties of suitable highway engineering materials with drainage provisions	2			1		1	1					2		1
sportati	CO3	Apply the concepts of traffic engineering in transportation planning.	2	2	1	2		2	2	2				2	3	2
Tran	CO4	Design pavements as per regulations.	2			2	2	2	2					2		2
110413:	CO5	Formulate the layers of pavement along with provisions of its drainage & maintenance.	2	1		2	2	2	2	2	2	2	2	2		2
ation b)	CO1	Select suitable aggregate material by testing the physical properties	2	1		3	2	2	2	2	2	3		2		1
sports	CO2	Determine properties of bitumen and its grade	2	2		3	2	2	2	2	2	3		2		2
110413: Transportation Engineering (Lab)	СОЗ	Determine CBR value of material for subgrade and subsequent layers of pavement.	2	2		3	2	2		2	2	3		2		1
1104 E	CO4	Design job mix formula for bituminous surface using Marshal Stability test.	2	2		3	2	2		2	2	3		2		2
/ater ce ing	CO1	Analyse various requirements for an efficient irrigation project	1			1		1	1					1		2
110414: Water Resource Engineering	CO2	Design different components of irrigation system using different theories	1			2		1	1	1				1		2
110 F	СОЗ	Plan an efficient, economical & safe irrigation system	2	2		2	1	1	1	2				2		3

	1	1	1	1	ı	1 1	i	ı	ı	ı ı	ı		 ı	I	1
	CO4	Explain the concept of hydrology and hydrograph	2	3	1	3	1	2	2				2		2
	CO5	Apply basic principles for measurement & forecasting of rainfall & runoff	2	3	1	3	2	2	2				2		2
	CO6	Analyse runoff hydrograph by various methods	2	3	2	3	2	2	2		1	1	3	1	3
d g	CO1	Attempt to draw different components of a building	2			1	1	1	1	2	2	3	2		
110415: Civil Drawing Lab	CO2	Produce plan, elevation & section of various components of a residential and institutional building	2	1	2	2	1	1	1	2	2	3	2		
Civil D	СОЗ	Use AutoCAD software in civil engineering drawing	2	2	2	2	3			1	3	3	3	1	
110415:	CO4	Prepare drawing sheets of various types of buildings like residential, institutional, Commercial etc.	2	1	2			1	1	2	2	3	2		
	CO1	Define different Data Science techniques	2	2		1	1	1					2		
9	CO2	Illustrate various tools used for Data Science technique	2	2		1	1	1					2		
110520: Data Science	соз	Apply data visualization techniques to solve real world problems	2	2		2	2	1					2		
0: Data	CO4	Build exploratory data analysis for Data Science methods	2	2		2	2	1					2		
11052	CO5	Apply Data Science techniques for solving real world problems	2	2	1	2	2	1					2		
	CO6	Evaluate the performance of algorithms in Data Science	2	2		2	2	1					2		
11051 1: Water Suppl y Engin	CO1	Explain the concepts of water supply engineering.	2			2		2	2	2			2	2	1

Í	1	l a	l	ı]]	Ì	I	I		j	ı ı	1 1]	I	
	CO2	Determine the requirements for safe supply of water.	2	2		2		3	3	2				2	3	2
	соз	Apply suitable water treatment technique based upon the available data.	2	2		3	1	3	3					2	2	2
	CO4	Analyse a given water supply scheme.	3	3	2	3	2	3	3		1	2		3	3	2
	CO5	Design a water supply system based upon the needs of society.	3	3	3	2	2	3	3	2	1	2	1	3	3	2
ab)	CO1	Follow sampling procedure & other guidelines for sampling & analysis of water samples.	2	1		3	2	2	2	2	2	3		2		1
ater Suring (L	CO2	Check various water quality parameters.	2	2		3	2	2	2	2	2	3		2		2
110511: Water Supply Engineering (Lab)	CO3	Improve the water quality by suggesting suitable corrective measures.	2	2		3	2	2		2	2	3		2		1
# #	CO4	Train others on various ways of improving the quality of water.	2	2		3	2	2		2	2	3		2		2
res-II	CO1	Explain various methods for analysis of structures and frames	3	3		3		2						2		1
itructu	CO2	Analyse various loads on framed structures using codal provisions.	3	3		3		2						2		1
110512: Theory of Structures-II	СОЗ	Analyse different type of structures for various load conditions by different methods.	3	3		3		2						2		1
12: Th	CO4	Draw influence line diagrams for statically determinate & indeterminate structure.	3	3		3		2						2		1
1105	CO5	Analyse beams & frames using plastic analysis.	3	3		3		2						2		1

1	I	Annalystic and and all the second of	Ī	i	I	l 1	1	ĺ	1	l 1	1	l	l	l .	Ī	1
6	CO1	Apply the concepts of different design philosophies for deriving basic expressions used in RC design	3	3	2	2	1	2		2				2	3	1
). (RCC	CO2	Determine the capacity of RC elements using IS456 guidelines.	3	3	2	2	1	2		2				2	3	1
S. D. E.	CO3	Analyze the RC elements for determining design variables as per IS456 & IS 875	3	3	2	2	2	2		2	1	2		3	3	2
110513: S. D. D. (RCC)	CO4	Design the RC elements as per IS 456 provisions.	3	3	3	2	2	2		3	1	2		3	3	2
	CO5	Develop the design sketches for RC elements as per IS456; IS13920 and SP34 provisions.	3	3	3	2	2	2	2	3	1	2		3	3	2
-s:	CO1	Differentiate different types of fluid flow & fluid machinery.	2	1		2		1						2		1
chanie	CO2	Describe principles of analysis of fluid flow problem.	2	2		2		1	1	2				2		1
luid Me	СОЗ	Explain basic principles for measurement of different forces acting on fluid body.	2	2		2		1	1	2				2		1
110514: Fluid Mechanics-II	CO4	Analyse pipe flow, open channel flow problems & various characteristics of hydraulic machines.	3	3	2	3	2	2	2					2		2
_	CO5	Design open & closed conduit systems.	3	3	3	3	2	2	2					2		2
ect-I	CO1	Recognize various engineering problems and techniques to solve them.	2	2	2	3	2	2	2	2	3	3	1	3		2
or Proj	CO2	Reproduce the solution of the problems upon the need of society.	3	3	3	3	3	3	3		3	3	3	3	3	2
Ā	CO3	Cooperate to work within group.	-			2	2				3	2		2		
110515: Minor Project-I	CO4	Develop the writing and communication skills for various engineering problems.									3	3		2		
-	CO5	Display lifelong learning.	2	2	2	2	2	2	2	2	2	2	1	3	2	2

				1											1	
ing/	CO1	Analyze contemporary issues in civil engineering & its allied areas through literature survey	1	1		2	1	2	2	1	2	2	1	2	1	2
110516: Self Learning/ Presentation	CO2	Distinguish state of art & relevance of the topic in national & international arena	1			2	1	2	2	1	2	2	1	2		1
16: Self Learr Presentation	соз	Demonstrate good oral & written communication skills									3	3		2		
11051 F	CO4	Develop poster and power point presentations for effective communication									3	3		2		
	CO5	Display lifelong learning	2	2	2	2	2	2	2	2	2	2	1	3	2	2
&	CO1	Know the attributes of project and its different phases.	2	2	1	1	2	1						2		1
1000005: Project Management Financing	CO2	Develop the project network based on work breakdown structure and estimation of activity durations.	3	3	2	2	2	2	1				1	2		1
oject Man Financing	СОЗ	Analyze the project network and make decide the various alternates	3	3		3	3	2					1	2		1
5: Pro	CO4	Evaluate the optimum cost of project for assigned deadlines.	3	3		2	2	2					1	2		1
100000	CO5	Understand the different options to arrange the finances to complete it within stipulated time.	2	1		1	1	1					1	2		1
ficial e & rning	CO1	Define basic concepts of Artificial Intelligence & Machine Learning.	3	2		3	2	2						2		
110620: Artificial Intelligence & Machine Learning	CO2	Illustrate various techniques for search and processing.	3	2		3	2	2						2		
11062 Inte Machi	соз	Identify various types of machine learning problems and techniques.	3	2		3	2	2						2		

İ	ı		l	ı	I	I	ı	I	I	Ì	Ì	I			I	1
	CO4	Analyse various techniques in Artificial Intelligence, ANN & Machine Learning.	3	2		3	2	2						2		
	CO5	Apply Al and ML techniques to solve real world problems.	3	2		3	2	2						2		
	CO6	Build Al enabled intelligent systems for solving real world problems.	3	2		3	2	2						2		
-	CO1	Explain the concepts of waste water engineering	2			2		2	2	2				2	2	1
e Wate ing	CO2	Determine the requirements for safe disposal of sewage	2	2		2		3	3	2				2	3	2
110621: Waste Water Engineering	CO3	Apply suitable technique for sewage treatment & disposal based upon the available data.	2	2		3	1	3	3					2	2	2
106	CO4	Analyse a given sewerage system.	3	3	2	3	2	3	3		1	2		3	3	2
_	CO5	Design sewage system for safe disposal of sewage.	3	3	3	2	2	3	3	2	1	2	1	3	3	2
	CO1	Explain the principles of steel structural design using relevant IS Codes	3	3	3	2	1	2	2	3	1	2		3	3	2
(F	CO2	Evaluate structural behaviour of different steel structural elements	3	3	3	2	1	2	2	3	1	2		3	3	2
D (Stee	CO3	Analyse a given section of steel structural element using IS codes	3	3	3	2	2	2	2	3	1	2		3	3	2
110622: S.D.D (Steel)	CO4	Design different elements of steel structure under various loading conditions using relevant IS codes	3	3	3	2	2	2	2	3	1	2		3	3	2
110	CO5	Design a structure/ component to meet desired needs within realistic constraints such as economy, safety, viable construction & its sustainability as per codal provisions	3	3	3	2	2	2	2	2	1	2		3	3	2

1												1		1		1
osting	CO1	Explain the fundamentals of quantity estimation, costing & contracting.	2			1		2	1	2			3	1		2
ing Cc cting	CO2	Apply methods to estimate area, volume & cost.	2			1	1	2	1	2			3	2		2
110623: Estimating Costing & Contracting	CO3	Evaluate mathematical & numerical models for rate & quantity estimation	2	2		2	2	2	2	2	2	2	3	3		3
3: E	CO4	Determine rates & value	2	3		2	1	2	2		2	2	3	3		3
110623	CO5	Classify different rates of items, contracts & measurement techniques	2	3	1	2	2	2	2	2	2	2	3	3		3
ect-II	CO1	Recognize various engineering problems and techniques to solve them	2	2	2	3	2	2	2	2	3	3	1	3		2
110624: Minor Project-II	CO2	Reproduce the solution of the problems upon the need of society	3	3	3	3	3	3	3		3	3	3	3	3	2
<u>s</u>	CO3	Cooperate to work within group				2	2				3	2		2		
0624: 1	CO4	Develop the writing and communication skills for various engineering problems									3	3		2		
7	CO5	Display lifelong learning	2	2	2	2	2	2	2	2	2	2	1	3	2	2
ure	CO1	Identify different components of hydro project	2	1		2		2	3	2				2	2	2
110731: Hydraulic Structure	CO2	Explain basic principles of designing hydropower plant & cross drainage works.	2	2		2		3	3	2				2	3	2
lydraul	CO3	Solve problems of dam analysis, energy dissipators & cross drainage works.	2	2		3	1	3	3					2	2	2
731: Н	CO4	Evaluate suitability of types of hydraulic structures	2	2		3	1	3	3					2	2	2
110	CO5	Design various elements of hydraulic structures.	2			1		2	2	2			1	2		1
110732: Advanc ed Structur e Design	CO1	Explain behaviour of RCC and Prestressed concrete structures under loads.	2	1	1	2		1	1	2				2	2	2

			1	1							1					
	CO2	Determine forces developed in RCC and Prestressed concrete structures under loads.	3	3	2	2	1	2		2				2	3	1
	соз	Compare designs of RCC and Prestressed concrete structures for given loadings.	3	3	2	2	1	2		2				2	3	1
	CO4	Develop economic and safe designs of RCC and Prestressed concrete structures.	3	3	2	2	2	2		2	1	2		3	3	2
nunel	CO1	Explain the elements of airport planning, bridges & tunnels.	2		1			1	1					1		1
r & Tr	CO2	Design runway & taxiway system as per regulations.	2			1		1	1					2		1
110733: Railway, Airport & Tunnel Engineering	CO3	Explain various elements of railway tracks, signalling, yards, bridges & tunnels.	2	2	1	2		2	2	2				2	3	2
33: Rail	CO4	Illustrate various gauge, signals, fasteners, turnouts, crossing etc.	2			2	2	2	2					2		2
1107	CO5	Apply construction methods of railway tunnels.	2	1		2	2	2	2	2	2	2	2	2		2
<i>N</i> aste nart	CO1	Explain the principles & concepts of waste management.	1			2		1		1				1		1
rated \ for Sr	CO2	Apply various techniques of handling the waste.	2	2		3	1	3	3					2	2	2
9110211: Integrated Waste Management for Smart City	CO3	Apply various techniques of energy recovery from waste.	2	2		3	1	3	3					2	2	2
	CO4	Plan an effective & efficient waste management system.	2	1	1	1	1	2	2	3	2	2	2	3	3	2
12: Safety & Qualit y mana	CO1	Explain the quality management systems and utilize the ISO 9000 family of	2	2				1					2	2	2	

	1		1								1					
		standards.														
	CO2	Improve the quality of the project through tools and techniques.	2	2			2	1						2		
	СОЗ	Perform the environmental impact assessment (EIA) for construction projects towards quality.	2	2		2		1	2					2		
	CO4	Analyse the quality assurance and quality control, quality improvement tools and techniques.	2	2		3		1						2		
	CO5	Evaluate the contract and inspection procedures.	2	2		3		1						2		
	CO6	Identify the safety management practices in construction industry.	2	2				1					2	2		
ition for	CO1	Design various beams, slabs & multistorey building's using various software's.	1			2		1	1	1				1		2
Applica nginee ns	CO2	Design water supply & sewer networks using various software's.	1			2		1	1	1				1		2
tware App Civil Engi Problems	CO3	Practice MS Excel in estimation works.	2	2	1	2	2	2	2	2	2	1	1	2	2	2
110716: Software Application for Solving Civil Engineering Problems	CO4	Produce land use land cover maps and geo contour maps using various software's.	2	1	2	2	1	1	1	2	2	3		2		
11077	CO5	Practice Primavera and MS-Project softwares.	2	2	2	2	2	2	2	2	2	2	1	3	2	2
ve	CO1	Identify various on field problems.	1	1				1	1					2		1
110717: Creative Problem Solving	CO2	Practice various methods to solve problems.	2	2	1	2	2	2	2	2	2	1	1	2	2	2
17: lem	CO3	Produce solutions to various problems.	2	1	2	2	1	1	1	2	2	3		2		
1107 ⁻ Prob	CO4	Demonstrate various problems solving skills.	1			1								2		

(Deemed to be University) NAAC Accredited with A++ Grade

	CO1	Observe various activities of civil engineering works.	3	3	3	3		2	2	1	2	1	2	3	2	2
	CO2	Recognize various engineering problems and techniques to solve them.	3	3	3	3	2	2	2	1	2	1	2	3	2	2
110821: Internship/Project	CO3	Reproduce to solution of the problem upon the need of society.	3	3	3	3	2	2	2	1	2	1	2	3	2	2
	CO4	Develop the writing and communication skills for various engineering problems	3	3	1		1	2	2	1	2	2	1	3	2	2
	CO5	Adapt lifelong learning for benefit of society	3	3	3	2	1	2	2	1	2		2	3	2	2

(Deemed to be University) NAAC Accredited with A++ Grade

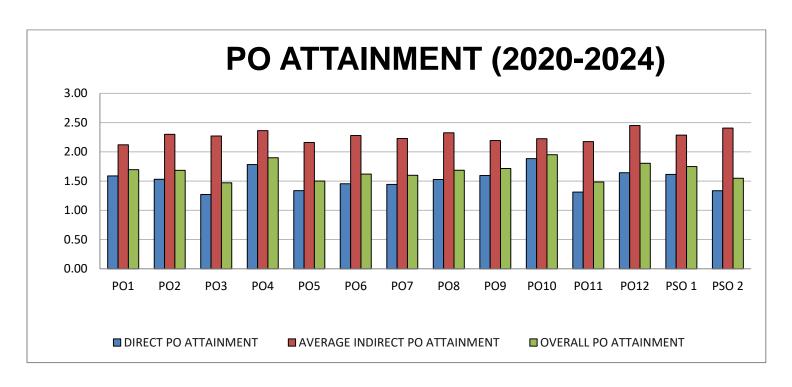
Department of Civil Engineering

Course Wise PO Attainment of Batch Admitted 2020-2024

DIRECT PO ATTAINMENT	P01	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	P012	PSO 1	PSO 2
100015: Energy, Environment, Ecology & Society		3.00	3.00	3.00		3.00	2.94	2.91	2.29		2.94	1.96		
110211: Building Planning & Design	1.83	1.25	1.10	1.16	1.10	2.02	2.20	2.04	1.55	1.85	1.83	2.38	2.19	1.83
110311: Building Materials & Construction	2.00	1.50	1.00	1.80	1.33	2.00	1.40	1.50				1.80	2.00	1.00
110311 (P): Building Materials & Construction	1.80	1.25	1.33	3.00	2.00	2.00	1.60	2.00	2.00	3.00		2.00	2.00	1.40
110312: Fluid Mechanics-I	1.57	1.62	0.78	1.57	1.12	1.32	1.32					1.57		1.37
110312 (P): Fluid Mechanics-I	1.89	1.90	0.96	2.60	1.89	1.85		1.91	1.89	1.89		1.89		1.59
110313: Surveying	1.80	2.29		2.15	1.48			1.44	1.01	1.01		1.63		1.33
110314: Strength of Materials	1.70	1.42	1.28	1.70	1.04	1.04	0.60	1.40				1.18		1.04
110314 (P): Strength of Materials	1.66	1.66	1.90	2.49	1.66	1.66	1.66	1.66	1.66	2.49		1.66	1.66	1.66
110315: Surveying Practice Lab	1.83	1.65	0.92	2.29	1.68	0.91		1.65	1.99	2.44		2.14		1.53
110316: Self Learning / Presentation	1.33	1.50	2.00	1.99	1.33	1.99	1.99	1.33	2.38	2.38	0.99	2.18	1.50	1.66

		1		1		l	1 1		1					
110411: Geotechnical Engineering – I	1.90	2.28	0.92	2.25	1.62	1.90	1.73	0.95				1.90	0.97	1.90
110411 (P): Geotechnical Engineering – I	2.00	1.75		3.00	2.00	2.00	2.00	2.00	2.00	3.00		2.00		1.50
110412: Theory of Structures – I	0.89	0.82	0.31	1.15	0.47	0.70	0.41	0.50				0.89		0.89
110413: Transportation Engineering	1.88	1.30	0.95	1.60	1.80	1.48	1.48	1.70	1.59	1.59	1.59	1.68	2.70	1.48
110413 (P): Transportation Engineering	1.93	1.68		2.90	1.93	1.93	2.00	1.93	1.93	2.90		1.93		1.43
110414: Water Resources Engineering	1.58	2.56	1.21	2.21	1.40	1.41	1.41	1.50	0.90	0.90		1.73	0.90	2.23
110415: Civil Drawing Lab	1.84	1.22	1.85	1.56	1.52	0.93	0.93	1.61	2.06	2.75		2.06	0.89	
110520: Data Science	1.53	1.48	0.67	1.11	1.23	0.74						1.26		
110511: Water Supply Engineering	1.01	1.04	0.98	1.03	0.68	1.19	1.19	0.85	0.39	0.79	0.38	1.01	1.10	0.76
110511 (P): Water Supply Engineering	1.75	1.57	0.98	2.53	1.68	1.79	1.68	1.72	1.63	2.48	0.38	1.75	1.10	1.31
110512: Theory of Structures-II	0.97	0.97		0.97		0.65						0.65		0.32
110513: S.D.D (RCC)	1.07	1.07	0.85	0.71	0.56	0.71	0.60	0.85	0.34	0.69		0.92	1.07	0.56
110514: Fluid Mechanics-II	0.83	0.76	0.82	0.83	0.66	0.48	0.51	0.71				0.70		0.48
110515: Minor Project – I	2.26	2.26	2.26	2.42	2.18	2.26	2.26	1.94	2.71	2.52	1.62	2.52	2.43	1.94
110516: Self Learning Presentation	0.50	0.26	0.36	0.89	0.50	0.89	0.89	0.50	1.22	1.22	0.44	1.02	0.26	0.56
110620: Artificial Intelligence & Machine Learning	2.62	1.75		2.62	1.75	1.75						1.75		

	1			1		1			1	1		1	T	
110621: Waste Water Engineering	1.99	2.06	2.46	1.99	1.37	2.32	2.32	1.67	0.82	1.64	0.82	1.99	2.16	1.49
110622: Structural Design & Drawing (Steel)	1.81	1.68	1.51	1.29	1.38	1.16	0.99	1.64	0.69	1.38		1.81	1.81	1.29
110623: Estimating Costing & Contracting	1.63	2.18	0.78	1.31	1.23	1.63	1.31	1.62	1.64	1.64	2.45	1.96		2.12
110624: Minor Project – II	2.33	2.33	2.33	2.50	2.25	2.33	2.33	2.00	2.80	2.60	1.67	2.60	2.50	2.00
110731: Hydraulic Structure	0.65	0.57		0.72	0.33	0.85	0.92	0.66			0.31	0.65	0.74	0.59
110732: Advanced Structure Design (RCC)	0.86	0.78	0.54	0.62	0.41	0.54	0.32	0.62	0.31	0.62		0.70	0.86	0.47
110733: Railway, Airport & Tunnel Engineering	1.83	1.36	0.96	1.49	1.61	1.36	1.36	1.76	1.61	1.61	1.61	1.59	2.88	1.36
900211- Integrated Waste Management for Smart City (OC - 2)	0.97	0.70	0.84	1.16	0.49	1.13	1.20	1.72	1.67	1.67	1.67	1.18	1.26	0.97
900212 - Safety & Quality Management	1.20	1.20		1.27	0.62	0.60	1.59				1.59	1.20	1.58	
110716- Software Application for Solving Civil Engineering Problems	1.60	1.67	1.67	2.00	1.67	1.40	1.40	1.60	2.00	2.00	1.00	1.80	2.00	2.00
110718 - Summer Internship Project – III	2.00	2.00	1.67	2.00	2.00	2.00	1.75	2.00	1.60	1.80	1.33	2.40	1.80	1.80
110717 - Creative Problem Solving	1.50	1.33	1.50	1.67	1.50	1.33	1.33	2.00	2.00	2.00	1.00	2.00	2.00	1.50
110821 Internship/Project	3.00	3.00	2.60	2.75	1.50	2.00	2.00	1.00	2.00	1.25	1.80	3.00	2.00	2.00
DIRECT PO ATTAINMENT	1.59	1.53	1.27	1.78	1.34	1.45	1.44	1.53	1.60	1.88	1.31	1.64	1.61	1.33


(Deemed to be University)
NAAC Accredited with A++ Grade

Department of Civil Engineering

PO Attainment

PO ATTAINMENT	PO1	P02	PO3	PO4	PO5	90d	PO7	80d	60d	PO10	PO11	PO12	PSO 1	PSO 2
DIRECT PO ATTAINMENT	1.59	1.53	1.27	1.78	1.34	1.45	1.44	1.53	1.60	1.88	1.31	1.64	1.61	1.33
AVERAGE INDIRECT PO ATTAINMENT	2.12	2.30	2.27	2.36	2.16	2.28	2.23	2.33	2.19	2.22	2.17	2.45	2.29	2.41
OVERALL PO ATTAINMENT	1.69	1.68	1.47	1.90	1.50	1.62	1.60	1.69	1.72	1.95	1.48	1.80	1.75	1.55

