Course Code: BCEL-501

Course Name: Construction Planning \& Management

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To make student conversant with the concepts and importance of the subject of construction plaming \& management.
2) To provide a broad knowledge on how to make bar chart, work break structure of a project, schedules.
3) To provide a broad knowledge on how to analyze a problem using various techniques of project management like CPM, PERT \& optimization of time \& cost of a project.
4) To provide knowledge on how to prepare a tender document, contract \& arbitration for a project.
5) To provide an insight into various types of machinery used in construction works \& various concepts of man \& material management.

Syllabus:

Unit I: Introduction, Significance of Construction Management, Roles of a project manager, Stakeholders in construction project, An overview of planning process, work break down structure, planning, sequencing, scheduling, preparing bar charts, milestone charts, limitations, Introduction to network techniques.
Unit II: Network Techniques in Project Management: Basics of developing a network, activities, events, numbering, rules for developing networks, network analysis using CPM, determination of schedules, critical paths, floats, probability concepts in networking, optimistic time, pessimistic time, mean, standard deviation, variance, slack, determination of critical path using PERT technique, Resources Smoothing \& Leveling.
Unit III: Time \& Cost Optimization using Network Techniques: Time computations using CPM \& PERT, Probability of achieving completion time, Project cost, Direct \& indirect cost, Cost vs. Time curves, Total project cost \& optimum duration, Contracting the network for cost optimization, Time cost optimization.
Unit IV: Contracts: Different types of contracts, Notice inviting tenders, Contract document, Rate list, Security deposit and Earnest money, Conditions of contract, Arbitration, Breach of contract,
Unit V: Resource Management: Factors affecting selection of construction equipments, Various types of equipments used in construction works like earth work, dredging, conveyance, hoisting, compacting \& grouting, Equipment management, Manpower Management: Labour laws (Compensation Act etc.) \& Human relations, Welfare facilities, Safety Management.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Understand the responsibilities \& roles of a project manager.
2) Prepare schedule of activities including bar charts.
3) Analyze various problems of time \& cost optimization using network techniques like CPM \& 53 PERT.

4) Develop a management system, incorporating constraints of time and cost, social, legal and ethical aspect of various phases of project life cycle.
5) Prepare tender \& contract document for a construction project.
6) Plan and manage effectively for man, material \& equipment of a project along with suitable safety measures.

Books Recommended:

1) B. C. Punmia \& K. K. Khandelwal, Project Planning \& Control with PERT \& CPM, Laxmi Publishers
2) Gahlot \& Dir, Construction Management, New Age International Publishers.
3) K. K. Chitkara, Construction Project Management, Mc Graw Hill International Publishers,
4) L.S. Srinath, PERT \& CPM - Principles \& Applications, East West Press.
5) Sengupta \& Guha, Construction Management \& Planning, Mc Graw Hill Publishers.
6) U.K. Shrivastava, Construction Planning \& Management
7) Neeraj Kumar Sha, Construction Project Management, Pearson Publishers.
 R

Course Code: BCEL-502

Course Name: Traffic Enginecring

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To introduce the concepts of traffic engineering.
2) To provide a broad knowledge on traffic characteristics \& various studies conducted in traffic engineering.
3) To analyze various requirements of traffic operation \& control system \& effectively design traffic signal.
4) To effectively design street light system.
5) To provide knowledge on concepts of aceident studies \& mass transportation system.

Syllabus:

Unit-I Traffic Characteristics:

(i) Road user's characteristics - general human characteristics, physical, mental and emotional factors, factors affecting reaction time, PIEV theory. (ii) Vehicular characteristics: Characteristics affecting road design - width, height, length and other dimensions. Weight, power, speed and braking capacity of a vehicle.

Unit-II Traffic Studies:

(i) Spot Speed Studies and Volume Studies. (ii) Speed and Delay Studies-purpose, causes of delay, methods of conducting speed and delay studies (iii)Origin and Destination Studies (O\&D): Various methods, collection and interpretation of data, planning and sampling (iv) Traffic capacity Studies: Volume, density, basic practical and possible capacities, level of service (v) Parking Studies: Methods of parking studies cordon counts, space inventories, parking practices.

Unit - III Traffic Operations and Contrel:

(i) Traffic regulations and various means of control. (ii) One-Way streets-advantages and limitations. (iii) Traffic signals-isolated signals coordinated signals, simultaneous, alternate, flexible and progressive signal systems. Types of traffic signals, fixed time signals, traffic actuated signals, speed control signals, pedestrian signuls, flashing signals, clearance interval and problems on single isolated traffic signal. Signs, markings and islands channelization of intersections Traffic rotary. Grade separated intersections and fly over and clover leaf function.

Unit-IV Street Lighting:

(i) Methods of light distribution (ii) Design of street lighting system (iii) Definitions-Luminaire, foot candle, Lumen, utilization and maintenance factors. (iv) Different types of light sources used for street lighting (v) Fundamental factors of night vision.
Unit-V Accident Studies \& Mass Transportation:
(i) Accident Studies; Causes of accidents, accident studies and records, condition and collision diagram, preventive measures (ii) Expressways and freeways, problems on mass transportation and remedial measures, brief study of mass transportation available in the country.

3

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Estimate basic characteristics of traffic stream.
2) Conduct traffic studies and estimate traffic data.
3) Analyze various requirements of effective traffic operation \& control system.
4) Design traffic signal system.
5) Understand the concepts of street lighting system \& design an efficient street lighting system.
6) Conduct accident studies \& plan for preventive measures.
7) Get an insight into various existing forms of mass transportation in India.

Reference Books:

i) Traffic Engineering and transport Planning by L.R. Kadiyali, Khanna Publishers Delhi
ii) Traffic Engineering by Matson, W.S. Smith \& F.W. Hurd
iii) G.J. Pingnataro, Principles of Traffic Engineering
iv) D.R. Drew, Traffic Flaw Theory
v) W.R. Mchsne and R.P.Roess "Traffic Engg"
vi) Wohl \& Martin Traffic System Analysis for Engineering \& Planners
vii) Highway Engg. by Justo \& Khanna

Course Code: BCEL-503

Course Name: Water Resources Engineering - I

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To develop an understanding of various components of hydrological cycle, their behaviors \& factors affecting it \& solve problems on measurement on rainfall, infiltration, evaporation.
2) To understand concepts of Hydrometry \& ground water hydrology.
3) To discuss the importance of estimation of runoff, analysis of rainfall data and various hydrographs and analyze various problems off runoff using various hydrograph theories.
4) To develop an understanding of various methods of flood estimation in general \& flood frequency in detail.
5) To develop the concept of flood routing through reservoir \& channel and its application in flood forecasting \& flood control.

Syllabus:

Unit-1 Hydrology:

Hydrological cycle, Precipitation and its measurement, Recording and non recording rain gauges, Estimating missing rainfall data, Rain gauge net works, Mean depth of precipitation over a drainage area, Mass rainfall curves, Intensity - duration curves, Depth - Area Duration curve, Infiltration and infiltration indices, Evaporation, evaporimeters, evapotranspiration \& estimation.

Unit - II

Hydrometry and Ground Water:

Methods of Stream ganging, Direct and Indirect methods, Area - velocity method, Dilution technique methods, Ultrasonic method, Stage - Discharge Relationship (Rating curves),
Forms of subsurface water, Aquifer properties, Geological formations as aquifers, Hydraulics of wells, Steady flow into a well, Well loss, Introductions to ground water recharge methods and Rain water harvesting.

Unit-III

Hydrographs:

Runoff, Flow duration curve, Flow mass curve, Estimation of runoff, Rainfall - Runoff relationship. Hydrograph and its analysis, Unit hydrograph and its derivation for isolated and complex storms, S-curve hydrograph, Instantaneous unit hydrograph, Synthetic unit hydrograph.

Unit-IV

Floods: Foods and its estimation by different methods, Design flood by Unit hydrograph and Design Storm, Flood frequency studies: Gumbel's Method, Log Pearson Types - III Distribution, Lognormal distribution, Limitations of Frequency studies.

Unit-V

Floods Routing: Hydrologic Routing: Reservoir Routing - Modified Pul's method, Goodrich method. Channel Routing - Muskingum method

Hydraulic Routing: Numerical methods. Introduction to Time series models, Flood control measures.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Understand the fundamental concepts of hydrological cycle, various hydrological parameters, measurement of rainfall \& analysis of rainfall data.
2) Understand various methods of stream flow measurement \& gauging.
3) Understand various concepts of ground water hydrology.
4) Understand the basic concepts of runoff, various hydrograph theories, \& estimate runoff using various hydrograph theories.
5) Develop an understanding of flood estimation \& estimate flood discharge using various methods.
6) Apply various flood routing techniques in river protection works \& implement various types of flood control measures.

Reference Books:

i) Engineering. Hydrology - 5 . NEMEC - Prentice Hall.
ii) Hydrology for Engineers Linsley, Kohler, Pauinus - Tata Mc Graw Hill.
iii) Engineering. Hydrology by K. Subhramanya - Tata Mc Craw Hills Publ. Co.
iv) Hydrology \& Flood Control by Santosh Kumar - Khanna Publishers.
v) Engineering. Hydrology by H.M. Raghunath.

Course Code: BCEL-504

Course Name: Fluid Mechanics - II

L	T	P	Credit
3	1	2	5

Course Objectives:

1) To develop and understanding of fluid flow patterns and learn to use boundary layer theory and drag.
2) To apply theories of laminar \& turbulent flow to solve typical pipe flow problems in the field.
3) To apply boundary layer theory to estimate drag \& lift for various shapes of the objects.
4) To classify the types of flows in open channel and also to design open channel sections in a most economical fashion with minimum wetter perimeter and learn about critical flows.
5) To study about non uniform flows in open channel and longitudinal slopes in open channel and also to learn about the characteristics of hydraulic jump.
6) To understand design philosophy of various types of pumps \& turbines.

Syllabus:

Unit-I

Turbulent Flow: Laminar and turbulent boundary layers and laminar sub layer, hydro dynamically rough boundaries, velocity distribution in turbulent flow, Resistance of smooth and artificially roughened pipes, Commercial pipes, aging of pipes.
Pipe Flow Problems: Losses due to sudden expansion and contraction, losses in pipe fittings and valves, Concepts of equivalent length, Hydraulic and energy gradient lines, Siphon, Pipes in series, in parallel, Branching of pipes.(Hardy Cross method)
Pipe Network: Water hammer (only quick closure case) transmission of power.

Unit-II Forces on immersed bodies:

Introduction, Force Exerted by a flowing fluid on a stationary body, Expression for Drag \& Lift, Drag on a sphere, Terminal velocity of a Body, Drag on a cylinder. Introduction to Development of Lift on a Circular Cylinder and an Airfoil

Unit -III

Uniform Flow in open Channels:

Channel geometry and elements of channel section, Velocity distribution, Energy in open channel flow, Specific energy, Types of flow, Critical flow and its computations, Uniform flow and its computations, Chezy's and Manning's formulae, Determination of normal depth and velocity, Normal and critical slopes, Economical sections.

Unit-IV

Gradually varied flow - Basic assumptions and dynamic equations of gradually varied flow, characteristics analysis and computations of flow profiles, rapidly varied flow-hydraulic jump in rectangular channels and its basic characteristics, Surges in open channels.

Unit-V

Introduction to Fluid Machinery: Turbines \& Pumps

A) Turbines: Classifications, definitions, Similarity laws, Specific speed and unit quantities, Pelton turbine - their construction and settings, Speed regulation, Dimensions of various elements. Action of jet, Torque. Power and efficiency for ideal case, Characteristics curves. Reaction turbines construction \& setting, Draft rube theory, Runaway speed, Simple theory of design and charecteristic curves, Cavitation.
(B) Pumps: Principle of working \& criteria for selection of different types of pump, viz, Centrifugal, Reciprocating.

Course Outcomes:

Upon complecion of the course, the students will be able to:

1) Apply the theories of laminar \& turbulent flow to solve various pipe flow problems.
2) Apply the theory of boundary layer to estimate lift \& drag on various shapes of the objects.
3) Design the most efficient open channel section for carrying maximum discharge.
4) Understand the significance of critical flow \& uniform flow \& apply these coneepts in gradually varied flow problems.
5) Understand the working principles of pump \& turbine \& subsequently apply them.

Reference Books:

i) Fluid Mechanics - Modi \& Seth - Standard Book house, Dethi.
ii) Open Channel Flow by Rangaraju - Taia Me Graw - Hill Publishing Comp. Lid., New Delhi.
iii) Fluid Mechanics - A.K. Jain - Khanna Publishers, Dethi.
iv) Fluid Mechanies, Hydraulies \& Hydraulic Mechanics - K.R. Asora - Standard Publishers Distributors 1705-B, Nai Sarak, Delhi-6.
v) Hydraulics of open channels By Bakhmetiff B.A. (McGraw Hill, New York).
vi) Open Channci Hydraulics by Chow V.T. (AcGraw Hill, New York).
vii) Hydraulic Mic in Engineering Hydraulics By Rouse.
viii) Open Chanel Flow by K. Subhramanya - Tata M.C. Gram Hill, New Delhi.

List of Practical's:

1. Sudy the performances characteristics of Pehton Wheel
2. Srudy the performances characteristics of Francis Turbine.
3. Stody the performances characteristics of Kaplan Turbine.
4. Calibration of multistory (Two) Pump \& Sudy of characteristics of variable speed pump.
5. To stedy the performance \& details of operation of Hyd. Ram.
6. Study of the characteristics of the Reciprocating pump at variable speed.

Course Code: BCEL-505
 Course Name: Structural Design \& Drawing - I (R.C.C.)

L	T	P	Credit
3	1	2	5

Course Objectives:

1) To understand the behavior of reinforced concrete components \& systems subjected to gravity loads.
2) To study the stress strain behavior of steel and concrete.
3) To understand the concept of working stress \& limit state method.
4) To provide knowledge on limit state design of beams, design for flexure, shear, torsion, bond \& anchorage as per relevant IS codes.
5) To provide knowledge on design of slabs, columns, footings \& staircases as per relevant is codes.

Syllabus:

Unit-I Basic Principles of Structural Design:
Mechanism of load transfer, Introduction to working stress limit state and ultimate load methods of design. Introduction of IS Codes 456, 13920.
Design of Beams: Analysis and design of singly reinforced rectangular beams, Lintel, Cantilever, Simply supported and continuous beams.

Unit-II Design of Beams:

Doubly reinforced and Flanged Beam. Design for Shear and design for bond.

Unit-III Design of Slabs:

Slabs spanning in ore direction, (Cantilever, Simply supported and Continuous slabs); Slabs spanning in two directions, Circular slabs.

Unit-IV Columns \& Footing:

Short and long columns. Columns subjected to axial loads and bending moments (section with no tension). Isolated and combined footings, Strap footing. Raft foundation.

Unit-V Staircases:

Staircases with waist slab having equal and unequal flights with different support conditions, Tread-riser staircase.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Recognize the design philosophy of R.C.C. structures \& apply the concepts of working stress method \& limit state method.
2) Design different elements of R.C.C. structural elements like beams, slabs, columns, footings \& staircases using relevant IS Codes.
3) Use the techniques, skills \& modem engineering tools necessary for design \& detailing.
4) Analyze and interpret the results using analytical tools \& further plan, design \& detail different components of civil engineering structures.
5) Design a structurefomponent, to meet desired needs within realistic constraints such as economy, environment friendly, safety, viable construction \& its sustainability as per the codal provisions.

Reference Books:

i) Limit State Design by P.C. Varghese; Prentice Hall of India, New Delhi,
ii) Design of Reinforced Concrete by Pillai \& Menon; Tata McGraw Hill, New Delhi.
iii) Reinforeed Cement Concrete by Gupta \& Mallick, Oxford and IBH.
iv) Reinforced Cement Concrete by P. Dayaratnam, Oxford and IBH,
v) Reinforced Concrete Design by S.N. Sinha, Tata McGraw Hill
vi) Plain and Reinforced Concrete by O.P. Jain and Jai Krishna, Nem Chand Pub.
vii) Limit State Design by A.K. Jain, Nem Chand Pub.
ix) Reinforced Cement Concrete by Winter \& Nelson

Course Code: BCEL-506
Course Name: Theory of Structures - I

L	T	P	Credit
3	1	2	5

Course Objectives:

1) To develop an understanding of the behavior of structure under serviceability load.
2) To understand the mechanics of the material behavior of different type of structures.
3) To understand the concepts of analysis of indeterminate structures by various classical methods.
4) To make student aware of different methods of structural analysis.

Syllabus:

Unit-1

Deflection of beams

Double Integration method. Area Moment Method and Slope-Deflection Method. Beam of variable cross section, M/EI diagram, Conjugate Beam Method,

Unit-II

Virtual work and Energy Principles

Principles of Virtual work applied to deformable bodies. Maxwell's Reciprocal theorems, Energy theorems, Application to pin jointed frames only-

Unit - III Indeterminate Structures-I

Static and Kinematics indeterminacy, Analysis of Fixed and continuous beams by Theorem of three moments, Effect of sinking and rotation of supports.

Unit-IV Indeterminate Structures-II

Analysis of beams and analysis of frames (with and without sway) by slope Deflection method.

Unit-V Moment Distribution Method

Moment distribution method for analysis of beams and analysis of frames (without sway) Three hinged arches of different shapes, Eddy's Theorem. Two Hinged and Fixed Arches. Analysis of frame using STAAD Pro Software,

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Apply fundamental concepts of mathematics, statics, mechanics of deformable bodies, and principle of dynamics to the solution of fundamental civil engineering structural analysis problems.
2) Understand the significance of the basic mechanical properties of structural materials.
3) Understand the deformations of structures under loading and be able to apply various methods to determine the deformations.
4) Solve statically indeterminate structures using classical methods.
5) Develop the ability to analyze cable and arch structures. Agents

Reference Books:

i) Ghali A \& Neville M, Structural Analysis - A Unified classical and matrix Approach Chapman and Hall, New York.
ii) Wang C.K. Intermediate structural analysis, McGraw Hill, New York.
iii) Kinney Streling J. Indeterminate structural Analysis, Addison Wesley.
iv) Reddy C.S., Basic Structural Analysis, Tata McGraw Hill Publishing Company, New Delhi.
v) Norfis C.H., Wilbur J.B. and Utkys. Elementary Structural Analysis, McGraw Hill International, Tokyo.

List of Experiments:

(i) Verification of Maxwell's theorem of reciprocal deflections with the help of a truss.
(ii) Verification of Maxwell's theorem of reciprocal deflections for a beam.
(iii) To deternine experimentally the horizontal displacement of the roller end of a two hinged arch.
(iv) To determine the horizontal thrust in a three hinged arch for a given system of loads experimentally and verify the same with calculated values.
(v) Verification of frame using STAAD Pro Software.

Course Code: BCEP - 507

Course Name: Civil Lab

L.	T	P	Credit
0	0	2	I

Course Objectives:

1) To make student conversant with the concepts of mix design of concrete.
2) To make student conversant with various tests performed on round materials.
3) To make student conversant with various tests performed on sail.

Syllabus: List of Practical's:

1. Mix design of concrete.
2. Job mix formula of bituminous aggregate mix by Marsisall stability method.
3. Determination of bearing capacity of soil by Triaxial method.
4. Determination of bearing capacity of soil by plate load test.
5. Determination of bearing capacity of soil by SPT.
6. NDT using various methods for estimation of strength of old structure.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Analyze \& Design mix of concrete
2) Carry out Marshall Stability test on bitumen \& determine its value.
3) Determine the bearing capacity of soil by various tests.
4) Student will be able to access residual strength of old existing building.

13

Course Code: BCEL-602

Course Name: Solid Wastes, Air \& Noise Pollution

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To provide broad knowledge on various aspects of planning \& implementation of a solid wastes management system in a city/town.
2) To provide a broad knowledge on various sources \& effects of air pollution, air pollutants, existing air quality standards in India, various techniques to reduce the air pollutants in atmosphere.
3) To provide a basic knowledge on sources, effects of noise pollution \& also how to reduce the pollution:
4) To provide an insight into various existing laws on air, noise \& solid wastes in India.
5) To provide a basic knowledge on environment impact assessment.

Syllabus:

Unit I: Solid Wastes: Introduction, Classification, Municipal Solid Waste: Generation, Characterization (Physical, Chemical \& Biological), Nuisance associate with solid wastes, Functional elements of solid waste management system, 3R policy, Waste reduction at source, On site storage - collection of waste at source, containers, bins, Material \& resource recovery / recycling.
Unit II: Collection systems, Transportation of solid wastes, Routing \& scheduling, Transfer stations, Transformations, Processing \& Treatment options including Composting, Vermicomposting, Incincration, Refuse Derived Fuels, Pyrolysis, Biological digestion \& Sanitary landfill, Existing solid waste management laws in India.
Unit III: Air Pollution: Sources and classification of air pollutants; Standards and guidelines for Air Quality Parameter, Existing air pollution laws in India, Effects of air pollutants on man, material, vegetation, art treasurers. Air pollution disasters, Economic effects, Global effects, Introduction to Indoor air pollution.
Unit IV: Meteorology \& Air Pollution, Factors influencing air pollution, wind roses, atmospheric stability, plume behavior, estimation of plume rise, Control of air pollution: types of equipments, settling chambers, cyclones, separators, filters, ESP, scrubbers/ wet collectors, towers, Gaseous pollution control equipments.
Unit V: Noise Pollution: Sources, Effects, Scales of noise, Noise standards, Noise rating systems, Sound level meter, Control \& prevention of noise pollution, Existing noise pollution laws in India, Introduction to environmental impact assessment: Necessity, Process of impact assessment, case study.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Understand the basic concepts of solid waste management system.
2) Analyze the requirements of treatment \& disposal of solid waste in a sustainable manner.

3) Understand the basic concepts of air pollution, its effects \& pollutant dispersion theory.
4) Analyze various techniques required to control the air pollution.
5) Acquire knowledge about noise pollution, its effects \& its control.
6) Acquire knowledge about various existing environmental legislation in India.
7) Understand the basics of environmental impact assessment.

Books Recommended:

1) Rowe, Peavy \& Tchobanogolous, Environmental Engineering, Tat McGraw Hill Publications,
2) M. N. Rap \& H. V. N Rap, Air pollution \& Control, Tata McGraw Hill Publications.
3) Iqbal H. Khan and Nave Ahsan, Text Book of Solid Wastes Management, CBS Publishers.
4) S.K. Garg, Sewage Disposal \& Air Pollution Engineering, Khanna Publishers.

Course Code: BCEL - 603

Course Title: Environmental Impact Assessment \& Ethics

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To develop an understanding about the requirements of environment impact assessment in modern day.
2) To provide a broad knowledge on the process of environmental impact assessment.
3) To provide a broad knowledge on various methods used in impact assessment.
4) To provide a practical knowledge on how to carry out environmental impact assessment process through various case studies.
5) To provide an insight into various existing environmental laws in India

Detailed Syllabus:

Unit I: Environment and its components, Concept of Ecological imbalances, Carrying capacity and Sustainable development, EIA: Definitions, Necessity of EIA, Historical Evolution of EIA: Global, Indian EIA rules 1994 \& 2006, Environmental clearance process in India, Step by step detailed procedure for carrying out E1A: Screening, Scoping, Baseline Studies, Impact Assessment, Public Consultation, Documentation, Mitigation, EMP, EIS, Life Cycle Assessment, Risk Assessment.
Unit II: Environmental Impact Assessment Methodologies: Characteristics of EIA Methods, Ad-hoc method, Checklist, Matrices, Networks, Overlays, Environmental Quality Index, Predictive Models, Comparative study of EVA Methodologies.
Unit III: Prediction and assessment of impact on water \& air environment: Basic information of air \& water quality, Data requirements for impact assessment, Existing standards for air \& water quality (surface \& subsurface), Identification of impacts, Prediction \& assessment of impacts, Mitigation measures. Case Studies - Environmental Impacts of Road, Rail, Dam and thermal power projects.
Unit IV: Prediction and assessment of impact on cultural \& socio-cconomic environment: Basic information on cultural resources like archaeological, historical structures, Cultural system, Basic information of socio-economic environment, Description of existing socio-economic environment, Identification of impacts, Prediction \& assessment of impacts, Mitigation measures, R \& R study,
Unit V: Environmental Legislations: List of prevalent environmental acts in India, Brief about provisions in Water Act 1974, Air Act 1981, EPA 1986, Objective of Ethics, Importance of Ethics, Environmental ethics in India, Environmental Audit: Introduction, Necessity, Types, and Process of audit.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Understand the importance \& concepts of carrying out EliA,
2) Acquire knowledge of current EIA process in India.
 3

 70
3) Acquire knowledge of various methods \& data requirements for conducting EIA.
4) Analyze Impact's associated with various components of environment.
5) Plan for mitigation of the impacts \& monitor the mitigation measures.
6) Acquire knowledge about Environmental Legislation, Ethics \& Environmental Audit.

Books Recommended:

1) Y, Anjaneyulu \& Villi Manickum, Environmental Impact Assessment Methodologies, B S Publishers
2) O. V. Nandimath, Handbook of Environmental Decision Making in India: An EIA Model, Oxford University Press.
3) R. L. Canter, Environmental Impact Assessment, Mc Graw Hill International Publishers International Edition.
4) R. R. Barthwal, Environmental Impact Assessment, New Age International Publishers.

Unit - V Lateral Earth Pressure:

Active, passive and at rest conditions. Rankine, Coulomb, Terzaghi and Cuman's theories. Analytical and graphical methods of determination of earth pressures on cohesionless and cohesive soils. Effect of surcharge, water table and wall friction. Arching in soils. Reinforced earth retaining walls.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Understand the significance of the properties of soils, and also the experimental methods used to measure them.
2) Understand both the applications and limits of engineering methods commonly used to solve soil mechanics problems in Civil Engineering.
3) Recognize and be able to apply fundamental soil mechanics principles underlying common civil engineering applications.
4) Recognize behavior of soils in slopes, behind retaining structures and phenomena affecting foundation capacity and settlement.
5) Determine allowable bearing pressures and load carrying capabilities of different foundation systems.

Reference Books:

i) Soil Mech. \& Found. Engg. By Dr. K.R. Aroma - Sid, Publishers Delhi
ii) Soil Mech. \& Found. By Dr. B.C. Punmia-Laxmi Publications, Delhi
iii) Modern Geotech Engr. By Dr. Aram Singh-IBT Publishers, Delhi
iv) Geotech Engg. By C. Venkatramaiah - New Age International Publishers, Delhi
v) Soil Mech. \& Found Engg. By S.K. Garg-Khanna Publishers, Delhi
vi) Soil Testing for Engg. By T.W. Lambe-John Wiley \& Soms. Inc.

List of Practical's:

1. Moisture Content Determination. Oven Drying Method.
2. Grain Size Analysis - Mechanical Method.
3. Grain Size Analysis - Hydrometer Method.
4. Liquid \& Plastic Limit Tests.
5. In-Place Density tests - Core Cutter Method, Sand Replacement Method.
6. Specific Gravity Tests.
7. Permeability Tests, Variable Head Method.
8. Compaction Test.
9. Unconfined Compression Test.
10. Direct Shear Test,
11. Triaxial Shear Test (Demonstration)
12. Consolidation test (Demonstration)
13. Visual classification test (Demonstration)

Course Code: BCEL-605
 Course Name: Structural Design \& Drawing - II (Steel)

L	T	P	Credit
3	1	2	5

Course Objectives:

1) To lear IS $800-2007$ code of practice for the design of Compression, Tension and Flexural members using various cross-sections.
2) To understand the behavior of steel structural components subjected to gravity loads.
3) To study the design of bolted and welded connections.
4) To study the behaviour and design of compression and tension members using simple and builtup sections.
5) To understand behaviour of flexural members and the design laterally restrained \& unrestrained beams.
6) To design plate girders \& stiffeners.
7) To use software's like STADD - PRO for design of tension \& compression members.

Syllabus:

Unit-I

Various loads, Partial Load factors, Structural properties of steel, Design of structural connections Bolted and Welded connections, eccentric connection. Codal provision.

Unit-II

Design of Tension members. Codal provision. Lug angles \& Tension splices.

Unit-III

Design of Compression member, Design of columns-simple and compound, Lacings \& Battens. Design of footings for steel structures, Slab base, gusseted base. Codal provision.

Unit-IV

Design of built up beams, web buckling and crippling, curtailment of flanges. Design of Laterally supported and unsupported beams, web buckling and crippling. Codal provision.

Unit-V

Design of plate girder. Curtailment of flanges, Design of stiffeners (bearing, Vertical and horizontal), Codal provision.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Follow and apply relevant and upcoming BIS standards and design philosophies prevalent in the world.
2) Understand the structural behavior of different steel structural elements and their analysis.
3) Design welded connections for both axial and eccentric forces.

 7
4) Analyze the behaviour of bolted connections and design them.
5) Analyze and design different elements of steel structural elements under gravity loads and submit the designs in complete and concise manner.
6) Analyze and interpret the results using analytical tools and further plan design \& detail different civil engineering structures.
7) Design a structure/component to meet desired needs within realistic constraints such as economy, environment friendly, safety, viable construction and its sustainability as per the codal provisions

Reference Books:

i) Design of steel structures by Arya \& Armani Nemchand \& Bros, Roorkee
ii) Design of steel structures by P, Dayaratnam
iii) Design of steel structures by Ramchandra.

Course Code: BCEL - 606
 Course Name: Theory of Structures - II

Course Objectives:

1) To understand the analytical procedure related to the analysis of building frame by some classical methods viz. Kani's methods and approximate methods of analysis.
2) To study the multi storey frames subjected to gravity loads and lateral loads
3) To understand matrix method and its application for computer based analysis of structure.
4) To understand the influence line concepts for indeterminate structures
5) To develop the skill to deals with the problems of moving loads in the structures \& their analysis techniques.
6) To understand the concepts of plastic analysis of structures.

Syllabus:

Unit-I

Moment distribution method in analysis of frames with sway, Analysis of box frames, analysis of beams and frames by Kani's methods.

Unit-II
Analysis of tall frames, Calculation of various loads including wind and earthquake loads, Introduction to Codal provisions for lateral loads. Approximate analysis of multistory frames for vertical and lateral loads.

Unit-III
Matrix method of structural analysis: Force method and displacement method.

Unit-IV

Rolling Loads and Influence Lines
Maximum SF and BM curves for various types of Rolling loads, EUDL, Influence Lines for Determinate Structural Beams, Trusses, Three Hinged Arches:

Unit-V

Plastic analysis of beams and frames

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Understand the structural actions viz rotations and displacements, especially in building frames subjected to vertical and lateral loadings.
2) Analyze building framing system and its components under the action of gravity and lateral loads and thereby developing database for the design of the structure.

3) Identify, formulate and solve engineering problems and to effectively use and apply the computer friendly siructural analysis techniques viz. stiffness and flexibility methods to the field problems.
4) Deal with the problems of moving loads in the structures and their analysis techniques such as influence line diagram.
5) Understand the concepts of plastic analysis of structures.

Reference Books:

i) Wang C.K. Intermediate structural analysis, McGraw Hill, New York.
ii) Kinney Sterling J. Indeterminate structural Analysis, Addison Wesley.
iii) Reddy C.S., Basic Structural Analysis, Tata McGraw Hill Publishing Company, New Delhi.
iv) Norris C.H., Wilbur J.B. and Utkys Elementary Structural Analysis, McGraw Hill Intemational, Tokyo.
v) Weaver W \& Gere J.M. Matrix Methods of Framed Structures, CBS Publishers \& Distributors, Delhi.

Course Code: BCEP - 607

Course Name: Minor Project - I

Course Objectives:

1) To develop an appreciation of civil engineering problems \& have a feel of real life situations in planning \& execution of projects.
2) To impart training of handling various types of civil engineering problems by use of conventional methods as well as software's.
3) To utilize the expertise in engineering to solve industry's technological problems.
4) To become innovative and professional in technology development, and system implementation.
5) To be able to function in their profession with social awareness and responsibility,
6) To be able to interact with their peers in industry and society as engineering professionals and leaders \& inculcate a habit of working in a group.
7) Enable students to prepare professional reports for design projects and data presentation skill and to use computers and some computer graphics.

Syllabus:

Each candidate shall work on an approved project of a public building or any other civil engineering work and shall submit design and a set of drawings.

OR

Shall submit a detailed report of report of experimental worksoftware package on any specific problem of importance.

Course Outcomes:

Upon completion of the course, the students will be able to:

1) Identify, formulate various engineering problems and to use techniques, skills \& modern engineering tools necessary for engineering practice.
2) Design, work on a set of drawings and conduct experimental studies on various engineering problems.
3) Learn different software's and apply them in solving various civil engineering problems.
4) Understand the ethical and professional responsibility and to know how to write professional and concise technical reports.
5) Interact with other streams of engineering in multidisciplinary system to manage various issues.
6) Develop the habit of working in group.
7) Develop innovative skills.

11

7

MADHAV INSTITUTE OF TECHNOLOGY \& SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous Institute affiliated to RGPV, Bhopal)

ANNEXURE - XI
Course Code: $11040 \mathrm{~K} b$ Course Name: Water Resources Engineering

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To understand the water requirements of various types of crops.
2) To understand the different types of irrigation systems.
3) To plan the reservoir systems as per the requirements.
4) To understand the concepts of Khosla's and Bligh's theory \& its applications
5) To understand the concepts of Lacey'* and Kennedy theory for design of canal systems.
6) To develop an understanding of various components of hydrological cycle, their behaviors \& factors affecting it \& solve problems on measurement on minfail, infiltration, evaporation.
7) To understand concepts of Hydrometry \& ground water hydrology.
8) To discuss the importance of estimation of runoff. analysis of rainfall data and various hydrographs and analyze various problems off runoff using various hydrograph theories.
9) To develop an understanding of various methods of flood estimation in general \& flood frequency.

Syllabus:

Unit-I Irrigation Water Requirement and Soil Water Crop Relationship:
Irrigation. Definition. Necessity. Advantages and disadvantages. Type and methods, Irrigation development:
Soil: Types and their occurrence. Suitability for irrigation purposes, Wilting. Coefficient and field capacity. Optimum water supply, Consumptive use and its determination Irrigation methods - suffice and subsurface, Sprinkler and drip imgation,
Duty of water, factors affecting duty and methods to improve duty. Suitability of water for irrigation. Crops and crop seasons. Principal crops and their water requirement, Crop ratio and crop rotation. Intensify of irrigation, Water logging-causes, effects \& is prevention.

Unit - II Reservoir Planning and Canal Irrigation

Types of reservoir, Reservoir planning. Estimation of storage capacity by mass carve analyses, Economical height of dam, Reservoir sedimentation, Canal systems, Planning and layout of canal systems. Regime concept and tractive force method of channel design, Channel losses, Design of unlined and lined canals, Kennedy's and Lacey's sill theories. Typical canal section, Water-logging: Causes and effects. Remedial measures, Salinity, Land reclamation and Drainage.

Unit - III Diversion works and Canal Regulation Structures

Elements of diversion works. Type of weirs and barrages, Weir design for surface and subsurface flow, Bligh's, Lane's and Khosla's theories, Silt excluders and Silt ejectors.
Canal regulation structure like Head \& Cross regulations, falls, Escapes, Outlets, Their Need, Functions sketches.

MADHAV INSTITUTE OF TECHNOLOGY \& SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous Institute affiliated to RGPV, Bhopal)

Unit - IN
Hydrology: Definition, Hydrological Cycle, Precepitatun, Evaporation, Infiltration, Runoff, Estimation of Runoff, Empirical Formulae, Rainfall-Runoff relationships, Hydrometry, Methods of Stream Gauging. Rating Curves, Ground Water: Elements of Ground water Hydrology, Well Hydraulics, Equations of Ground Water now, Solutions and applications.

Unit - V

Hydrograph \& Hyetography, Hydrograph analysis, Unit Ilydrographs. Methods of constructing. Unit Hydrographs, S-curve 1lydrograph, Synthetic unit 1lydrograph. Flood and its estimation by different methods.

Course Outcomes:

Upon completion of the course, the students will be able to:
CO 1: Analyse various requirements for an efficient irrigation project.
CO 2: Design different components of irrigation system using different theories.
CO 3: Plan an efficient, economical \& safe irrigation system.
CO 4: Explain the concept of hydrology and hydrograph
CO 5: Apply basic principles for measurement \& forecasting of rainfall \& runoff.
CO 6: Analyse runoff hydrograph by various methods.

Text Books:

1. Engineering. Hydrology. K. Subhramanya. Tata McGraw Hill Publ. Co. $4^{\text {th }}$ edition, 2013
2. Hydrology \& Water Resources Engineering. S. K. Gary, Klanna Publishers, 2016
3. Irrigation Engineering \& Ilydraulic Structures, Santosh Kumar Gary. Shana Publishers, 2017
4. Irrigation. Water Power \& Water Resources Eng. K.R. Aroma, Standard Publishers Distributors, 2010

Reference Books:

1. Engineering. Hydrology, I. NEMEC, Prentice Hall, 1972
2. Hydrology for Engineers, Linsley, Kohler, Paulnus, Tata Me GrawHill, 2014
3. Engineering Hydrology. H. M. Raghunath, New Age Intemational Publishers, $5^{\text {th }}$ edition, 2015.
4. Irrigation, Water Resources \& Water Power, Dr. P.N. Modi, Standard Book House, $9^{\text {th }}$ edition, 2014
5. Irrigation Engineering by Varshney \& Gupta, Vol I \& II, Dem chand Publishers, 2007.

Unit V

Design and planning consideration for various types of building i.e. Residential Building, Fiducation buildings, Hospitals \& Dispensaries, Hotels, Commercial boulding, recreational buildings, goverument offiees \& other, standards specified by Bye-laws, various aspects of sustainability \& energy efficiency applied to various types of Building, green building concept applied to various types of building,

Course Outcomes:

Upon completion of the course, the stadens will be able fo:
CO 1: Explain basics of building planuing \& design.
CO 2: Describe sustamability principle, by laws \& characterstics of thermal and sound insulation.
CO 3: Apply sustainabality coneepts \& principles in planning \& design of buiddings.
CO 4: Evaluate environmental, sustainable \& safety aspects of a building.
CO 5: Ptan different types of buildings as per by laws \&codal provisions.

Text Books:

1. Building Drawing (Buil Envitonment), Sah, Kale and Path, Tata McGraw hill, $4^{\text {th }}$ cdition, reprint 2007
2 Buikling Planning, Designing and Scheduling, Gurucharan Singh, Standard Publisher, distribution, 2009
2. Building Design and Drawing, Mattik and Meo, Compatech Publication Ltd New Asian; 5th edition $20 n 9$

Reference Books:

1. Building Design and drawing, Y S Sanc, Standard Publisher, 2006
2. National Bulding Codes (Latest Edition), 2016 by Bureau of Indian Standards (Third Revision)
3. Building Construction, B.C. Purmia, Laxmi Publication, $11^{\text {th }}$ edition, 2016

Course Code: 110303

Course Name: Building Materials \& Construction

L	T	P	Credit
3	0	2	4

Course Objectives:

1. To study the properties of concrete ingredients ie. cement. Sand and coarse aggregate by conducting different tests:
2 To select of different types of admixtures to improve the properties of concrete for different field applications.
2. To conduct the field ant laboratory tests on concrete in fresh and hardened state.
3. To provide knowledge about various types of bricks, stones, woods \&timber, ferrous \& non ferrous construction material \& their applications.
4. To provide knowledge on design of foundation, including selection of appropriate foundation.
5. To understand laying \& construction of brick \& stone masonry and various methods of damp proofing etc.
6. To provide knowledge about stairs, floors \& roofs in various types of buildings

Syllabus:

Unit-1

Types of Foundation \& its design: masonry construction, masonry classification, stone vas brick masonry, joints in stone masonry, brick masonry (bonds in brick masonry, charatecristice of bonds, type of bonds), typical structures in brickwork. Damp prevention (causes, effects, control \& prevention techniques, material used for damp proofing). Ant termite treatment, water proofing treatment, Arches \& lintel, stair \& stair case, (types \& design of stair case), Types of hor \& flouring, Roof \& roof covering.

Unit - II

Ingredients of Concrete: Portland cement Chemical composition of cement, Hydration of cement, setting of cement, less on physical properties of cement. Types of Portland cement - Ordinary Portland cement Rapid Hardening Portland cement - low heat Portland cement- Sulphate Resisting cement - Portland Blast furnace cement-Super Sulphate cement-Portland Pozzolana cement and Porzolanas: Fly ash; use of pozzolanas, white cement, Expansive cement - High alumina cement.
Aggregates: General classification of aggregates, natural and artificial aggregates, particle shape and texture, bond of aggregate, strength of aggregate, Mechanical properties of aggregate, specific gravity, Bulk density, porosity and absorption of aggregate, moisture content of aggregate, Bulking of sand deleterious substances in aggregates, organic impurities. Soundness of aggregates, Alkahaggregate reaction. Alkali carbonate reaction, sieve analysis - Grading carves, Fineness modulus. Grading requirements, Grading of fine and coarse aggregates and Gap graded aggregates. Thermal properties of aggregates.
Admixtures: Introduction, functions of admixtures, classification of admixtures, Accelerators, Retarders, Water Reducing Agents, Super plasticizers.

Unit－III

Fresh and Hardened Concrete：Fresh Concrete，Workability of concrete，factors affecting workability，measurement of workability using slump test．Compaction factor test，Flow test，Dee－ Wee Test，Ball penetration test，Nasser＇s＂K－probe lest，Segregation and Bleeding of concrete， Mixing of concrete．Vibration of concrete，Different types of mixers and vibrators．Concreting in Hot weather and Cold weather．
Hardened Concrete：Compressive \＆Flexural strength of concrete，Stress and strain characteristics of concrete，drying shrinkage of concrete，Creep of concrete，Permestblity and durability of concrete，Fire resistance of concrete，Thermal properties of concrete．Micro－ctacking of concrete． methods of curing，Influence of temperature on strength，Fatigue \＆Impact strength of concrete．

Unit IV

Bricks（classification，characteristics，manufacturing，testing，and types）．Stones（classification， Quarrying，seasoning characteristics，testing，selection \＆uses，preservation），Wood \＆Timber （Classification，Structure \＆characteristics，seasoning and is methods，defects \＆diseases， preservation \＆various treatment testing），wood products and their applications．

Unit V

Mortar（Classification，characteristes，functions of ingredients）．Types of mortar and their uses grout，guniting，ferrous material（Pig iron，CI．Mild steel，wrought iron，stainless steel，compositions \＆proposition）．Reinforced steel bars（classification，types，designation）．Aluminium（its alloys \＆ uses）．Copper（its alloys \＆uses）．Ceramics（classification，properties，commercial forms），Paint varnishes \＆enamels（types，composition，method of application，defects）

Course Outcomes：

Upon completion of the course，the students will be able to：
CO 1：Explain the basic elements of buildings，engg．materials \＆construction．
CO 2：Evaluate the properties of various materials like cement，aggregate，concrete，admixture， brick，stane etc．
CO 3：Distinguish the suitability of building materials in the construction of elements of buildings．
CO 4 ：Evaluate various types of concrete in building construction accordingly，
CO 5：Apply various techniques for finishing \＆protection works of various elements of building．

Text Books：

I．Concrete Technology，M．L．Gambler，Taka MeGraw Hill education Pvt．L．di， $5^{\text {th }}$ edition 2013
2 Concrete Technology，M．S．Shetty，S．Chant Publications， 2006
3 Building Natetrals，M．L．Gambler，Tala McGraw Hill education Pvt．Ltd．， 2017
4 Building Construction，B，C．Puma，A．K．Jain，Laxmi Publishers New Delhi， 2016

Reference Books：

1．Properties of Concrete．Neville，ELBS，Pearson Education， $5^{\text {th }}$ edition 2012
2．Building Material，S．K．Duggal，New Age Publishers， 4^{13} revised edition 2012

List of Experiments：

1．Determination of properties of cement，sand 在 aggregate－
2．Determination of workability of concrete by slump lest．
3．Determination of workability of concrete by compacting factor apparatus．
4．Determination of workability by Vee Bee consistometer．

5. Water absorpmion \& efforescence of brick.
6. Field testing on bricks.
7. Crushing strength of brieks.

Upon completion of practical coarse, the students will be able to:
CO 1: Determine the properties of cement, sand \& aggregate as per IS code.
CO 2: Determine the workability of concrete for suitability of concrete mix in different construction works.
CO 3: Evaluate compressive strength of various concrete mixes
CO 4 : Determine physical properties of brick by experiment and practice accordingly.
CO 5: Examine the properties of the cement mortar for various elements of the buildings

Course Code: 110304
Course Name: Surveying

Course Objectives:

L	T	P	Credit
3	0	2	4

1) To understand the working of theodolite.
2) To understand the determination of heights \& distances by tachometry.
3) To understand various types of curves used in practice.
4) To provide knowledge on selling out civil engineering works \& detailed field surveying
5) To understand the concepts of photographic surveying \& GIS

Syllabus:

Unit I

Traversing by theodolite, Fieldwork checks, traverse computations, latitude and departures. computations of eo-ordinates, plotting \& adjustment of traverse. Omitted measurements. Trigonometrical levelling, precise levelling.

Unit 1I: Tachometry

Tacheometric systems and principles, stadia system, uses of anallactic lens, tangential system, substance system, instrument constant, field work reduction, direct reading tacheometers, use of treheometry, accuracy.

Unit III: Curves:

Classification and use, elements of circular curves, setting out curves by offsets and by theodolites. obstacles and special problems, compound curves. reverse curves, transition curves, cubic spiral and lemineiscate, vertical curves, computation and selling out.

Unit IV: Control Surveys

Providing frame work of control points, triangulation principle, forms of framework, reconnaissance survey, selection and making of stations, Control line, baseline measurement \& corrections, flexible apparatus and corrections, computation of sides, precise traversing.

Unit V: Photographic Surveying \& GIS:

Principles of photographic surveying - aerial photogroplay, till and height distortions, uses. Basics of GIS \& GPS.

Course Outcomes:

Upon completion of the course, the students will be able to:
CO 1: Explain the techniques used for linear \& angular measurements in surveying.
CO 2: Analyse different geodetic methods of survey such as triangulation, trigonometric levelling, tachometry, photographic survey \& GIS.
CO 3: Apply methods in control surveys.
CO 4: Apply tachometry in traverse computations.
CO 5: Apply various methods for setting curves, area \& volume computations.

Text Books:

1. Surveying Vol. I, II, III, B.C. Punmia, Laxmi Publications New Delhi, 2016
2. Fundamentals of surveying, S.K. Roy, Prentice Hall of India New Delhi, $2^{\text {al }}$ edition 1999

Course Code: 110305

Course Name: Strength of Materials

L	T	P	Credit
3	0	2	4

Course Objectives:

1) To understand the concepts of simple and compound stresses and strains.
2) To understand the behaviour of elastic materials in bending, shear and torsion.
3) To understand the stability behaviour of long columns under axial load.
4) To understand the power transmission by shift.
5) To understand stresses \& strain developed in storage vessels
6) To calculate stresses / strain in statically indeterminate structures.

Syllabus:

Unit-I

Stress and Strains: Concept of Elastic body, stress and strain. Hooke's law various types of stress and strains. Elastic constants and their relation Stresses in compound bars, composite and tapering bars, temperature stresses.
Two-dimensional stress system. Normal and tangential stresses, Principal Planes, Principal Stresses and strains. Mohr's circle of stresses. Strain energy and theories of failure.

Unit - II

Theory of simple bending: Concept of pure bending and bending stress, equation of bending. Neural axis, Section-Modulus, Bending stress distribution across a section, Shear Stresses in Beams, beams of uniform strength, shear centre.

Unit-III

Torsion of Shafts:Cencept of pure torsion, Torsion equation, Determination of shear stress and angle of twist of shafts of circular section, Hollow circular shafts. Combined bending and torsion. Open and closed springs, leaf spring and spiral spring.
Pressure Vessels. Thin cylinders and spheres. Stress due to internal pressure. Change in diameter and volumes.

Unit-IV

Columns and Struts. Euler's buckling load for uniform section, various end conditions. Slenderness Ratio. Merchant Ranking formulae, Ececutric loading on columns.

Unit-V

Deflection of statically determinate structure by Geometrical methods \& Introduction of method of virtual work.

Course Outcomes:

Upon completion of the course, the studems will be able to:
CO 1: Explain the concepts of stress, strains, bending, deflection, buckling \& torsion,

CO 2：Explain various theories for determining stress，buckling of colum s \＆deflections of structures．
CO 3：Apply varions theories for determining stress，buckling of columns \＆deflections of structures．
CO 4 ：Evaluate the stresses in bending，shear and torsion．
CO 5：Analyse various sections for susses，strain，bending，torsion，buckling \＆deflections．

Text Books：

1 Strength or Materials，Sadhu Singh，Khan Publishing． $1^{* *}$ edition 2016
2．Strength of Materials，S．Ramamrutham，R．Nabyanan，Dhampat Rail Publishing Company． $18^{\text {a }}$ edition 2014
3．Strength of Materials，R．K．Bansal，Laxmi Publication； $6^{\text {it }}$ edition 2018

Reference Books：

1．Strength of Materials，Timoshenko，Publisher CBS． $3^{3 t}$ edition 2004
2．Strength of Materials．Iligiton Style，Publisher Wiley， $3^{\text {rd }}$ edition 1978
3．Strength of Materials Vol，I \＆II，B，C．Punnia，Laxmi Publication， $10^{\text {dh }}$ edition 2018
4．Mechmies of Materials，R．C．Nibbler，Pearson Publication， 2016
5．Mechanics of Materials，J．M．Gere \＆B．J．Grodno，Cengage Publisher，8 is edition 2014

List of Experiments：

1．Impact Test
2．Brinell Hardness Test
3．Behaviour of columns with Different End Conditions
4．Tensile test
5．Compression test
6．Flexure test
7．Shear test

Upon completion of practical course，the students will be able to：
CO 1：Evaluate properties of material by impact test．
CO 2：Evaluate properties of material by hardness test．
CO 3：Evaluate properties of material by tensile test．
CO 4：Determine compressive \＆flexaral strength of materials．

Course Code: 110306

Course Name: Software Lab

$$
\begin{array}{lllc}
\mathrm{L} & \mathrm{~T} & \mathrm{P} & \text { Credit } \\
0 & 0 & 2 & 1
\end{array}
$$

Course Objectives:

1) To draw plan, elevation \& section of various components of a building.
2) To prepare sketches of various components of building like doors, windows etc.
3) To expose students to use software's like Auto CAD in civil engineering drawings

Syllabus:

List of Experiments:

1. One drawing sheet containing Foundations and Footing using AutaCAD
2. One drawing sheet containing Doors, Windows, Ventilators using AutoCAD
3. One drawing sheet containing Lintels, Trusses and Areles etc. using AutuCAD
4. One drawing sheet containing detailed planning of one/two room residential building (Common to all students)
5. Drawing sheets one each of residential building using AutoCAD
6. One Drawing sheet of Institutional / Commercial building / Hospital etc. using AutoCAD
7. Sketelies of various building components ie. masonry, brick / stone, floors, roof \& roof covering

Course Outcomes:

Upon completion of the course, the students will be able to:
CO 1: Attempt to draw different components of a building.
CO 2; Produce plan, elevation \& section of various components of a residential and institutional building,
CO 3: Use AutoCAD software in civil engineering drawing.
CO 4: Prepare drawing sheets of various types of buildings like residential, institutional, commercial etc

\section*{Course Code: 110308 Course Name: Summer Internship Project - 1
 | L | T | P | Credit |
| :--- | :--- | :--- | :---: |
| 0 | 0 | 4 | 2 |}

Course Objectives:

1) To encourage students to read, study \& understand different topics of civil engineering.
2) To make student aeçuite good oral \& written communication skills.
3) To promote the habit of lifelong learning

Syllabus:

Fash candidate shall have to undergo 15 days in-house summer internship at the institute after the completion of their $2^{\text {bl }}$ Semester exams (in summer vacations). Candidate can choose from various modules which are offered by the institute and after successful completion of internship they have to submit detailed report

Course Outcomes:

Upon completion of the course, the students will be able to:
CO I: Observe various activities in field.
CO 2: Examine the utility of general and specific equipments for construction.
CO 3: Differentiate the construction projects individually and in team.
CO 4 : Develop the writing and communication skills for various engineering problems.
CO 5: Adapt lifelong learning for benefit of society.

Course Code: 110402 Course Name: Geotechnical Engineering

Course Objectives:

L	T	P	Credit
2	1	2	4

I) To inculeate the basic knowledge of soil such as its identilication and classification, determination of various engineering properties and its suitability as a foundation/ subgrade material.
2) To develop an understanding of the relationships between physieal claracteristies and meehanical properties of soils by experimentally measuring them.
3) To explam role of water in soil behaviour and how soil stresses, permeability and quantity of seepage including flow net are estimated:
4) To determine shear parameters and stress changes in soil due to foundation loads \& estimate the magnitude and time-rate of settlement due to consolidation.
5) To apply the principles of soil mechanies in stability analysis of slopes and settement calculations.
9) To exphain various types of foundations.

Syllabus:

Unit-I Basic Definitions \& Index Properties:

Introduction-Types of soils, their formation and deposition, Definitions: soil mechanics, soil engineering, rock mechanies, geotechnical enginecring. Scope of soil engimecring Basse Definitions and their relationships - Soil as three-phase system, Index properties and their determination. Consistency limits. Classification systems based on particle size and consistency himits.
Clay mineralogy \& their Influence on engineering behavior, Expansive soils, their Characteristics \& Challenges.

Unit-II Permeability, Seepage and Consolidation:

Datcy's law \& its validity, Determination of coefficient of permeability: Laboratory methods: constant-head \& falling-head method. Effeetive and total stresses, Effect of water table \& capiltary action. Seepage pressure, Quick sand condition.
Compressibility and consolidation, Relationslip between pressure and void ratio. Theory of onedimensional consolidation. Cionsolidation tests, Fitting of etrues. Normally and over consolidated elays. Determination of consolidation pressure settlement analysis. Calculation of total settement.

Unit-III Stress Distribution in Soils and Shear Strength of Soils:
Stress distribution beacath loaded areas by Boussinesy and Westerguard's analysis. Newmark's anfluenee char. Comtract pressure distribution.
Mohr-Coulomb's theory of sheat failure of soils, Molr's stress circle, Measurement of shear strength, Shear box icst. Triaxial compresston test, uneonfined compression test, Value shar test, Measurement of pore pressare, pore pressure parameters, critical void ratio, Liquefaction.

Unit - IV Stability of Slopes \& Earth Pressure:

Infinite and finite slopes. Types of slope failure, Stress path. Stability curves. Effect of ground water, Analytical and graphical methods of stability analysis.
Earth Preasure at attive, passive and at rest conditions. Rankine, Coulonb, Teraghi and Culmann's

theories. Analytical and graplacal mellonds of determination of carth pressures on cohesionless and cohenive suils, Effet of surcharge, water table ete

Unit - V Soil Foundations

Shallow Foundation - Types of foundations. Bearing capacity of foundation on cohesionless and cohesive soils. General \& local shear failures. Factors affecting bearing capacity, Theorics of bearing eapacity - Terzagh, Vesic, Skempton, Meyerhof and I.S. code on beonng capacity.
Deep Foundation - Pile foumdation, Types of piles, estimation of individual and group capacity of piles in cohesionless and cehesive soils. Statte and dynamic formulae. Settement of pile group. Negative skin fricton. Under Ream Piles, Plate load text

Course Outeomes:

Upon completion of the course, the studens will be able to:
CO t: Evaluate different properties of soil, fypes of foundations and its elassification.
CO 2: Examine the flow and shear parameters \& their effects on various types of soil.
CO 3: Determine the stress distribution \& shear strength parameters of soil by various methods.
CO 4 : Analyse the stability of slopes, earih pressures \& retaining walls using analytical methods.
CO 5: Evaluate suitable foundation system for varions ste conditions.

Text Books:

1. Soil Meeh. \& Found. Enge, Dr. K. R. Arora, Std. Pablishers Deihi, $7^{\text {m}}$ edition 2014
2. Sol Mech. \& Foumlation, Dr. B. C. Punmin, Laxmi Publications, Delhi, $16^{\text {h }}$ edition 2017

3 Soil Mech \& Found Engg, S. K. Garg, Khauma Publishers, Delh, Ist edition, 2003
4 Basic \& Applied Soil Mechamies, Gopal Ranjan \& ASR Rao, Now Age International Publisher, 2016

Reference Books:

1. Modern Geotech Engg, Dr. Aram Singh, IBT Publishers, Delhi, 8th edition, 2016
2. Geotech Engg. C. Venkatramaiah. New Age Internationat Publishers. Delhs, $16^{\text {th }}$ edition, 2018
3. Soil Testing for Engg. T W, Lambe, John Wiley \& Sons. Inc., 1969

List of Experiments:

1. Moisture Content Determination. Oven Drying Methad.
2. Graun Size Analysis Mechanical Method.
3. Grain Size Abalysis - Hydrometer Methad.
4. Liquid \& Plastic Limut Tests
5. In-Place Density fests - Core Cutter Method, Sand Replacement Method.
6. Specifie Gravity Tests.
7. Permeability Tests, Variable 1lead Methoil.

8 Compaction Test.
9. Unconfined Compression Tese.
10. Direct Shear Test.
11. Triaxal Shear Tesu (Denonstration)

Upon completion of prastical course, the students will be able to:
CO 1: Check physseal properties of sail,
CO 2: Check strength properties of soil.
CO 3: Differentiate the flow properties and siresses of soil. CO 4: Check shear steength of soil.

Course Code: 110403 Course Name: Fluid Mechanics - I

L	T	P	Credit
2	1	2	4

Course Objectives:

1) To understand fluid properties and concept of livid continuum.
2) To understam the enneepts of kinematics \& slynamics of fluid flow.
3) To apply fluid flow principles to a various fluid Il ow problems.
4) To understand the mechamsm of fluid measurement.
5) To mudervand the method of xumblation \& dinensomal analysis
6) To understand the concepts of lamina t low

Syllabus:

Unit!

Review of Fluid Properties: Engineering units of measurement, density, specific weight, specific volume, specific gravity, surface tension, capillary, viscosity, bulk modulus of elasticity, pressure and vapour pecssare.
Fimil Statics: Pressure at a point, pressure variation in static fluid. Absolute and gauge pressure. manometers, Forces on plane and curved surfaces (Problems - gravity dams and Tamer gites), buoyant fores, Stability of floating and submerged bodies, Relative equilibrium

Unit II

Kinematics of Flow: Types of flow-ideal \& real, steady and unsteady, uniform \& non-uniform, one, two and three dimensional flow, path limes, streamlines, streamlines and stream tabes, continuity equation for one and the ec dimensional flow, rotational \& irtotational flow, circulation, stagnation point, separation of flow, sources \& sinks, velocity potential, stream function, flownets - their utility \& method of drawing flownets.

Unit III

Dynamics of Flow: Euler's equation of motion along a streamline and derivation of Bernoulli's equation, application of Bernoulli's equation, energy correction factor, linear momentum equation for steady flow, montstum equation, forces of fixed and moving vanes, velocity triangles,
Fluid Measurements Velocity measurement, flow measurement (Offices, nozzles, mouth pieces, orifice meter. Nozzle meter, venturmeter, weirs and notches)

Unit IV

Dimensional Analysis and Itydraulic Similitude Dimerisonal analysis, dimensional honogeneny, use of Buckingham-pie theorem, calculation of dimensionless numbers, similarity laws, specific model mestigations (submerged bodies. partially submerged bodies, weirs, spillways, etc.)

Unit V

Laminar Flow: Introduction to laminar, transition \& turbulent flow, Reynolds experiment \& Reynolds number, relation between shat \& pressure graticn, lamar flow through circular pipes. damar flow between parallel plates, lamar low through porous media, stokes law, Bach wash processing Instability of lammas flow to turbulent flow.

Course Outcomes:

Upon completion of the course, the students will be able to.
CO 1: DeCline various fluid properties \& states of fluid.
CO 2: Apply principles of fluid flow de dimensional analysis.
CO 3 : Solve fluid flow problems.
CO 4: Analyze charactenstics of fluid at rest, fluid at motion \& dimensionless numbers.
CO 5: Discriminate different types of fluid flow, measurement techniques \& principles.
CO 6: Apply the concepts of laminar flow in solving various fluid flow problems.

Text Books:

1. Fluid Mechanics, Mod\&\& Seth, Standard Book Itonse, Delhi, 21 "edition, 2018.

2 Fid mechanics, Girde \& Mirazgaonkar, SCI Tech Publishers, 2019
3. Fluid Mechanics, R.K. Buusal, Laxmi Publishers, 2015

Reference Books:

1. Fluid Mechanics, A.K. Jain, Khanma Publishers, Delhi, 2014
2. Fluid Mechanics, Strecter, McGraw Hill Publishers, $9^{\text {the }}$ edition, 2017

List of Experiments:

1. Determination of viscosity of fluid by redwood viscometer
2. Determination of metacentric height of floating body
3. Calibration of Ventutimeter
4. Determination of $\mathrm{Cc}, \mathrm{Cd}, \mathrm{Cv}$ of Cisentar Orifice
5. Calibration of Mouthpiece
6. Calibration of Orifice Meter
7. Reynolds experiment for demonstration of stream lined \& turbulent flow
8. Determination of Friction Factor for a pipe
9. Verification of Stoke's law.

Upon completion of practical course, the student will be able to:
CO 1: Differentiate between different flow measurements devices.
CO 2: Notice flow through pipes \& fall velocity of particle.
CO 3: Correct the instrumental errors.
CO 4; Apply Stoke's law to calculate terminal velocity.

Course Code: 110407

Course Name: Survey Practice Lab
L. T
Credit
$0 \quad 0 \quad 4$
2

Syllabus:

Field Work:

1 Profile leveling $\&$ cross sectioning
2 Prepare contour map by using Tachometric method
3 Locating details by Plane Table surveying
4 Setting out of simple circular curves
5 Triangulation - Adjustment of quadrilateral by least square method
6. Use of'Tofal Station in surveying

Upon completion of the course, the students will be able to.
CO 1: Observe topographical characteristics.
CO 2: Differentiate methods to perform ground survey
CO 3: Prepare longitudinal \& cross section profiles
CO 4: Develop contour map by using tachometer \& teal station.
CO 5: Prepare the details of features using Plane table surveying.
CO 6: Produce a simple circular curve by using Rankine's method for alignment.

Reference Books:

1. Surveying Vol. I, II, II, B.C. Puma, Laxmi Publications New Dell, 2015
2. Surveying Vol. I \& II, K.R. Aroma, Standard book Hate, New Delhi, 2015
3. Surveying theory \& Practice, R.L. Devise, Me Grow Hill, New York, 1997
4. Fundamentals of surveying. S.K. Roy, Prentice Ital of India New Delhi, $2^{\text {nl }}$ edition, 2080

Course Code: B(EL,-701

Course Name: Geotechnical Engineering - II

L.	T	P	Credit
3	1	2	5

Course Objectives:

1) To understand the concepts of compaction \& soil stabilization.
2) To emphasize on the importance of soil investigations \& 10 determine the soil parameters needed lw cary out Foundation design.
B Fo learn the subsurface exploration techniques and apply item to design the foundations.
1. To apply the principles of soil mechanics to design of shallow and deep foundations including
larne capacity, stability andysis of slopes and sentiment calculations
5) Fo explain in what circumstances pile is needed and how do analysis the pile and pile group under various soil conditions
6) To explain fundamentals of soil dynamics and its application to machine foundation analysis including codal provisions

Syllabus:

Unit-1 Soil Improvement Techniques:

Compaction. Field and laboratory methods, Proctor compaction tests, Factors affecting compaction. Properties of soil affected by compaction. Various equipment for field compaction and their suitability. Field compaction control Lift thickness.
Soil stabilization: Mechanical, Lime, Cement, Bitumen, Chemical, Thermal, Electrical stabilisation and stabilization by grouting Geo-synthetics, types, functions, materials and uses
Unit-11 Soil Exploration and Foundations of Expansive and Collapsible Soils:
Methods of soil exploration. Planning of exploration programme for buildings, highways and earth dams. Disturbed and undisturbed samples and samplers for collecting them.
Characteristics of expansive and collapsible soils, their treatment, Consinction techniques on expansive and collapsible soils, CNS layer.

Unit-III Shallow Foundations:

Type foundations shallow and deep. Bearing capacity of foundation on cohesiontess and cohesive soils General and local shear failures. Factors effecting B.C. Theories of bearing camerty Prandle. Terzaghi, Balls, Skempton, Meyerhof and Hansan I.S. code on B.C. Determination of bearing capacity. Limits of total and differential settlements. Plate load fest.

Unit-IV Deep Foundation:

Pile foundation, Types of piles, estimation of individual and group capacity of piles in colkesiunless and cohesive soils. Static and dynamic formulae. Pile load test, Setjemem of pile group. Negative skin friction, under-reamed piles and their design. Piles under tension, inclined and lateral load Caissons, Well foundation. Equilibrium of wells. Analysis for stability tilts and shifts, remedial measures.

Unis-) sheet piled Bullibeads and Machine Foundation:
Clasafication of sheet pilesfoulkhends Cantheven and anchored sheet mil. Cofferdams, at hate taletyperabl applications.

Mokes of vibration. Mess-spring analogs. Natural treyoency Affect of Vibration won sails Vibration isolation Criterion for design Design of hock foundation for impact type of mat hath

Course Outcomes:

Upon completion of theory course, the students will be able to:
COI: Apply various soil improvement technigties
CO2: Illustrate the methods of soil exploration.
COS: Distinguish expansive, collapyble sots and treatments
CO4: Evaluate the bearing capacity of shallow foundations using various theories
CO5: Evaluate the bearing capacity of various pile foundations in individual \& group.
CO6: Analyse the elements of machine foundation \& sheet piles.
Upon completion of practical course, the students will be able to:
CQ1: Determine the shear parameters by triaxial shear test.
CO2: Perform SPT test.
CO3: Perform plate load test.

Reference Books:

i) Soil Mechanics \& Foundation Eng. By Dr. K. R. Aroma- Sid. Publishers Delhi
ii) Soil Mechanics \& Foundation Eng. By B.C. Punmia-Laxmi Publtscations Della
iii) Modern Geotech Eng By Dr. Alum Singh -IBT Publishers Delhi
iv) Geotech. Engg. By C.Venkatramaiah-New Age International Publishers, Delhi
v) Foundation Engineering. By Galeonards Mc Craw Hill Book Co. Inc.
vi) Found Design \& Const. by ME Towlinbou - Cor Pitman \& Som London

List of Practical's:

1. Triaxial Shear Test
$2 . \quad$ Standard penetration test.
3 Demonstration of plate load test.
4 Vane shear test
$5 . \quad$ Static core penetration test
6 Consolidation test

2

Course Name: Environmental Engineering - II

I.	T	P	Credit
3	1	2	5

Course Objectives:

1) To impan basic knowledge on sew rage system including estimation of sewage quantity $\&$ design of
sewers.
2) To provide a broad know ledge on sewage composition A its charaterimics
3) To provide information on disposal standards of effluents \& also about various methods of sewage disposal.
4) To provide broad knowledge on various techniques of sewage treatment including advanced processes

Syllabus:

Unit - I

Sewerage schemes \& sewerage system and their importance, collection \& conveyance of sewage, Estimation of and sewage storm water quantity, fluctuation in sewage flow, Flow through sewer, Design of sewer, Construction \& inaintenance of sewer. Testing of sewer, Sewer appurtenances, Pumps k pumping stations.

Unit - II

Characteristics and analysis of wastewater Physical, chemical \& biological parameters Cycles of decomposition, Oxygen demand ie. BOD \& COD, TOC, TOD, ThO, relative Stability, Population equivalent, Instrumentation involved in analysis, Natural methods of waste water disposal ie. by land treatment \& by dilution, Self purification capacity of stream, Oxygen sag analysis:

Unit-III

Unit operations for waste water treatment, Preliminary treatment such as screens, grit chamber. floatation tank, sedimentation etc. and chemical clarification, Role of micro-organism in biologeseal treatment, Sewage filtration - theory \& design. Testing filter its design \& constructions, modifications in trickling filter.

Unit-IV

Methods of Biological Treatment (Theory \& Design) - Activated Sludge Process, Oxidation ditch, Stabilization Ponds, Aerated Lagoon, Anaerobic Lagoons, Septic Tank \& Imhoff tank, Rotating Biological contactor Sources \& treatment of sludge, sludge thickening and digestion, sludge drying beds, sludge disposal.

Unit-V

Advanced Waste Water treatment - Need of advanced treatmem. Diatomaceous earth filters, Ultra filtration, Adsorption by activated carbon, Phosphorus removal, Nitrogen removal, Physico chemical waste water treatment,

Sewage treatment plants using MBBR and SBR technology.

Cinurse Outcomes:
Leon wimpletion of theory course the students will be able to:
CO1: Design sewerage system accounting to the ymantily of sewage generation
CO 2: Determine various sewage characteristics.
CO3: Analyse various possible options for effective disposal of effluents.
CO4: Iaplain various sewage treatment methods.
COS: 13esign sewage treatment plant.
C06: Analyse various options for dispersal of solid waste including sludge
Upon completion of practical course, the students will be able to:
CO1: Determine pill, acidity \& alkalinity of sewage sample \& establish the relationship among them.

CO2: Determine DO \& BOD of sewage sample \& establish the relationship among them.
CO3: Determine COD of sewage sample \& establish relationship with ThUD.
CO.4: Determine solids (fixed \& volatile) content of sewage sample.

Reference Books:

i) Water Supply \& Sanitary Engg. - G.S. Birdie - Dhanpat Ray Publishing Company, (P) Ltd.
ii) Waste Water Engg. By B.C Purmia - Laxmi Publication (P) Lid. New Delhi
iii) Environmental Engg. - M.I, Davis \& D.A. Cornwell - Mc Craw Hill Company
iv) Chemistry for Environmental Ing. - Sawyer \& Mc Catty - Mc Graw Hill Book Company
v) Water \& Waste Water Technology - Mark J Hammer - Prentice - Hall of India, New Delhi
vi) Waste Water Engineering - Metcalf \& Eddy - Mc Craw Hill Book Company New Delhi
 AD

Course Objectives:

1) To understand the design concepts of various structures \& detailing of reinforctmems
2) Io understand the design of underground \& elevated liquid retaining structures
;) To understand the design of retaining walls.
3) Tin study the design of bridges according to IRC loadings.
4) To provide know ledge on basic concepts of prestressed concrete. \qquad

Syllabus:

Unit-I
Design of Water Tanks:
Design requirements, Design of Tanks resting on ground and underground tanks. Rectangular and
circular tanks.
Lnit-II

Design of Over Head Water tanks:

Rectangular, Circular \& intze type (Membrane analysis only), Design of staging.
Unit-III

Earth Retaining Structures:

Types of retaining walls, Stability of retaining walls, Design of retaining walls (Cantilever and
counter fort type)
Unit-IV

Design of Bridges:

IRC loading for highway bridges, Slab bridges and T-beams bridges for highway loading (IRC
Loads)

Unit-V

Prestrissed Concrete:

Prestressing concepts, materials, systems of prestressing \& prestress losses. Introduction to working
\& limit state design method

Course Outcomes:

Leon completion of the course, the students will be able to:

$$
-\Delta 5 i
$$

CO1: Design various shapes of underground water tanks as per codal provisions.
CO2: Design various shapes of elevated waiter tanks as per canal provisions
C03: Design retaining walls as per codal provisions.

stane

> COI: Design ridpes an per IRC loudiny movisions.

C015: Apply tie comerpts of presiressed ancrete.

Refereace Bonks:

i) Plain an 4 Reinforced Conctete by (SP Jain and Jaii Kishana Vol Id II
ii) R.C.C. .sructures by B.C. Pumaia
iii) Adrance R.C. Design by N.K. Raju
iv) Esscutiats of Bridge Einginecring by 1)J Vistor

1) Despen er Bridge Structures by TR Jagadeesh \& M.A. Jayaram
vi) Despence:Bridges by N.K. Raju
iii) Prestressed Concrete by N.K. Raju
viii) Advanced Reinforeed Concrete Design by PC Varghese
Aare

Course Code: BCEL-704 (A)
 Course Name: Railway, Bridge \& Tunnel Engineering

L	T	P	Credit
3	1	0	4

Course Objectives:

1) To understand the geometrical elements of railway track
2) To understand the properties of gond ballast:
3) To understand the track, alignment, superelex anion, turnout, yards:
4) To understand the principles of signalling \& inter locking
5) To understand bridge site investigation and planning.
6) To understand the laudian loading standards for bribe.
7) To understand the construction of tunnels.

Syllabus:

Unit I Introduction:

Tractive resistance \& Permanent way, Principles of Transportation, Transportation by Road, Railways, Airways, Waterways, their importance and limitations. Route surveys and alignment, i) Railway track, development and gauges. Hauling capacity and tractive effort.
ii) Rail fastenings weld g of rails, wear \& tear of rails, rail creep ultrasonic Testing of Rails, rails, Elastic Rail Clips (ERC), Vossloh fastening plates, chairs, keys, check and guard
iii) Sleepers, types \& comparison, require fastening.
iv) Ballast -Requirement of good bailment of a good sleeper, sleeper density, Turnouts. Ballast Cleaning. Different methods of plate laying, material trains, calculation of materials required, relaying
of track.
Unit - II
Track alignment, Geometrical Design, Gradient \& gray compensation, Super Elevation, Equilibrium, Cant and Cant deficiency, relationship of superelevation, gauge, speed \& radius of curves, speed on curves, Limits of superelevation, Cant deficiency, Negative superelevation, curves, transition curves, necessity of points and crossing. Turnouts, Points of switches, Types of switches, crossing, calculation of turnouts, sleepers at points \& crossing, Types of Track junctions. Types, locations, general equipments, layouts, marshalling yards. Definition, layout details, designs
of simple turnouts.

Unit III Stations aud Yards: Site selection for a Railway stations, Requirements of railway stations, junction station \& terminals, location, layout \& details. Types of signals in stations and yards, principles of signaling and inter-locking. Modern development in railways, Modernization of track for high speed, Maintenance of track, Track drainage.

Unit - IV Bridge Site Investigation and Planning, Loading Standards \& Component parts :

Selection of site, alignment, collection of bridge design data- essential surveys, hydraulic design, scour, depth of bridge foundation, Economical span, clearance, afflux, types of road k railway standards for Railways Bridges induction, Design loads and forces, Impact factor, Indian loading abutments, piers, wing walls, retum walls, abridges, Bridge super structure and substructure. structure. Bridge bearings, Erection and maintenance of bridge

Fair 1 fumes:

Selection of route, Engineering Surveys. aliment, shape and wee of funnel, bridge wotan
 soil. hard wat \& rock Different types of lining, methods of liming. Marching operation, drainave is emulation Examples of existing important tunnels in India \& abroad

Course Outcomes:

Upon completion of the course, the students will be able to:
CO1: Explain the elements of railway like sleepers, rail, ballast, fasteners etc
CO2: Design various geometrical elements like track, gauge, cant, tum uts crossing etc
CO3: Design signalling and interlocking systems \& yards.
CO4: Explain various principles of bridge elements.
CO5: Design bridges as per Indian loading provisions.
CO6: Apply the construction methods of railway tunnel.

Reference Books:

i) Railway Engineering by S.C. Rangwala - Charotar Publication House, Anand
ii) Railway Engineering by Arora \& Saxena - Dhanpat Rail \& Sons,
iii) Railway Tack by K.F. Anta
iv) Principles and Practice of Bridge Engineering S.P. Bindra - Dhanpat Rai \& Sons
v) Bridge Engineering - S.C. Rangwala - Charotart Publication House, Anand
vi) Bridge Engineering - J.S. Alagia - Charotar Publication House, Amend.

Course Code: BCEL.- $705(\mathrm{~A})$

Course Name: Irrigation Engineering

Course Objectives:

1) In thiderstand the water requirements of various types of crops
2) Io understand the different types of irrigation systems.
i) Tu plan the wester sos ems as per the requirements.
3) To midestame darien li types of dam.
4) Io understand the concepts of Khostir's and Bligh's theory \mathbb{R} it applications
5) 10 understand rive maiming
6) To understand the concepts of Lacey's and Kennedy theory for design of canal systems.
7) Toumdersiand tie canal regulations.

Syllabus:

Unit-1 Irrigation Water Requirement and Soil Water Crop Relationship:
Irrigation, Definition, Necessity, Advantages and disadvantages, Type and methods, Irrigation development
Soil: Types and their occurrence, Suitability for irrigation purposes, Wilting, Coefficient and field capacity, Optimum water supply, Consumptive use and its determination. Irrigation methods - surface and subsurface, Sprimhter and drip irrigation.

Duty of water, factors affecting duty and methods to improve duty, Suitability of water for irrigation, Crops and crop seasons, Principal crops and their water requirement, Crop ratio and crop rotation, intensity of irrigation, Water logging -causes, effects $\&$ it prevention.

Unit-II Reservoirs and Storage Works:

Types of reservors, Reservoir planing, Various investigations, estimation of storage eapocity by mass cone analysis. Fixing of principal levels in a storage project, Economical height of dam, Reservoir sedimentation, Suitable site for a reservoir project.

Dams: Classification- gravity, earthen, rock fill, at ch, buttress, steel \& timber dam, Selection of suitable type of dane at a particular location.

Unit-III Diversion Works and River Training Methods:

Purpose, Selection of she, Layout and functions of component parts, Types of weirs and barnes, Weir design for surface and subsurface flows, Blights, Lame's and Klowsla's theories, Silt excleders and silt ejectors.

River training methods - objectives, Design promeples of levees, Guide bands \& launching aprons.

Unit-IV Canal Irrigation:

Types of canals. Almgment, Design of untied and honed canals, Kenuelly'a and Lacey's silt theories: Typical canal sections, Canal losses. Limings-otyectives, Materials used. Economics

12

L.	1	I^{\prime}	Credit
0	0	2	1

Course Objectives:

1) To develop an appreciation and importance of ail Engineering in developion the anta structure.
 constmetion activities
2) To emphasize on the use of the modern took and plant used in the construction matu-tes
3) To build the necessary practical background and exposure wo the field problems
4) To develop a technical skill to prepare project documents.

Syllabus:

1. Each candidate shall go for 1 month (4 week) on field training at different organization. 'sites of his / her choice after completion of their $6^{\text {th }}$ Semester exams (in summer vacations ami vial submit a detailed export after completion of training.
2) Candidates will be taken to nearby places where civil engineering works are being carried out during the semester and they shall have to submit a detailed report of their visit.

Course Outcomes:

Upon completion of the course, the students will be able to:
CO1: Observe various activities of civil construction works.
CO2: Examine the utility of general and specific equipments for construction.
CO3: Differentiate the construction projects individually and in team.
CO4: Develop the writing and communication skills for various engineering problems.
CO5: Adapt lifelong learning for benefit of society.

Course Cade: BCFI - 707

Course Name: Major Project - I

L	T	P	Credit
0	0	4	2

Course ()objectives:

1) Io ale clop am appreciation of civil engineering problems $\&$ have a feel of teal life situations in planning \& execution of projects.
2) To upstart training of handlia! various types of civil engineering problems by use of conventional methods as well as sofmates.
B) Tu willed the expertise in engineering to solve industry's technological problems.
3) In- let cone movative and professional in technology development, and system implementation.
4) To be able to function in their profession with social awareness and responsibility.
b) To he able to interact with their peers in industry and society as engineering professionals and leaders \& meulcate a habit of working in a group.
5) Enable students to prepare professional reports for design projects and data presentation skill and to use computers and some computer graphics,

Syllabus:

Each candidate shall work on an approved project of a public building or any other civil engineering work and shall submit design and a set of drawings.

Shalt submir a detailed report of report of experimental work/software package on any specific problem of importance.

Course Outcomes:

Upon completion of the course, the students will be able to:
CO1: Recognize various engineering problems and techniques to solve them.
CO2: Reproduce the solution of the problems upon the need of society.
CO3: Cooperate to work within group,
CO4: Develop the writing and communication skills for various engineering problems. CO5: Display lifelong learning.

T

1.	T	P	Credit
3	1	0	4

Course Objectives:

11 To study the components of truss, loads on trusses, anally sis and design of purling and truss member.
2) To study the design of gantry girder, welded plate girder bridges as per standard loadings:
3) To study the design of trussed girder bridges, railway \& highway bridges as per IRC loadings and Brides Rules.
4) Jo study the design of water tanks.
5) To study the design of chimneys.

Syllabus:

Unit-I

Design of Industrial Building: Dead Load, Live Load and wind load analysis for roof' trusses. Design of purling \& members of truss. Design of gantry girder.

Unit-II

Plate Girder Bridges: Railway standard loading, Design of various components of plate girders bridges for railway \& highways; Bearings for bridges.

Unit-III

Trussed Girder Bridges: Design of Foot over bridge, Design of various components of railway \& highway bridges (IRC \& railway standard loading)

Unit-IV

Steel Water Tanks: Design of Rectangular \& Circular tanks with ordinary plates, Design of elevated water tanks with suspended bottoms, Pressed steel tanks.

Unit-V

Design of Chimneys: Design of self supporting type and Guyed Chimney.

Course Outcomes:

Upon completion of the course, the students will be able 10.
COI: Design roof truss as per codal provisions.
CO2: Design gantry girder as per codal provisions.
CO3: Design plate girder bridges and bearings as per IRC loadings.
CO4: Design trussed girder bridges as per IRC loadings.
$\mathrm{CO5}$: Design various shapes of steel water tanks as per codal provisions.

(O) Devin chimers as per modal provisions.

Reference Books:
i) Steel Suncture By D. Ramachandra Vol 1 \& 11 .
ii) Steel Structure By Aryan \& Aimani
iii) Essentials of Bridge Engineering by D. Johnson Victor
iV) Design of Steel Structures by BB C. Puma
v) Design of Steel Structure by S.K. Dugeal
ii) Design of stet Strictures by Dina ratuken
(ii) Indian standard codes.

1.	1	P	(redis
3	1	2	5

Course Objectives:

1) Tins study the different aspects of design of hydraulic stmetmes.
2) Io built the necessary theoretical background for the selection of a suitable ste for at dow and a sumable dam for a given site location.
i) I womplasize on the basic design principle at the gravies dan in x ear then dun
f) lo cary out the stability $\&$ seepage analysis af various :spec of dame
3) Io provide knowledge on various hydraulic structures such as energy dissipates, spillways ix gates \& understand their designs.
4) To understand the design of cross drainage structures for uninterrupted water supply in natural clamels and manmade canals.
5) To provide a basic knowledge on various types of hydropower plants and their components.

Syllabus:

Unit-1 Gravity dams:

Design Criteria, forces acting on gravity dons, elementary profile, low and high gravity dams, stability analysis, evaluation of profile by method of zoning, practical profile, foundation treatment, construction pints, galleries in gravity dams.
Unit-II Earth and Rock fill dams:
Earth Dams: Types, causes of failure and design criteria, soils suitable for earth dam construction. construction methods, foundation requirements, typical earth dam sections, estimation of seepage through and below the dam, seepage control, stability of slopes by slip circle method. pore pressures, sudden daw down, steady seepage and construction pore pressure condition.
Rock fill dams: Types, merits and demerits, conditions favourable for their adoption

Linit-III Cross drainage works:

Types. selection of suitable type, design criteria, fluming of canal- Mitra \& Chaturvedi methods. Design of Different types of CD works.

Enit-II Spillways, Energy dissipators and gates:

O zee spillway and its design, details of syphon. shaft, chute and side chanel spillway e emergereny spillways Principles of energy dissipation, Energy dissipator based on tail water 1 atone chare and jump height curves, Spillway crest gates - vertical lift and radial gates, their design prineples and
details.

Unit-V Hydropower Plants:

Hydropower development, assessment of power potential, types of hydropower plants enteral features of bydro-electric schemes. selection of turbines, draft tubes, surge tanks, penstocks, power house dimensions, development of micro hydel stations, tidal plants, pumped storage plants and their details.

Course Outcomes:

1 Pancertpitmon thant course, the talents will be able to

C02: Design elements of eanhen dims and carry out seepage and stability anally as
(0): Design different types of cross drainage works.

COI: Itrvign energy dissipator and spillways.
CO5: I yblain carious elements of hydropower plans
I porn conerpletion of practical course, the students will be able to:
(O): Evaluate rathaus design criteria of dams.

CO2; Design different types of cross drainage works.
C03: Design energy dissipator and spillways.

Reference Books:

i) Engineering for Dams (Volumes I, II \& III) by Creager, Justin \& Hinds
ii) Hydroelectric Itand Book by Creager
iii) Hydraulic Structures by Varshncy
iv) Irrigation \& Water Power Engg. By Punmia \& Pandey
v) Water Power Engineering by Dandekar
vi) Irrigation Engineering \& Hydraulic Structure by S.K. Gars.

Course Code: BCFI, - 80) (A)

Course Name: Industrial Waste Treatment

1.	T	p	Credit
3	1	0	4

Course Objectives:

1) Te provide broad knowledge nit various methods of sewage disposal, their effects on water pollution \& also provide information on sarious disposal standards.
2) To learn tie busies of sewage composition \& its characteristics
3) Fo understand the 3 R concepts and low hor implement theme
4) Io provide know ledge on various waste water treatenent techniques.
5) Lo provide information on various rules \& regulations regarding disposal of municipal wastes.
6) To provide information about various existing waste treatment \& management techniques of various industries.

Syllabus:

Unit-I Problem of Water Pollution:

Effects of wastes on streams and sewage treatment plant, natural purification of streams, oxygen sag curve, allowable organic load on streams, classification of stream, stream standards and effluent standards requirement of water for different purposes.
Unit-11 Sampling and Analysis of Wastewater:
Sampling of waste waters, Grab, Composite and Integrated samples, analysis of waste water, Biochemical Oxygen Demand, Chemical Oxygen Demand and pH value of waste water, Toxicity of waste by Bioassay method,
Pretreatment of Wastes: Volume and strength reduction, salvage of materials, recovery of by products, reuse of waste water.
Unit-III Conventional Methods of Treatment of Waste Wafer:
Removal of suspended solids, removal of inorganic and organic dissolved solids, sludge disposal. Advance methods of treatment such as Reverse Osmosis, Ion Exchange Process, Electro Dialysis, Algal Harvesting etc

Unit-IV Combined Treatment of Waste Water with Sewage:

Municipal regulations, Sewer rental charges, Instrumentation in waste water treatment plants, Operation and maintenance of plants, Role of water pollution control board Law cost Treatment Plant Effluent Treatment Pam Design and Operation.
Unit-V
Brief study of industrial processes and treatment incthads of waste water from common industries such as Textile. Dairy. Paper and pulp. Tanners \& Distillery,
Hazardous wastes-Impact handling and disposal

Con re Ont comes:

T pun completion of the course, the stablest will he able to
(O): Evaluate the effects of waste an sacemio as per the tomatards
(0): Determine various sewage characteristics.

CO, Explain various waste treatment methods.
CO4: Apply municipal regulations in operation \& maintenance of wast water treatment plant
CO5: Hastate waste management methosls of different inthastrics.

Reberwee Banks:

i) Liquid Waste of Industries - Theories. Practice and Treatment NI Nemetow, Wesley Publishing Co.
ii) Treatment of Industrial Waste - E.B. Besselieve \& Max Craw It ill Boo Company
iii) Waste Water Eng g - Treatment Disposal \& Reuse - Metcalf \& Eddy - Tats Mc craw Will. New Delhi
iv) Waste Water Treatment - Arecivala - Tala Me Gran Will. New Delhi
v) Industrial Pollution Control hand book - Land ILF. Iata Mc Gram Will, New Delhi

Mane

Course Coule: BCEI - S03 (B)

Course Name: Construction Techniques

1.	1	P	Credit
3	1	0	4

t otree Otyechises:

Sillahus:

1 nit-I

I : 4it-11

(BL -111

 Etognerred flenking

Lnifll

1 met.v

Course Outsumes:

COS: Evaluate varinat tope of tormowis.

1.	T	P	Credit
3	1	0	4

Course Objectives:

1) To develop an understanding about the acoustics of a building.
2) To understand the fundamental covicepte of ventilation in a building
3) To understand about various preventwe measures to be taken for corrosion \& cracks in building \& plan atcordityly the building mantennuce stem.
4) To understand the concepts of illumuation and plan accordingly the lighting system in building
5) To understand the concepts of arr conditioning, elevators \& lifts installation, thermal insulation \& stair case deign for a building.
6) To understand the requirements of fire fighting in a building and plan accordingly-
7) To plan the sanitation system of a building.

Syllabus:

Unit-I Acoustics and Ventilation

Characteristics of sound, Behaviour of sound, Defects of sound, Acoustic design, Sound absorption materials and techniques, Noise control in Building, Sound insulation of floors, walls, roof etc.
Functional requirements of ventilation, System of Ventilation, Factors and various considerations for improved natural ventilation. Artificial Ventilation (mechanical Ventilation), use of topography in improving ventilation.

Unit II

Building Maintenance

Causes of deterioration of Buildings. Approach to maintenance, reliability of maintenance system.. pest control. Preventive maintenance in building and electric installations, checklist for inspection. Cracks in building (causes and effect), Maintenance of floors \& roofs, Maimenance of brick masonry. Corrosion in Reinforced concrete members. Prevention of leakage in building. Maintenance of windows. Doors and external Joinery (Timber). Building services required in building complexes.

Enit-III

Electrification \& Illumination

System of distribution of electrical energy in building, Methods of wiring, System of wiring: Selection of wiring. conductor \& insulators, Methods of earthing. Energy calculation, Fuses. electrical safety precautions.

Illumination, terminology, Different source of light Design of lighting scheme, Street lighting flood lighting, Lighting calculations, Various types of electrical circuits used in building ie. Stair case wiring corridor wiring, Connection of Fan, Bulb socket in circuit.

Innit IV

services in lanildiug

 Thermal insolation of holding (wall, mol, floor etc.). Methods of thermal ambulation, f ils and its rIper- Power requirement of lifts. I raffic analysis, Quality and quantity of serves of lift operations. I ill mstallation

1 nit-

Fire Fighting \& Sanitation

Causes of fire. Classification of fire, Modes of fire Fire lend, Modes af lire fighting I Puts of lire colimptishers provisions in building: from fire safety angle Additional requirement for multi

Whiter seal and traps, sanitary noise and control, maintenance of water tanks \& sen er lints leakage in building and its prevention, Hot water supply in building. Basie principles of design of water supply system, Sanitary piping. - troubles and causes, blouse - keeping in water and sanitary imatlawim.

Course Outcomes:

Upon completion of the course, the students will be able to:
COI: Evaluate acoustics \& ventilation of a building.
CO 2: Develop building maintenance.
CO3: Develop system of distribution of electrical energy in buildings \& illumination in buildings.
CO4: Plan various services like air condition, thermal insulation \& lift installation in a building.
CO5: Plan fire safety for a building.
CO6: Develop sanitation system in a building.

Reference Books:

(i) Building Construction by B.C. Punmia
(ii) Building Construction by S.C. Rangwala
(iii) Building Services in High rise building by V.K. Jain
(iv) Maintenance of Building by A.C. Panchdhari
(v) Water Supply and Sanitary Installations by A.C. Panchdlari
(vi) Electrical Installations Estimating and Costing by J.B. Gupta

Course Conte: BC 1.P 805
 Course Name: Major Project - II

1.	T	P	Credit
0	0	12	6

Course Objectives:

1) To develop an appreciation of civil engineering problems \& have a feel of real life situations in planning \& execution of projects.
2) To impart tammy of handling various types of axil engine ting problems by use of conventional methods as, well as software:
3) To utilize the expense in engineering to solve mdustry's technological problems
4) To become innovate se and professional in techusiloyy development, and system implementation.
5) To be able to function in their profession with social awareness and responsibility
6) To be able to interact with their peers in industry and society as engineering professionals and lenders \& inculcate a habit of working in a group.
7) Enable students to prepare professional report for design projects and data presentation skill and to use computers and some computer graphics.

Syllabus:

Each candidate shall work on an approved project of a public building of any other civil engineering work and shall submit design and a set of drawings.

Shall submit a detailed report of report of experimental work/sofiware package on an! specif problem of importance.

Course Outcomes:

Upon completion of the course, the students will be able ta:
CO1: Recognize various engineering problems and tecthmques to solve them.
CO2: Reproduce the solution of the problems upon the need of society.
CO3: Cooperate to work withingrewp.
CO4: Develop the writing and communication skills for various engineering problems:
CO5: Display lifstony teaming.

L	T	P	(redis
3	1	0	4

Unit-I

Utilisation of imfustral waste in construction maine!, thyabl in building materal.

 dennatise buildup materials and compose- Cone rete aggregate from denmalina "aster: Structural concrete using industrial waste

Unit-II

Industrial Waste; Problem associated with industrial waste. Equalization, ncutralizativa. volume reduction House keeping method and Advanced treatments like adsorption, Ion exchange, Chemical oxidation, Phosphorus removal, Nedritication, chemical precipitation,
Revense-osmosis. Flectrodialys sis.

Unit-III

Wastewater Treatment Waste water generation. Collection. Construction of semen finds. Sever appurtenances. Disposal of wastewater \& refuse Recychag and reuse

Unit-IV

Surface \& Subsurface Hydrology: Hydrological cycle \& its application in engineernis Precipitation, its types, forms \& measurements, Rainfall data. DAD curve. Methods of average rainfall and losses.
Ground Water: Aquifer properties, groundwater properties, types and problems, well hydraulics, well losses, ground water investigation.

Unit-V

Hydrography: Run off-discharge measurement, sage discharges, runoff computation, runoff simulation model concept of hydrograph, component of hydrograph tum hydrograph and it derivation. S-hydrograph, ILII hydrograph and its dernathm. Synthetic unit hydrograph. Flood estimation techniques.

Reference Books:

1) Engineering Hydrology by K Subhramany - Fab Mc Ga an Hill Publ Co
ii) Hydrology \& Water Resources Engineering by S.K. Gary - Kana Publisher
iii) Sewage Disposal \& Au Pollution Engineering by S. K. Gary - Khania publiders.
iv) Waste Water Engineering Treatment. Disposal \& Reuse by Metealf \& Lady
Th Publishers.

530.302 (A) Uthan Itydrolugg \& Waske Mamagement

(1ヵ1-1

 "able

Lhit-8I

1 nit-111
 aphatesances. Disposal of wastewater \& refiase Recyclonp:and retuse

Lnit-1V
Surface \& Subsurface Hydrology: Hythological tycle N its application in engencering
 and loseses.

Giround Water: Aquifer properties, grosumbater pupentes, types and pooblems, well maltaalics, well losses, pround water investigation.

Init-V

Reference Books:

(5) Washe Water limgineering Treathen, Disposal \& Reume by Meralt's Eaddy - NWI Publishers

Course Code: 100205
Course Name: Basic Civil Engineering \& Mechanics

L	T	P	Credit
4	1	2	6

Course Objectives:

1. To understand the utility of various types of building materials.

2 To understand the location, construction detail and suitability of various building elements.
3. To determine the location of object on ground surface.
4. To stabilize the position of various object.
5. To understand the effects of system of forces on rigid body in static conditions.
6. Analysis of determinate structure (bean \& Imus)

Syllabus:

Unit- 1
Building Matenale Stones, bricks, cement, timber - types, properties, Test \& uses, Introduction of concrete properties \& Laboratory fests en concrete, curing of concrete and mortar Materials.

Unit- II

Surveying \& Positioning: Introduction to surveying. Survey stations, Measurement of distancesconventional and EDM methods, Measurement of directions by different methods Measurement of elevations by different methods, reciprocal leveling.

Unit- III

Mapping \& Sensing: Mapping details and contouring, Plane tables and related devices. Introduction of theodolite. Measurement of areas and volumes, application of measurements in quantity computations, Introduction of remote sensing and its applications.

Unit- IV

Forces and Equilibrium: Graphical and Analytical! Treatment of Concurrent and non-concurrent coplanner forces, free body Diagram, Force Diagram and Bow's notations, Application of Equilibrium Concepts: Analysis of plane Trusses, method of joints. method of Sections. Frictional force in equilibrium problem.

Unit - V

Centre of Gravity and moment of Inertia: Cemroid and Centre of Gravity, Moment of Inertia of Composite section, Radius of Gyration, Introduction to product of Inertia and Principle Axes.
Support Reactions. Shear force and bending moment diagram for cantilever \& simply supported beam with concentrated, distributed load and Couple.

Course Outcomes:

Upon completion of the course. the students will be able to:
CO 1: Explain concepts and terminologies of bulling materials surveying and mechanics.
CO 2: Apply various methods for surveying and mechanics.
CO 3: Determine the location, area and volume of objects on ground surface.

CO 4 : Solve the problems of surveying and mechumes by asing various methods,
CO 5: Amalyse the effiects of system of forees on rigid bodies in static conditzons.

Text Books:

L. Surveyung, Vol-1, Pumma B.C., Laxmi Pablications, $17^{\text {th }}$ cdition, 2016
2. Building Material, B. C. Punmia, Laxm Publications, 2016
3. A textbook of Engineering Mechanies, D. S. Kumar, Katsons Publications, 2013

Reference Books:

1. Basic Civil Enginecring, S. Ramamutam \& R. Narayan, Dlanpat Rai Pub, $3^{\text {nd }}$ cdition, 2013
2. Appled Meckames, Prasad I.B., Khanma Publication $17^{\text {th }}$ edition, 1996
3. Surveying, Duggal, Tata McGraw Hhll New Dellat, $4^{\text {the }}$ chition, 2013
4. Engineering Mechanies - Statics \& Dynamics, R.C. Hibbler, Pearson Publications, $14^{\text {th }}$ cdition, 2015
5. Engineering Mechanics - statics tlynamics, A. Boresi \& Schmidt, Cengage Iearning, ${ }^{\text {t }}$ edition, 2008 .
6. Applied Mechanies, R.K. Rajput, Laxmi Publitations, $3^{\text {ui }}$ edition, 2016

List of Experiments:

1. Study of various types of chain and tapes.
2. Measurement of distance involving direct and indirect ranging
3. Chain and tape survey of given area
4. Study of prismatic and surveyors compass
5. Measurement of dirsetion by prismatic compass
6. Calculation of distance between two in aceessible points by prismatic compass
7. Sudy of dumpy level, levelling staff and level field book
8. Exercise of differentiis levelling and flying levelling
9. Sundy of various rypes of a transits theodolite
10. Measurements of horizental angle by reptitien method.
11. Determining the resultants force of cophanar concurrent and non-concurrent system of forees by graphical method
12. Determine forces in membets of a perfect frame by graphical method.

Upon completon of the practical course, the students will be able to:
CO 1: Follow the guidelines for field surveying.
CO 2: Follow the working principles of survey instruments for measarements.
CO 3: Measure the hanyental distances, difference in elevation and angles of various points
CO 4: Detect measurement errors and accorditgly suggest correetions
CO 5 : Interpret survey data and compue areas

MANAGEMENT THEORY-611CCM / MCTL 911

Unit-I

Special Features of Construction Industry: Significance and importance of construction VIS AVIS other industry Importance of construction industry in National economy. Recognition of construction as industry. Significant diffeences between construction \& other manufacturing. Production and process industry with special reference to planning. Execution finance and other aspects.

Unit-II

Management Principles: Concepts and theory. Historical developments. Management functions and processes. Forecasting, Planning Organizing. Directing coordinating, Motivating. Controlling and evaluating. Problems of construction industry influencing management process.

Unit-III

Behavioral Sciences: Principles. Historical development. Individual and group behavior. Group dynamics, Motivational theories, Leadership.

Unit-IV

Organization Theory: Introduction. Historical development, Growth of various models. Type of construction organization. Design of organization Organization systems. Goals, Culture \& environment. Developing and self learning or aanizations.

Unit-V
Different Management Requirements: Entrepreneurship. Corporate planning, SWOT and Goal analysis.

Unit-VI

) Construction Management: Principles of Purchase and Marketing Stores and site management on construction projects.

QUANTITIVE METHODS
 613CCM / MCTL 913/MSTL $912(\mathrm{~N}) /$ GENL 913 (510103)

Unit-I

System Engineering: System theory \& principles; Decision theory \& analysis; Decision under uncertainty \& certainty, Risk analysis, Optimization theory for constrained and unconstrained \& its techniques.

Unit-II

。
Theory of Probability: Definition of probability; Theorems of probability; Statistical methods; Probability distribution functions \& its applications e.g. Normal, Log normal, Beta, Gamma, Pearson and Poisson's distribution; Introduction to correlation and regression; Simple \& Multiple regression, Bivariate and Multivariate correlation.

Unit-III

Programming Techniques-I: Linear programming \& applications, Graphical methods, Simplex method; Modified simplex method, Transportation problem; Assignment Problem.

Unit-IV
 Programming Techniques-II:

Goal Programming; Integer Programming; Dynamic Programming; Non - Linear Programming.

Unit-V

System Models: Deterministic models; Probabilistic Models; Queuing model, Game theory; Simulation (Monte Carlo's Simulation).

Unit-I
General Properties of Construction Materials: Physical properties like strength, Durability, Thermal effect, Sound insulation, Fire resistance, Corrosion resistance and radiation shielding.

Unit-II

Concrete: Ingredients and their properties, Design and production of concrete, Details of various steps of manufacture of concrete eg. Batching, Mixing, Transporting, Placing compacting and curing, Design and production of high strength Ready mix concrete.

Unit-III

New Construction Materials: Polymeric materials. Polymer concrete, Additives and admixtures in concrete, Light weight, Heavy and no fine concrete, Hero cement and fiber reinforced concrete, high performance concrete and composite materials, roller compacted concrete.

Unit-IV

Material Testing: Laboratory and field testing of construction materials, Indian standard code requirements and procedures, Non destructive testing, Reporting and evaluating the experimentation.

Unit-V

Construction Equipments: Planning of construction equipments, Equipment characteristics, Operation and selection, Equipment cost. Different types of construction equipments eg. Power shovels, drag lines, Scrapper, Bulldozer, Tractor, Rippers, Motor graders, aggregate processing and batching plants, Cycle time and capacity ratings, Sizing and matching, Hot Mix plant, RMC Plant.

Reference Books:

1. V. Shantha Kumar, Concrete, Oxford University press.
2. A.M. Neville, Properties of concrete, Pearson
3. M.L. Gambhir, Concrete Technology, Tata Mc Craw Hill Pub. C \varnothing.
4. R.L. Peurifoy \& C.L. Schexnaydev, Construction Planning, Equipment and methods, Mc-Graw Hill Higher Edition.
5. Construction equipment, its planning and application by Dr. Mahesh Verma, Pub. Metropolitan Book Co.(P) Ltd.

CONTRACT MANAGEMENT
 $614 \mathrm{CCM} / \mathrm{MCTL} 914$ (510104)

Unit-I

Quantity Surveying: Basic principles of estimating. Construction methods and stages of estimating. Specification of construction items statement. Principles of rate analysis and valuation.

Unit-II

Claims and Arbitration: Indian contract act and arbitration redonciliation act. Variations in work and conditions. Claims and disputes. Liquidated damages. Rights. Responsibilities and duties of client (Owner). Architect. Engineer. Contractor ete. Purchase order as contracts insurance contract and claims.

Unit-III

Legal Frame Work of Construction: Contract labors act 1970 and other acts and laws relating to labors management. Wages. Bonus and Industrial disputes.

Unit-IV

Construction Contracts: International contract rules and regulation.

Unit-V

Contract Conditions: Important contract clauses. Terms of payments. Retention. Acceptance and final payment. Time of completion. Extension of time. Maintenance period etc.

1) $\begin{aligned} & \text { Special Contracts: BOT projects, Variation in BOT projects. } \\ & \text { projects. }\end{aligned}$

Functional Planning Building Services

 administrative functions of supervisors.Fire load, classification of fire, class of fire, Basic requirement of the works for fighting system, various components of the fire fighting system. Maintenance required of the system, fire fighting in high-rise buildings, commercial/industrial complexes. Public buildings, checklist for fire safety.

Lifts/Elevators, Escalators:

Legal formalities for elevators, various types of lifts, working mechanisms of lift and escalators. Indian standard codes for planning \& installations of elevator, inspection \& maintenance of lifts.

Plumbing Services:

Basics of Plumbing systems. Requirement of Plumbing works, Agency, Activity flow chart for plumbing work. Quality, checking of materials.

Water Supply System:

Water supply and distribution system is high-rise building \& other complexes, pumps and pumping mechanisms. Operation \& maintenance of fittings \& fixtures of water supply \& sanitary. Do's \& Don'ts for water pipe networks.

Electrical network \& appliances. Basics of single phase \& three phase electrification, precautions and safety measures .during electrification: Indian standard codes for electrical appliances \& wiring operations \& maintenance of network \& appliances. Landscaping \& Horticulture. Building maintenance management, applications of computer in service management.

Air-Conditioning and Heating:

Flowcharts of air conditioning \& heating. Centralised systems, monitoring and working of the equipments, Checklist of inspection, Performance testing. Water proofing. Damp proofing \& Termite proofing. Working procedure \& stages of work of water proofing for W.C., Bathrooms, Terrace, sloping roof, Basements, tanks. Use of chemicals for water proofing treatment. Role of consultants. Damp proof course. Causes and precautions for Dampness. Anti-termite treatment at pre-construction and post-construation. Routine treatment and precautions.

CONSTRUCTION TECHNIQUES

$$
621 \mathrm{CCM} / \mathrm{MCTL} 921 / \mathrm{MSTL} 921
$$

Unit-I

Foundations: Techniques of construction of piles, Cassions, Wells, Cofferdams and diaphragms, Drilling blasting, Underpinning, Shoring and shuttering of foundation.

Unit-II

Formwork ؛ Design and construction of different types of formworks and temporary structures, Stationary and slip. formwork techniques, Formwork of special structures eg. Shells, Bridges, Towers etc.
Steel Construction: Fabrication and erection, Shop and insitu construction. techniques, Different connections, Clearances and tolerances, Erection of steel structures like bridges, Chimneys and trusses.

Unit-III

Prefabrication: Application in construction Modular coordination and standardization, joints and tolerances; Special equipments and plants for industrial production of prefabricated components, Pre-engineered Building.

Unit-IV

Prestressing: Concept, Materials and Prestressing methods; Special equipments and plants for industrial production of prestressed components, Prestressing of bridge girders, Water tanks and special structures.

Unit-V

Advanced pavement construction Techniques: Pavement construction using bitumen hot mix plant, Concrete road construction, Fibre reinforced pavement construction, Low cost road construction techniques, Pavement quality control.

Reference Books:

1. Soil Mechanics by Gopal Ranjan , New Age Publishers.
2. Mahesh Verna, Construction Equipment, its planing \& Application, Metropolitan Book Co.(P) Ltd.,
3. Foundation Design Manual by Narayan V. Nayak
4. Prestressed concrete by Rajagopalan
5. Prestressed concrete by T.Y. Lin
6. Highway Eng by Justo and Khanna

CONSTRUCTION COST MANAGEMENT

$$
623 \mathrm{CCM} / \mathrm{MCTL} 923
$$

Unit-I

Project Cost Controlling

Development of Network, Development of Cost/Schedule Control System Criteria (C/SCSE), Monitoring of Project Cost, Cost Schedule Algorithms.

Unit-II

Cost Time Trade - off Analysis:

Cost time trade - off curves, Non - convex discontinuous and discrete cost time trade off curves, Crashing of projects, Heuristic methods, Siemen's method of project cost curve, Trade-off problems.

Unit -III

Multi criteria Decision Making Methods:
Analytical Hierarchy Process, and its application in planning and management, Introduction to Fuzzy Set Theory and its Application in MCDM.

Unit-IV
 Value Engineering:

Principles of value engineering in Project Management, Value engineering technique, Job Plans, Life cycle costing and its applications.

Unit-V

Productivity in Construction: Definition of Productivity. Productivity measurements. Productivity of production components, Labors, Equipment and Material Capital Productivity. Planning, Designing and execution processes.

1

PROJECT MANAGEMENT

$$
624 \mathrm{CCM} / \mathrm{MCTL} 924 / \text { GENL } 924
$$

Unit-I

Waste Management: Introduction to waste and waste management. The concepts of waste productivity and its interrelationship with productivity. System concept of waste. Complementarily of waste and resource management.

Unit-II

Quality Management: Concept of quality management. Product vs. system quality. Quality assurance. Quality circles. Total quality management. ISO-9000 series and construction project.

Unit-III

Materials \& Inventory Management: Material management. Requirements and purchases. Different methods of inventory management. Mathematical modeling. Suitable inventory model for construction.

Unit-IV

Risk Management; Decision theory, Decision under certainty.. Probility and uncertainty, Decision risks. Risks involved in decisions pertaining to construction industry. Risk. management, Insurance against risks.

Unit-V

Management Information System: Principles of management information systems. Necessity and importance. Requirements of a good M.I.S. as a tool of data collection and dessimation. Use of table and charts. Artificial intelligence. Expert systems. Decision support systems.

Project Planning, Scheduling and Controls
 CCM618/MCTL 925

Unit - I

Project Planning:

Introduction to Project Planning Process. Types of Project Plans-Project feasibility plan, Project preliminary plan, Project construction plan. Introduction to network techniques CPM, PERT and Precedence network.
Project Work Breakdown - Levels of Project work breakdown. Identification of construction activities by work breakdown structure. Identification of building construction activities using CI/SfB Manual. Activity duration and methods of estimating activity duration - One time estimate three time estimates, trapezoidal distribution estimate. Duration estimation procedure.

Unit - II

Project Network Analysis:

Elements of Network, development of network, Numbering of events, Event times Earliest events time and latest event time. Slack, critical events. Activity times - Earliest start time, Latest finish time, Float and critical activities. Network critical path and its significance. Network analysis by CPM - Defining scope of work, determining activities, establishing work package logic, preparation of network logic program and draft network. Development of structured network using network drawing rules, Numbering of events and computation of critical path. Numerical problems.

Unit-III

Network Analysis by PERT \& PN:

Modeling PERT Network. Estimation of expected activity duration and computation of critical path. Uncertainty in project duration estimation.

Precedence Network Analysis - Modeling procedure analysis of time in PN. Use of PN in repetitive works network. Difference between PN and CPM. Application of Network techniques and their limitations.

Unit-IV

Resource Planning:
Planning construction Manpower, Scheduling Construction site workers. Planning Construction Materials Materials quantity estimation. Constrained and unconstrained resource scheduling. Resource usage profile, Resource smoothing, Resource leveling.

Unit-V

Cost Control: Project cost:

Direct and indirect, slope of direct cost curve, Total project cost and optimum duration, Contracting the netwierk for cost optimization. Escalate \& Variation in prices.

M.Tech. (Environmental Engineering) Environmental Chemistry \& Microbiology MENL $911 / 530101$
 Unit - I
 Composition of pure \& impure water, anamolus behavior of water, analysis \& interpretation of quality parameters, gas laws, law of mass action, solubility product, ionic reaction, redox reaction etc. chemical equilibrium, inorganic impurities, conductance, pH , buffering capacities \& ionic impurities, carbonate equilibrium, acidity alkalinity.
 Unit-II
 Colloidal chemistry, coagulation, effect of alkalinity, organic impurities, $\mathrm{BOD}, \mathrm{COD}, \mathrm{TOC}, \mathrm{DO}$, gaseous impurities, DO, nitrogen, hydrogen, sulfur, ammonia, chlorine.
 Unit-III
 Micro-organism \& their classification, cell structure, eukaryotes, prokaryotes, viruses nutrition \& growth condition - temperature, pH , oxygen, nutritional requirements for selective microbes, metabolic classification of microbes, phototrophs, chemotrophs.
 Unit-IV
 Energy generation in cell, metabolism, aerobic \& anaerobic of carbohydrates, proteins, lipids, nucleic acid, hydrocarbon, control of metabolic reactions, kinetics of bacterial growth, substrate utilization, cell growth.
 Unit-V
 Nuisance organisms - algae, fungi, protozoa, indicator organisms, bacteriological tests.

Books :

1) C.N. Sawyer, P.L. Mc Carty and G.F. Parkin, Chemistry for Environmental Engineering and Sciences, Tata McGraw Hill, Fifth edition, New Delhi, 2003
2) G.W. Vanloon and S.J. Duffy "Environmental chemistry - a global perspective, Oxford University press,
New York., 2000 .
3) Tortora. G.J. B.R. Furze, and C.L. Case, "Microbiology - An Introduction" (t $^{\text {th }}$ Ed.), Benjamin/ Cummings Pub. Co., Inc. California, 1992.
4) R.E. McKinney, "Microbiology for Sanitary Engineers", Mc Graw Hill Book Company, 1962
5) W.G. Walter and R.H. McBee, "General Microbiology", East West Edition, 1969.

M.Tech. (Environmental Engineering)

MATERIALS \& EQUIPMENTS
 GENL $912 / 530102$

1. Concrete I:

Ingredients, their properties and effect on concrete, Admixtures and additives, steps in production of concrete, e.g. Batching, mixing, Transporting, placing, compaction, finishing and curing.
2. Concrete II :

Statistical quality control of concrete, Principles of proportioning, introduction to various Mix Designing methods, I.S. method of Mix designing, Mix Designing for flexural strength, Mix designing for pumpable concrete, Mix designing for higher strength, Testing of concrete
3. New Constructional Materials:

Ferro cement, Light weight concrete, High Density concrete, Self levelling concrete. High performance concrete, shortcrete or gunitting, Polymer concrete. Fiber reinforced concrete. Jet cement concrete, Waste material based concrete, No fine concrete, Rollar compacted concrete, Ready mix concrete, Hollow / solid concrete blocks, aerated concrete / foam concrete, ACP, Types of glasses (sheet, float, frosted, wired, Tempered, sandwiched insulating, bullet resistance, glare reducing, reflecting, intelligent) Plastics (poly carbonate, PVC, PVC Foam sheet, window / door panel \& frame).
4. Construction Techniques / materials :

Water proofing, Damp proofing, Basic components \& requirement of water proofing, water proofing types and their applications, Smart building materials and structures, Applications of smart materials, Alternate roofing materials, Geosynthetics.

5. Construction Equipments:

Mechanization in construction: Mechanized vis a vis Labor intensive construction techniques, Equipment selection \& operation, Power shovels, drag line, Scrapper, Bulldozer, Rippers, Motor grader, their cycle time \& capacity rating. Sizing and matching.

Reference Books:

- A.M. Neville 'Properties of Concrete', ELBS, London, *A.M. Neville, 'Concrete Tech London.
- M.L. Gambhir, 'Concrete Technology', Tata Mc Graw Hill, * National Building Code, 1983.
- Peurifoy R.L. 'Construction Planning, Equipment \& Methods', Mc Graw Hill book Co. Inc.
- Verma Mahesh, "Construction Equipments and its Planning \& Application", Metropolltion Book Company, N. Delhi.
- M.L. Gambhir \& Neha Jamwal " Building materials" Tata Mc Graw Hill, New Delhi.
- M.S. Shetti, " Concrete Technology "S. Chan Publications

M.Tech. (Environmental Engineering) QUANTITIVE METHODS
 GENL 913 / 530103

Unit-I

System Engineering: System theory \& principles; Decision theory \& analysis s; Decision under uncertainty \& certainty, Risk analysis, Optimization theory for constrained and unconstrained \& its techniques.

Unit-II
Theory of Probability: Definition of probability; Theorems of probability; statistical methods; Probability distribution functions \& its applications e.g. Normal, Log normal, Beta, Gamma, Pearson and Poisson's distribution; Introduction to correlation and regression; Simple \& Multiple regression, Bivariate and Multivariate correlation.

Unit-III

Programming Techniques-I: Linear programming \& applications, Graphical methods, simplex method; Modified simplex method, Transportation problem; Assignment Problem.

Unit-IV

Programming Techniques-II:

Goal Programming; Integer Programming; Dynamic Programming; Non - Linear Programming.
Unit-V
System Models: Deterministic models; Probabilistic Models; Queuing model, Game theory; Simulation (Monte Carlo's Simulation).

ASiwari:

M.Tech. (Environmental Engineering)
 Solid Waste Management MENL 914 (530)04

Unit - I
Functional Elements of Solid Waste Management, Objective of Solid Waste Management, Principles of Municipal Solid Waste Management. Classification of solid waste, composition, physical, chemical \& biological properties of municipal solid waste. Quantity of solid waste. Sampling \& analysis of solid waste.

Unit-II
Collection, conveyance, separation \& recycling of solid waste: Types of collection system, collection routes, equipments, transfer station, transport methods, material separation \& recycling of MSW.

Unit-III
Disposal of solid waste - by land fill method: Classification, type, method, site consideration composition and control of gases, Leach ate control in land fills, surface water management, landfill operation \& care. Remediation of old landfill sites.

Unit-IV
Disposal of solid waste by other methods: Thermal conversion technologies, Incineration, Pyrolysis, Gasification, environmental control system. Biological \& Chemical conversion technologies aerobic composting, anaerobic digestion, other biological and chemical transformation.

Unit-V
Solid waste Management - legislative trend and planning issues: Major legislations, government agencies, future trend in planning. Hazardous solid waste management handling \& Disposal. Disposal of Biomedical Waste, Demolition waste, Rubber \& Plastic Waste etc.
Books :

1) Solid waste management in developing countries By A.O. Bide
2) Hilary Theisen and Samuel A, Vigil, George Tehobanoglous, Integrated Solid Waste Management Mc
Graw- Hill Yew York, 1993 .
3) CPHEEO, Manual on Municipal Solid Waste management, Central Public Heal h and Environmental Engineering organization, Government of India, New Delhi, 2000
4) Resources Management, Hazardous waste Management, Mc-Graw Hill International edition, New York,
2001 . 5) Veil
5) Charles A. Wentz, Hazardous. Waste Solid waste Engineering, Thomson Learning Inc., Singapore, 2003 Charles A. Wentz, Hazardous Waste Management, Second Edition, Pub: McGraw Hill International
Edition, New York, 1995 .

M.Tech. (Environmental Engineering)
 Functional Planning Building Services

\&

Maintenance Management GENL 915 / 530/05

Importance of building services, type of services required to keep facility usable, planning of services. Organization structures of services management. Role and administrative functions of supervisors.

Fire Fighting:

Fire load, classification of fire, class of fire, Basic requirement of the works for fighting system, various components of the fire fighting system. Maintenance required of the system, fire fighting in high-rise buildings, commercial/mauscrial complexes. Public iulildin̄̄s, checklist for fire safety\%;

Lifts/Elevators, Escalators:

Legal formalities for elevators, various types of lifts, working mechanisms of lift and escalators. Indian standard codes for planning \& installations of elevator, inspection \& maintenance of lifts.

Plumbing Services:

Basics of Plumbing systems. Requirement of Plumbing works, Agency, Activity flow chart for plumbing
work. Quality, checking of materials.

Water Supply System:

Water supply and distribution system is high-rise building \& other complexes, pumps and pumping mechanisms. Operation \& maintenance of fittings \& fixtures of water supply \& sanitary. Do's \& Don'ts for water pipe networks.

Electrical network \& appliances. Basics of single phase \& three phase electrification, precautions and safety measures during electrification. Indian standard codes for electrical appliances \& wiring operations \& maintenance of network \& appliances. Landscaping \& Horticulture. Building maintenance management, applications of computer in service management.

Air-Conditioning and Heating:

Flowcharts of air conditioning \& heating. Centralised systems, monitoring and working of the equipments, Checklist of inspection, Performance testing. Water proofing. Damp proofing \& Termite proofing. Working procedure \& stages of work of water proofing for W.C., Bathrooms, Terrace, sloping roof, Basements, tanks. Use of chemicals for water proofing treatment. Role of consultants. Damp proof course. Causes and precautions for Dampness. Anti-termite treatment at pre-construction and post-construction. Routine treatment and precautions.

Books:

1. Hand book of Designing \& installations of Services in High rise building complexes: By V.K. Jain Khanna Publishers.
2. Water Supply \& sanitary installation, by A.C. Panchadhari, Willey castern limited
3. Mainteance of Building, A.C. Panchadhari, New Age International Ltd.
4. Building Construction, by S.C. Rangwala, Khanna Publishers

M.Tech. (Environmental Engineering)
 Air Pollution and Noise Pollution-ME.NL-921/530201

Unit -1
Air pollution its Source t \& effects
Definition of ait pollution, Sources \& Classifications of air pollutants Meteorology \& air pollution atmosphere layers \& stability, Stack Plume behavior. Dispersion. Dispersion medals, effects of air pollution on haman animals, plants, and Economic effects. Acid rain, global waiting, oenone layer depletion fob out Ait pollution \& occupational diseases.

Init .11

Sampling and analysis of air pollutants:
Mechocls of Equipments fee sampling, stack sampling, analyucal method for poilutant measurement, in: pollution Epigones.

Unit- III

Air pollution Control Equipments

Objectives, opes of Equipments, Scaling chambers, separators, cyclones, traps, filters, ESP, Scrubbers wed collectors, towers, choice of equipments, Gaseous pollutant control equipment, odor A its chotrci. Stacc Monitoring kit, Auto exhaust analyser.

Unit - IV

Air pollution prevention \& Control Acts
Ait pollution survey. Air pollution Indices, Air pollution standards, Air quality \& emission standards, Air pollution from major industrial operations, Air pollution control \& Strategies, process changes, substitution of materials, zoning, Air pollution in Indian cities.

Unit -V

Noise Pollution:

Scale of noise, Measurement of sound, Noise Standards, Meter control and prevention of noise pollution, Properties of sound, Intensity and sound level, care colorization of noise effect of noise on people, Noise rating system, Community noise sources and criteria, Transmission of outdoor sound, Traffic noise and its reduction, sound level meter

Books:

Air pollution - By Stern \& Stern.
Air pollution - Hanery Parkinson
Air pollution-M.N. Rio and A. V.N. Roo
Noise pollution - By Chatier

M.Tech. (Environmental Engineering) Advance Treatment Process - 1 (Water Supply Engr.) MENL-922 / 530202
 UNIT-1 Component of a distribution lygtem,

Water Supply principles and design of distribution system, Equivalent pipe method, Hardy cross and section method, Electrical Network analogy method fimbittefiance of distribution system, corrosion and methods of control, computer applications in distribution network analysis.

UNIT -II

Quality of water: Factors affecting water quality in various sources, protection of water quality, classification of natural water with reference to the best use. Bacteriological quality of water, effect on health, standards of water for various uses, water quality index., Minimus rational setar.cards
 UNIT - III
Preliminary Treatment and Sedimentation : Degree of treatment required, various operation and flow sheet, preliminary treatment methods such as screening, coagulation, perikinetic and orthokinetic flocculation, velocity gradient, coagulants and coagulant aids, poly electrolyte, Sedimentation, class I and class II clarification, column settling test, zone and compression settling, flan, design of sedimentation tank-various types and their working. Tube settlers.and theirs design.

UNIT- IV
Filtration and Disinfection : Slow and rapid sand filters, theory of filtration, design, operation, performance and evaluation of filter, pressure filter, multi-media filter, diatomaceous earth filter, disinfection of water free and combined chlorine, fixed bed disinfector.

UNIT-V Non - conventional treatment units: Water softening, methods of treatment, various practices, removal of fluorides, iron and manganese, taste and odour removal, Industrial water conditioning, Process. demionerater, Langliear saturation index, management of water Revers treatment plant residues, design of complete water treatment scheme.

Books:

1. Water Supply Engineering. By S.K. Marg
2. Water \& Wastewater Technology by Mark J. Hammer (John Wiley \& Sons Inch., 1986)
3. Water Supply Engineering by H.E. Babitt \& J.J. Donald
4. Water \& Wastewater Engg. Vol.I \& II by G.M. Fair \& J.C. Geyer (John Wiley \& Sons, New York)
5. Manual on Water supply and Treatment - Expert Committee of G.O.I., Ministry of Urban Development New Delhi.
6. Water Supply \& Sanitary Engineering by S.K. Husain (Oxford \& IBH Publishing Co. New Delhi, India)

M.Tech. (Environmental Engineering)
 Advance Treatment Process - II (Sanitary Engr.)
 MENL-923/530203

UNIT-I
Waste Water collection : Estimation of sewage flow, fluctuations, self -cleansing velocity, storm water quantity, systems of sewerage. Design of sanitary and storm sewer,, sewer materials and appurtenances, construction of sewer line and its maintenance.

UNTIl
Wastewater flow and characteristics: Estimate of domestic waste water flow, fluctuations, storm water and turnoff, Characteristics of wastewater, oxygen requirement.

UNIT -II
Conventional treatments units: Units operations for treatment, preliminary, primary and biological methods, hydraulic design of screens, grit chamber, sedimentation and skimming tank, performance and evaluation. Trickling filers, flow sheet, loading rates, kinetics of BOD removal, design, construction and performance, conventional units, types and design, of stabilization ponds, aerated lagoons, oxidation ditch, septic and imhoff tank. Biological contractor, anaerobic filters, conventional and high rate anaerobic digester, sludge drying beds, thickening of sludge, vacuum filter Design of complete wastewater treatment plant.

UNIT-N
Non-comentional units: Nitrogen conversion and removal, removal of phosphorous chemical oxidation, removal of dissolved inorganic substances.

UNIT:
Disposal: Disposal by dilution, natural purification of streams, oxygen sage curve, maximum allowable loading, stream and effluent standards, standards of effluent for various purposes, sewage farming construction and maintenance of sewage farm.

Books:
i) Waste water Engineering (Treatment, Disposal, Reuse), By-Metcalf \& Eddy, TMH Publication
ii) Waste Water Treament for pollution Control and Reuse by Soil. J. Arcceivale \& Shyam R Asdak, MC Graw Hill
iii) Waste Water treatment y MH Rao \& A.K. Datta, Oxford \& IBH Publication
iv) Waste Water Engienering (Concept \& Design approach) by G.L. Maria \& RA Christian PHI learning PVT Ltd.

PROJECT MANAGEMENT

$$
530204 / 624 \mathrm{CCM} / \mathrm{MCTL} 924 / M E N L 924
$$

Unit-I

Waste Management: Introduction to waste and waste management. The concepts of waste productivity and its interrelationship with productivity. System concept of waste. Complementarily of waste and resource management.

Unit-II

Quality Management: Concept of quality management. Product vs. system quality, Quality assurance. Quality circles. Total quality management. ISO-9000 series and construction project.

Unit-III

Materials \& Inventory Management: Material management. Requirements and purchases. Different methods of inventory management. Mathematical modeling. Suitable inventory model for construction.

Unit-IV

Risk Management: Decision theory, Decision under certainty, Probility and uncertainty, Decision risks. Risks involved in decisions pertaining to construction industry. Risk. management, Insurance against risks.

Unit-V

Management Information System: Principles of management information systems. Necessity and importance. Requirements of a good M.I.S. as a tool of data collection and dessimation. Use of table and charts. Artificial intelligence. Expert systems. Decision support systems.

M.Tech. (Environmental Engineering) Environmental Impact Assessment and Ethics MENL-925/530205

Unit-1
Evolution of E1A: Concepts, Methodologies, Screening, Scoping, Base line studies, Mitigation, Matrices, Check list. Methods for impact assessment : Background information, interaction matrix methodologies, network methodologies etc, environmental setting various factors, environmental impact assessment methodology, documentation and selection process, environmental indices and indicators for describing affected environment, Life cycle assessment.

Unit - II

Prediction and assesment of impact for air aidd noise enviroaracnt: Basic information of air quality, identification of type and quantity of air pollutant, existing air quality and air quality standards, impact prediction and assessment, mitigation. Basic information of noise, existing noise levels and standards, prediction of noise levels and assessment of impact, mitigations.

Unit - III
Prediction and assessment of impact for water and soil environment : Basic information of water quality (Surface water and ground water), water quality standards, identification of impact, prediction of impact and assessment, mitigations. Background information of soil enviromment, soil and ground water standards, prediction and assessment of impact for ground water and soil, mitigations.

Unit-IV

Prediction and assessment of impact on cultural and sociocconomic environment : Basic information on cultural resources, rules and regulations for cultural resources like archaeological, historical structures, Cultural system. prediction and assessment of impact, mitigations. Basic information of socioeconomic environment, description of existing socioeconomic environment, prediction and assessment of impact, mitigation, resettlement and rehabilitation.

Unit - V

Environmental Ethics, Objectives of ethics, Ethical theories, Code of Ethics, Importance and limitations of ethics, Environmental Ethics in India, List of prevalent Environmental Acts, Brief description related to the purpose with at least five important provisions Water (Prevention and control of pollution) Act 1974, Air (Prevention and control of pollution) Act 1981, Environmental Protection Act, 1986.

Reference Books:

1. Canter R.L., Environmental Impact Assessment, Mc Graw Hill International Edition, 1997.
2. John G. Rau and David C. Wooten (Ed), Environmental Impact Analysis Handbook, McGraw Hill Book Company.
3. Petter Watten (Eds.)- ' Environmental Impact Assessment Theory and Practice', Unwin Hyman, London
(1988).

