(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department

of

Computer Science and Engineering

Agenda and Minutes of The BoS Meeting

BoS Meeting

Conducted on 04th June 2022.

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Agenda of the BoS Meeting

(Approved by Academic Development Cell of the institute - BoS Meeting conducted on 04th June 2022.

Instructions for preparing BoS Proceedings

(All information is to be uploaded on the webpage under suitable heading (such as Board of Studies) and separate links to be provided for each category mentioned below)

Minutes should have a summary/cover page mentioning all the significant changes made in the following Given format

	Courses where revision was carried out						177
(Course/subject name)	Course Code	Year/Date of introduction	Year/Date of revision	Percentage of content added or replaced	Agenda Item No.	Page No.	Link of relevant documents/minutes
Nil	-	-	-	+	-	-	

(0)	Courses focusin	g on employability/entrepreneurshi	p/skill de	velopm	ent"
(Course/subject name)	Course Code	Activities/contents which have a bearing on increasing skill and employability	Agenda Item No.	Page No.	Link of relevant documents/minutes
Networking with TCP/IP	150711	TCP/IP stands for Transmission Control Protocol/Internet Protocol and is a suite of communication protocols used to interconnect network devices on the internet.	3	1	
Data Mining & Warehousing	150712	Data warehousing is a method of organizing and compiling data into one database, whereas data mining deals with fetching important data from databases. Data mining attempts to depict meaningful patterns through a dependency on the data that is compiled in the data warehouse	.3	1	
Software Testing	150756	Software testing is the process of evaluating and verifying that a software product or application does what it is supposed to do. The benefits of testing include preventing bugs, reducing development costs and improving performance.	4	1	
Big Data Computing	150757	Handling and Processing the modern world data	4	1	
Introduction To Machine Learning	150758	Solving the Real world problem using Machine Learning Techniques	4	1	
Soft Computing	900208	Soft computing is the use of approximate calculations to provide imprecise but usable solutions to complex computational problems	5	2	
Network Security	900209	Network security is a broad term that covers a multitude of technologies, devices and processes. In its simplest term, it is a set of rules and	5	2	

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

R Programming	900220	configurations designed to protect the integrity, confidentiality and accessibility of computer networks and data using both software and hardware technologies. Statistical techniques for scientific analysis of data	5	2	
Data Science	150511	Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from noisy, structured and unstructured data, and apply knowledge from data across a broad range of application domains.	9	4	
Information Security	150513	Information security protects sensitive information from unauthorized activities, including inspection, modification, recording, and any disruption or destruction.	9	4	
Python for Data Science		Analysis on Real Data Set	12	5	

		New Courses added*			
(Course/subject name)	Course Code	Activities/contents which have a bearing on increasing skill and employability	Agenda Item No.	Page No.	Link of relevant documents/minutes
Data Science	150511	Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from noisy, structured and unstructured data, and apply knowledge from data across a broad range of application domains.	9	5	
Introduction to Computer and Network Performance Analysis using Queuing	Yet to be Proposed	Analyzing the performance of any computer or networked system: such as Web application servers, packet scheduling disciplines, operating system schedulers, cellular telephony networks is an important step in the design and	12	6	
Programming In Modern C++	Yet to be Proposed	deployment of such systems. Programming in C++ is so fundamental that all companies dealing with systems as well as application development (including web, IoT, embedded systems) have a need for the same.	7	4	
Software Project Management	Yet to be Proposed	Project planning involves making cost, effort, and duration estimation and preparing various types of plans such as schedule, configuration management, risk management, quality management, staffing plan, etc	7	5	

riculum received from stakeholders: Analysis& ATR

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided LICC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

	Stakeholder	Student	Faculty	Alumni	Employer
	No. of responses	309	31	76	67
	Link of Analysis	Annexure-15	Annexure-15	Annexure-15	Annexure-15
	ATR Link				
	Link showing Excel sheet of Google Form details of stakeholders				
	* Separate page(s) for e separate link to be given	each of the above for in the appropriate	our points: Agenda po e columnfor each poin	int wise minutes to be ap, t	pended with each point and t
2.	The course committed reconstituted this yes	ees constituted	vide Dean Academ	nics Notice no 1297 of faculty members.	lated 15/4/2021 need to
3.	The BoS minutes alor	ng with the cover	/summary page (und		ove) must be uploaded on e Dean Academics.
	Stakeholder feedback	analysis must als	so contain an action	taken report (ATR).	Name, organization, mail
4.	The details/data of the	e stakeholder res must also be sha	red along with the f	eedback for the alumni	/employer.
4.	The details/data of the phone no if available)	must also be sha e uploaded on the	red along with the f	eedback for the alumni	/employer. ame must be shared with t
5.	The details/data of the phone no if available) The following must be office of the Dean Action (i) The Stake (ii) Action to	must also be sha e uploaded on the ademics. cholder feedback aken report	red along with the force departmental web collected & analyze	eedback for the alumni	/employer. ame must be shared with the shared
	The details/data of the phone no if available) The following must be office of the Dean Action (i) The Stake (ii) Action to	must also be shate uploaded on the ademics. The cholder feedback aken report orm showing responses	red along with the force departmental web collected & analyze conses from alumni,	page and link for the solution of the solution of the solution of the index out employer, student, factors	/employer. ame must be shared with the of five alty etc.

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

		BoS Agenda Items	3	2021
	To confirm the minutes of previous	ous BoS meeting held in the mont	h of Decemb	per 2021
Item 1	Minutes of the last BoS held	on 22 December 2021 are con	ifirmed by i	the house.
Item 2	Departmental Electives (DEs) a is to be offered in online mode	scheme structure of B.Tech. Vand Two Open Category (OC) Cowith credit transfer) for the batch	n admitted in	2019-20.
Item 3	Departmental Elective (DE) Co The courses to be offered u B.Tech VII Semester, CSE of for Batch admitted in 2019-	syllabus of courses to be offeredurse (in traditional mode) for B.T. ander Departmental Elective (discipline (under flexible curre 20. Subjects are: -	Tech. VII Ser (DE-3) cate	egory (in offline mode) for
-		spartmental Elective (DE 5)	Code	
		Networking with TCP/IP	150711	
		Data Mining & Warehousing	150712	
		Distributed System	150713	
	Syllabus (along with their COs	s) are attached in <u>Annexure-2</u>		
	B.Tech. VII Semester under the	which the students can opt from Sinder Departmental Elective (DE e flexible curriculum (Batch admittative (DE-4) courses to be offered tode) for B.Tech VII Semester, Cas per the following detail.) Course (DI ed in 2019-2	E-4), with credit transfer in the 0)
Item	Departmental Electiv	e (DE-4)	Weeks	Course Code
4	Course ID: noc22-cs61	Software Testing		course code
4	Course let listant star	Joitware resting	12	150756
4	Course ID: noc22-cs65	Big Data Computing	12	150756 150757

Departmental Elective (DE-4)	Weeks	Course Code
Course ID: noc22-cs61	Software Testing	12	150756
Course ID: noc22-cs65	Big Data Computing	12	150757
Course ID: noc22-cs97	Introduction To Machine Learning	8	150758

In continuation, it is also discussed and recommended that the above-mentioned list of Departmental Elective (DE) course may be kept dynamic and newly emerging courses may be inducted in line with the industrial need and emerging developments (as and when required).

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

To prepare and finalize the syllabus of courses to be offered (for batch admitted in 2019-20) under the Open Category (OC) Courses(in traditional mode) for B.Tech. VII semester students of other departments along with their Cos

The courses to be offered under Open Category (OC) Courses for B.Tech VII Semester (for the students of other departments) under flexible curriculum were discussed and finalized for Batch admitted in 2019-20, Subjects are: -

Item 5

OC-2	Code
Soft Computing	900208
Network Security	900209
OC-3	
R Programming	900220
Computer Networks	900222

It is further discussed that the Open Category (OC) courses are meant only for the students of other departments; therefore, the above list of courses may be kept dynamic (as per the need and demand from other departments). Syllabus (along with their COs) are attached in Annexure-3

Item 6

To prepare and finalize the Experiment list/ Lab manual for Departmental Laboratory Course (DLC) to be offered in B.Tech. VII semester (for batches admitted in 2019-20)

The Departmental Laboratory Course (DLC) for B.Tech VII Semester, CSE discipline (under flexible curriculum) were discussed and finalized.

The same is enclosed in Annexure- 4

To propose the list of "Additional Courses" which can be opted for getting an

Honours (for students of the host department) (i)

Minor Specialization (for students of other departments) (ii)

[These will be offered through SWAYAM/NPTEL/MOOC based Platforms for the B.Tech. VII semester students (for the batch admitted in 2019-20)] and for B.Tech. V semester (for the batch admitted in 2020-21)]

To propose the list of "Additional Courses" which can be opted for getting an

1) Honours (for students of the host department)

2) Minor Specialization (for students of other departments)

Item

These will be offered through SWAYAM/NPTEL/MOOC based Platforms for the V semester (for the batch admitted in 2020-21) and for VII semester students (for the batch admitted in 2019-20)] The courses available on SWAYAM/NPTEL/MOOC based learning platforms for Honours and Minor Specialization were discussed and identified. The same is listed, as mentioned below

1) Courses for "Honours" V Semester

Honours" V Semester		Weeks
Course ID: noc22-cs122	The Joy of Computing using Python	12
Course ID: noc22-cs102	Programming In Java	12
Course ID: noc22-cs103	Programming In Modern C++	12

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Courses for "Minor Specialization" - V Semester

Minor Specialization V S	Semester	Weeks
Course ID: noc22-cs78	Introduction to Operating Systems	8
Course ID: noc22-cs88	Computer Architecture And Organization	12
Course ID: noc22-cs70	Programming, Data Structures And Algorithms Using Python	8

Courses for "Honours" - VII Semester

Honours" VII Semester		Weeks
Course ID: noc22-cs110	Multi-Core Computer Architecture - Storage and Interconnects	8
Course ID: noc22-cs81	Parameterized Algorithms	12
Course ID: noc22-cs107	Software Project Management	12

Courses for "Minor Specialization" - VII semester

Minor Specialization V S	emester	Weeks
Course ID: noc22-cs71	Design and analysis of algorithms	8
Course ID: noc22-cs61	Software Testing	12
Course ID: noc22-cs111	Computer Graphics	8

Item 8

To prepare and recommend the scheme structure of B. Tech. V Semester under the flexible curriculum (Batch admitted in 2020-21)

The scheme for B.Tech V Semester, CSE discipline (under flexible curriculum) were discussed and finalized.

The same is enclosed in Annexure 5

To prepare and recommend the syllabi for all Departmental Core (DC) Courses of B.Tech. V Semester (for batch admitted in 2020-21) under the flexible curriculum along with their COs.

Departmental Core (DC) Courses of V Semester were discussed and finalized for Batch admitted in 2020-21. Subjects are: -

Item 9

Item 10

Depart	ment Core (DC subjects
150511-	Data Science
150512-	Networking with TCP/IP
150513-	Information Security
150514-	Compiler Design

The same is enclosed in Annexure 6

To prepare and recommend the Experiment list/ Lab manual for all the Laboratory Courses to be offered in B. Tech. V semester (for batch admitted in 2020-21)

Experiment list/ Lab manual for all the Laboratory Courses of V Semester were discussed and finalized for Batch admitted in 2020-21.

The same is enclosed in Annexure 7 [This will also include all the emerging area programmes]

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Item 11	project' category in various laboratory	tive list of projects which can be assigned under the 'Skill based mini- components based courses to be offered in B.Tech. V Semester (for of V Semester were discussed and finalized for Batch admitted in									
	The same is enclosed in Annexure 8										
	IThis will also in al. I. II al	awaa negarammes I									
	To propose the list of courses from SW	AYAM/NPTEL/MOOC Platforms to be offered (for batch distributed to be arranged). The parameter of the programmes of the B. Tech. V Semester of the programmes of the B. Tech. V Semester of the programmes of the B. Tech. V Semester of the									
Terror	Course ID: noc22-cs74 Python for Data Science										
Item 12	Course ID: noc22-cs114	Introduction to Computer and Network Performance Analysis using Queuing Systems									
1.2											
	Course ID: noc22-cs112	Demystifying Networking									
	Course ID: noc22-mg111	Stress Management									
	Course ID: noc22-mg96	Gender Justice And Workplace Security e & Syllabi (along with the Course Outcomes) of B. Tech. III semeste									
Item 13	The scheme & Syllabus for B.Te were discussed and finalized. The Scheme is enclosed in Annexure Street The Syllabus in Annexure Street The Syllabus is enclosed in Annexure Street The Syllabus in Annexure Street The	ch III Semester, CSD discipline (under flexible curriculum)									
	newly started B. Tech. programmes	experiments and skill based mini projects of B. Tech.III semester of the in the emerging areas (AI & ML, AI & DS, CSD) (started from									
Item 14	newly started B. Tech. programmes 2021-22 Session) (Applicable for the common The skill based mini projects curriculum) were discussed and for The Scheme is enclosed in Annexure 1	in the emerging areas (AI & ML, AI & DS, CSD) (started from oncerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized.									
	newly started B. Tech. programmes 2021-22 Session) (Applicable for the comparison of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure of the Scheme in Annexure of the Scheme is enclosed in Annexure of the Scheme in Annexure of the Scheme in Annexure of the Scheme in Annexure of the Sc	in the emerging areas (AI & ML, AI & DS, CSD) (started from oncerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the Scheme & Syllabi (along with the Course Outcomes) of III (tch admitted 2021-22 Session) {(all traditional and emerging are AC)} arlier BOS for admitted batch 2020-21 is adopted for batch admitted in the scheme									
14	newly started B. Tech. programmes 2021-22 Session) (Applicable for the company of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recompany semester B. Tech. programmes (based programmes (IT-IoT, AIR, EE-IoT, M. The same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recompany for various laboratory courses to be traditional and emerging area programmer For CSD(included in item no 13, annexure 180S for admitted batch 2020-2	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the admitted 2021-22 Session) (all traditional and emerging are AC) arlier BOS for admitted batch 2020-21 is adopted for batch admitted in the interpretation of the batch admitted in 2021-22). (ames (IT-IoT, AIR, EE-IoT, MAC)) exure-10) and for CSE the same list of experiments approved throug I is adopted for batch admitted in 2021-22.									
Item 15	newly started B. Tech. programmes 2021-22 Session) (Applicable for the company of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recompany semester B. Tech. programmes (based programmes (IT-IoT, AIR, EE-IoT, M. The same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recompany for various laboratory courses to be traditional and emerging area programmes For CSD(included in item no 13, annexure BOS for admitted batch 2020-2. To propose the list of courses from SV in 2021-22) in online mode under Semerging area programmes (IT-IoT, A. and the skill based of the ski	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the scheme & Syllabi (along with the Course Outcomes) of III (all traditional and emerging are AC) arrived BOS for admitted batch 2020-21 is adopted for batch admitted in a conferred in III Semester (for the batch admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} Extractional and for CSE the same list of experiments approved throught is adopted for batch admitted in 2021-22. WAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted elf-Learning/ Presentation, in the III Semester {(all traditional an IR, EE-IoT, MAC, AI&DS, AI& ML, CSE/CSD)}									
Item 15	newly started B. Tech. programmes 2021-22 Session) (Applicable for the composition of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recomposition of the same scheme approved through exprogrammes (IT-IoT, AIR, EE-IoT, M. The same scheme approved through exprogrammes (IT-IoT). To review, prepare, finalize and recomposition of the various laboratory courses to be traditional and emerging area programmes for CSD(included in item no 13, annexure II and I and I and I and I and I and I are a programmes area programmes area programmes (IT-IoT, A course ID: noc22-cs68).	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the admitted 2021-22 Session) (all traditional and emerging are AC)) arrier BOS for admitted batch 2020-21 is adopted for batch admitted in the admitted in III Semester (for the batch admitted in 2021-22). (almos (IT-loT, AIR, EE-loT, MAC)) Extractly and for CSE the same list of experiments approved through is adopted for batch admitted in 2021-22. WAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted elf-Learning/ Presentation), in the III Semester (all traditional and IR, EE-loT, MAC, Al&DS, Al& ML, CSE/CSD)) C Programming and Assembly Language									
Item 15	newly started B. Tech. programmes 2021-22 Session) (Applicable for the company of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recompany semester B. Tech. programmes (based programmes (IT-IoT, AIR, EE-IoT, M. The same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recompany for various laboratory courses to be traditional and emerging area programmes For CSD(included in item no 13, annexure BOS for admitted batch 2020-2. To propose the list of courses from SV in 2021-22) in online mode under Semerging area programmes (IT-IoT, A. and the skill based of the ski	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the scheme & Syllabi (along with the Course Outcomes) of III (all traditional and emerging are AC) article admitted 2021-22 Session) {(all traditional and emerging are AC)} article BOS for admitted batch 2020-21 is adopted for batch admitted in amount the list of experiments/ Lab manual and skill based mini project offered in III Semester (for the batch admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} article for batch admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} article for batch admitted in 2021-22. WAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted belf-Learning/ Presentation, in the III Semester {(all traditional an IR, EE-IoT, MAC, AI&DS, AI& ML, CSE/CSD)} C Programming and Assembly Language Introduction to Quantum Computing: Quantum									
Item 15	newly started B. Tech. programmes 2021-22 Session) (Applicable for the comparison of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recomparison semester B. Tech. programmes (based programmes (IT-IoT, AIR, EE-IoT, M. The same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomparison for various laboratory courses to be traditional and emerging area programmes for CSD(included in item no 13, annexure BOS for admitted batch 2020-2. To propose the list of courses from SV in 2021-22) in online mode under Semerging area programmes (IT-IoT, A Course ID: noc22-cs68) Course ID: noc22-cs68	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the Scheme & Syllabi (along with the Course Outcomes) of III (all traditional and emerging are AC) article admitted 2021-22 Session) {(all traditional and emerging are AC)} article BOS for admitted batch 2020-21 is adopted for batch admitted in amount the list of experiments/ Lab manual and skill based mini project offered in III Semester (for the batch admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} axure-10) and for CSE the same list of experiments approved through is adopted for batch admitted in 2021-22. WAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted elf-Learning/ Presentation, in the III Semester {(all traditional and IR, EE-IoT, MAC, AI&DS, AI& ML, CSE/CSD)} C Programming and Assembly Language Introduction to Quantum Computing: Quantum Algorithms and Qiskit									
Item 15	newly started B. Tech. programmes 2021-22 Session) (Applicable for the composition of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the same scheme approved through each 2021-22. Annexure 11(a)	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. Interpolation of the Scheme & Syllabi (along with the Course Outcomes) of III (all traditional and emerging are AC) article admitted 2021-22 Session) {(all traditional and emerging are AC)} article BOS for admitted batch 2020-21 is adopted for batch admitted in the list of experiments/ Lab manual and skill based mini project offered in III Semester (for the batch admitted in 2021-22). {(almost (IT-loT, AIR, EE-loT, MAC)} extracted from the same list of experiments approved through it is adopted for batch admitted in 2021-22. VAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted elf-Learning/ Presentation, in the III Semester {(all traditional and IR, EE-loT, MAC, AI&DS, AI& ML, CSE/CSD)} C Programming and Assembly Language Introduction to Quantum Computing: Quantum Algorithms and Qiskit Patent Drafting for Beginners Decision-Making Under Uncertainty									
Item 15	newly started B. Tech. programmes 2021-22 Session) (Applicable for the composition of the skill based mini projects curriculum) were discussed and for the Scheme is enclosed in Annexure 12. To review, prepare, finalize and recomposemester B. Tech. programmes (based programmes (IT-IoT, AIR, EE-IoT, M. The same scheme approved through each 2021-22. Annexure 11(a) To review, prepare, finalize and recomposition of the various laboratory courses to be traditional and emerging area programmes (IT-IoT, AIR) and earlier BOS for admitted batch 2020-2. To propose the list of courses from SV in 2021-22) in online mode under Scheme ID: noc22-cs68 Course ID: noc22-cs68 Course ID: noc22-mg62	in the emerging areas (AI & ML, AI & DS, CSD) (started from concerned departments) for B.Tech III Semester, CSD discipline (under flexible inalized. In the Scheme & Syllabi (along with the Course Outcomes) of III (all traditional and emerging are AC) arrived and the BOS for admitted batch 2020-21 is adopted for batch admitted in the III Semester (for the batch admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} arrived for batch admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} arrived for batch admitted in 2021-22. WAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted in 2021-22). {(almos (IT-IoT, AIR, EE-IoT, MAC)} arrived for batch admitted in 2021-22. WAYAM/NPTEL/MOOC Platforms to be offered (for batches admitted in IR, EE-IoT, MAC, AI&DS, AI& ML, CSE/CSD)} C Programming and Assembly Language Introduction to Quantum Computing: Quantum Algorithms and Qiskit									

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

	Syllabus is Same as approved by BoS for Admitted year 2021
Item 19	To review the CO attainments, to identify gaps and to suggest corrective measures for the improvement in the CO attainment levels for (i) I year November 2021 – February 2022 Semester (ii) July-December 2021 Session for II to IV year students Annexure-13
Item 20	To review PO attainment of 2017-2021 batch, CO-PO mapping matrix with attainments and gap analysis Annexure-14
	To review curricula feedback from various stakeholders, its analysis and impact
Item 21	{Stakeholder feedback analysis must also contain an Action Taken Report (ATR) and the details/data of the stakeholders who have responded through GOOGLE form (such as Name, organization, mail id, phone no., if available) must also be shared along with the feedback of the alumni/employer} Annexure-15
Item 22	To review the Course Outcomes (COs) feedback of various courses, its analysis, and ATR Annexure-16
Item 23	Any other matter

Al All G M P. N. Sim

(AGovt. Aided UGC Autonomous& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Annexure-1

Scheme of B. Tech VII For batch admitted 2019-20 (Computer Science & Engineering) Under Flexible Curriculum [Item-2]

(AGovt. Aided UGC Autonomous& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Scheme of Examination

B. Tech.VII Semester(Computer Science and Engineering) forbatch admitted in AcademicSession 2019-2020

5.	Subject	iect Category	Subject Name &	Maximum Marks Allotted								Contact Hours			Total	
0.	Code		Title		Theory Slot		Prac	tical Slot	MOOCs		Marks	per week			Credits	
				End Sem.	Mid Sem. Exam	Quiz/ Assignment	End Sem.	Lab Work &Session al	Assignment	Exam		L	L T P			
1.	DE	DE	Departmental Elective (DE-3)	70	20	10	-				100	3	*		3	
2.	DE	DE	Departmental Elective (DF-4)		-	-	-		25	75	100	2	-		2	
3.	OC	oc	Open Category(OC-2)	70	20	10	2		-	(4	100	2	1	7.	3	
4.	OC	OC	Open Category(OC-3)	70	20	10		-	4		100	3		•	3	
5.	100008	мс	Intellectual Property Rights (IPR) (MC)	70	20	10				4	100	2		-	2	
6.	150701	DLC	Departmental Lab(DLC-6)	(%)	5*		50	50		-	100		-	4	2	
7.	150702	DLC	Summer Internship Project-III (04weeks) (Evaluation)(DLC-7)			*	50	50			100	4		4	2	
8.	150703	DLC	Creative Problem Solving(Evaluation)(DLC	*	-		25	25	-	-	50	*		2	I.	
		Tota	il	280	80	40	125	125	25	75	750	12	1	10	18	

pecializationbydesirousstudents

DI	E-3(Throu	gh Traditional Mode)
S. No.	Subject Code	Subject Name
1.	150711	Networking with TCP/IP
2.	150712	Data Mining &Warehousing
3.	150713	Distributed Systems

		DE-4*
S. No.	Subject Code	Subject Name
1.	150756	Software Testing
2.	150757	Big Data Computing
3.	150758	Introduction To Machine Learning

S. No.	Subject Code	Subject Name
T,	900208	Soft Computing
2.	900209	Network Security

	(OC-3
S. No.	Subject Code	Subject Name
1.	900220	R Programming
2.	900222	Computer Networks

Course run through SWAYAM/NPTEL/MOOC Learning Based Platform

For of Prusion

MADHAVINSHITUTEOFTECHNOLOGY&SCIENCE, GWALTOK

(AGovt. Aided UGC Autonomous& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

List of courses to be opted for Honours or Minor specialization in VII Semester

Honours*(to be opted by students of Parent Department)	Minor Specialization*(to be opted by students of Other Department)
Multi-Core Computer Architecture - Storage and Interconnects	Design and analysis of algorithms
Software Project Management	Software Testing
Parameterized Algorithms	Computer Graphics

^{*} Course run through SWAYAM/NPTEL/MOOC Learning Based Platform

A

one of Derivation

Av

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR – 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

ANNEXURE - 2

Syllabi

of

Departmental Elective (DE) Courses

B. Tech VII Semester

(Computer Science & Engineering)

Under Flexible Curriculum

[ITEM-3]

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

NETWORKING WITH TCP/IP 150711 (DE-3)

COURSE OBJECTIVES

- To build an understanding of the fundamental concepts of TCP/IP with computer networking.
- To familiarize the student with the basic taxonomy and terminology of the TCP/IP area.
- To understand the network traffic, congestion, controlling and resource allocation.

Unit-I

Introduction: ARPANET, ISDN and Broadband ISDN, Protocols and Standards, Internet Administration, ATM Model, SONET & SDH, TCP/IP Protocol Suite, Network Addressing at various layer

Unit-II

IP Layer: Connection Oriented & Connection less Internet Working, IPV4 Addressing, Subnetting, Supernetting. Delivery and Forwarding of IP Packets, IPv4,IPV6, ARP, RARP, ICMPv4, IGMP, Mobile IP, Unicast Routing Protocols (RIP, OSPF, and BGP), Multicasting and Multicast Routing Protocols.

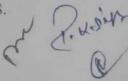
Unit-III

TCP and UDP Layer: TCP Reliable data transfer, Connection Establishment & Release, TCP Frame, Header Checksum, Sliding Window Concept for error control, congestion control and TCP timer, UDP Format, Pseudo header, Encapsulation, Checksum, Multiplexing & Demultiplexing. Stream Control Transmission Protocol.

Unit- IV

Application Layer: Client-Server Paradigm, DHCP, DNS, TELNET, FTP, TFTP, World Wide Web and HTTP, Electronic Mail: SMTP, POP, IMAP, and MIME, SNMP, BOOTP.

Unit-V


Multimedia and Next Generation Protocol: Voice over IP, Real Time Transport Protocol, IPv6 Addressing, IPv6 Protocol, ICMPv6, Firewall, PGP, HTTPS.

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

RECOMMENDED BOOKS

- · Data and Computer Communication, W. Stalling, Pearson
- Internetworking with TCP/IP Vol. I, D.E. Comer, PHI
- Data Communication & Networking, B.A. Forouzan
- ISDN and Broad band ISDN with Frame Relay & ATM, W. Stalling
- · LANs, Keiser

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. define the concept of computer network and various layered architecture.
- CO2. compare the classless and class full addressing of IPV4.
- CO3. identify the different types of networking devices and their functions within a network.
- CO4. analyze various protocols of computer networks for assisting network design and implementation.
- CO5. design client server applications and communication model and protocols for communication.
- CO6. elaborate various TCP/IP protocol for achieving multimedia and security services.

W A DE THE OF THEM

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

DATA MINING & WAREHOUSING 150712 (DE-3)

COURSE OBJECTIVES

- To understand the value of data mining in solving real-world problems.
- To gain understanding of algorithms commonly used in data mining tools.
- To develop ability for applying data mining tools to real-world problems.

Unit - I

Introduction: Motivation, important, Data type for Data Mining: Relational Databases, Data Ware-Houses. Transactional Databases, Advanced Database System and Its Applications, Data Mining Functionalities Concept/Class Description, Association Analysis Classification & Prediction, Cluster Analysis, Outliner Analysis Classification of Data Mining Systems, Major Issues in Data Mining.

Unit - II

Data Warehouse and OLTP Technology for Data Mining: Differences between Operational Database Systems & Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Data Cube Technology, Emerging Scenario of Pattern Warehousing System.

Unit - III

Data Pre-processing: Data Cleaning, Data Integration and Transformation, Data Reduction Discretization and Concept Hierarchy Generation. Data Mining Primitives Languages and System Architectures, Concept Description, Characterization and Comparison Analytical Characterization.

Unit - IV

Mining Association Rules in Large Databases: Association Rule Mining: Market Basket Analysis, Basic Concepts, Mining Single Dimensional Boolean Association Rules from Transactional Databases: The Apriori Algorithm, Generating Association Rules from Frequent Items, Improving the Efficiency of Apriori, other Algorithms &

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR - 474005

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

their Comparison, Mining Multilevel Association Rules, Multidimensional Association Rules, Constraint Based Association Rule Mining.

Unit - V

Classification & Predication and Cluster Analysis: Issues Regarding Classification & Predication, Different Classification Methods, Predication, Cluster Analysis, Major Clustering Methods, Currently Available Tools, Case Study.

RECOMMENDED BOOKS

- Data Mining: Concepts and Techniques, Han and Kamber, Morgan Kaufmann Publications.
- Data Mining Techniques, A. K. Pujari, Universities Press Pvt. Ltd.

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1. classify various databases systems and data models of data warehouse.

CO2. compare various methods for storing & retrieving data from different data sources/repository.

CO3. apply pre-processing techniques for construction of data warehouse.

CO4. analyse data mining for knowledge discovery & prediction.

CO5. explain data mining methods for identification of association for transactional databases.

CO6. develop various classification and clustering algorithms for data using data mining.

Aur just

XX

De De Sins

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR - 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

DISTRIBUTED SYSTEMS 150713 (DE-3)

COURSE OBJECTIVES

- To provide students contemporary knowledge of distributed systems.
- To equip students with skills to analyze and design distributed applications.
- To gain experience in the design and testing of a large software system, and to be able to communicate that design to others.

Unit - I

Introduction to Distributed Systems: Architecture for Distributed System, Goals of Distributed System, Hardware and Software Concepts, Distributed Computing Model, Advantages & Disadvantage Distributed System, Issues in Designing Distributed System.

Unit-II

Distributed Share Memory: Basic Concept of Distributed Share Memory (DSM), DSM Architecture & Its Types, Design & Implementations Issues in DSM System, Structure of Share Memory Space, Consistency Model and Thrashing.

Unit - III

Distributed File System: Desirable Features of Good Distributed File System, File Model, File Service Architecture, File Accessing Model, File Sharing Semantics, File Catching Scheme, File Application & Fault Tolerance.

Unit - IV

Inter Process Communication and Synchronization: Data Representation & Marshaling, Group Communication, Client Server Communication, RPC-Implementing RPC Mechanism, Stub Generation, RPC Messages. Synchronization: -Clock Synchronization, Mutual Exclusion, Election Algorithms - Bully & Ring 2 des of 2 xim Algorithms.

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Unit - V

Distributed Scheduling and Deadlock Distributed Scheduling- Issues in Load Distributing, Components for Load Distributing Algorithms, Different Types of Load Distributing Algorithms, Task Migration and its issues. Deadlock- Issues in deadlock detection & Resolutions, Deadlock Handling Strategy, Distributed Deadlock Algorithms. Case Study of Distributed System: Amoeba, Mach, Chorus.

RECOMMENDED BOOKS

- Distributed Operating System Concept & Design, Sinha, PHI.
- Distributed System Concepts and Design, Coulouris & Dollimore, Pearson Pub.
- Distributed Operating System, Andrew S. Tanenbaum, Pearson.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Tell the basic elements and concepts related to distributed system technologies
- CO2. Demonstrate knowledge of the core architectural aspects of distributed systems.
- CO3. Identify how the resources in a distributed system are managed by algorithm.
- CO4. Examine the concept of distributed file system and distributed shared memory.
- CO5. Compare various distributed system algorithms for solving real world problems.
- CO6. Develop application for achieving various services of distributed system

De Star All Brains

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR – 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Annexure-3

Syllabi

of

Open Category (OC) Courses

offered by Department of CSE in

B. Tech VII Semester

Under Flexible Curriculum

[ITEM-5]

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

SOFT COMPUTING 900208 (OC-2)

COURSE OBJECTIVES

- To provide the student with the basic understanding of neural networks and fuzzy logic fundamentals, Program the related algorithms and Design the required and related systems.
- To understand the fundamental theory and concepts of neural networks, neuromodeling, several neural network paradigms and its applications.
- To understand the basics of an evolutionary computing paradigm known as genetic algorithms and its application to engineering optimization problems.

Unit-I

Introduction and Fundamental Concept of ANN: Basic models of Artificial Neural Networks, Terminologies of ANNs McCulloch-Pitts Neurons, Linear Separability, Hebb Network, Supervised Learning Networks: Introduction, Perceptron Networks, Back Propagation Networks, Radial Basis Function Networks, Hopefield networks.

Unit-II

Unsupervised Learning: Fixed weight Competitive Nets, Kohonen Self-Organizing Map, Learning vector quantization. Counter propagation Networks, Adaptive Resonance Theory Network.

Unit-III

Fuzzy Set Theory: Fuzzy Sets, Fuzzy Membership Functions, Operations on Fuzzy Sets, Fuzzy Relations, Fuzzy rules, Fuzzy Reasoning, **Defuzzification**: Lembda-Cuts for Fuzzy sets (Alpha-Cuts), Lembda-Cuts for Fuzzy Relations. Fuzzy Inference System: Introduction, Mamdani Fuzzy Model, Takagi-Sugeno Fuzzy Model.

Unit-IV

Introduction: Biological Background, Traditional optimization and Search Techniques, Basic Terminologies in GA, Operators in Genetic Algorithm, Stopping Condition for

My the ASIA OF The Single of the

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Genetic Algorithm Flow, Classification of Genetic Algorithm, Comparison with Evolutionary algorithm, Application of Genetic algorithm.

Unit-V

Hybrid Soft Computing Techniques: Introduction, Neuro-fuzzy Hybrid system, Adaptive Neuro fuzzy inference system(ANFIS), Genetic Neuro Hybrid system, Application of Soft Computing Techniques.

RECOMMENDED BOOKS

- Principles of Soft Computing, S. N. Sivanandam and S. N. Deepa, Wiley
- Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications-S. Rajasekaran & G.A. Vijayalakshmi Pai, PHI.
- Introduction to Soft Computing Neuro-Fuzzy and Genetic Algorithms, Samir Roy and Udit Chakraborty, Pearson.
- Neural Networks and Learning Machines-Simon Haykin PHI.
- Fuzzy Logic and Engineering Application, Tomthy Ross, TMH

COURSE OUTCOMES

After completion of this course, the students would be able to:

- define basic concepts of neural network and fuzzy systems.
- compare solutions by applying various soft computing approaches on a given problem. CO2.
- develop and train different supervised and unsupervised learning. CO3.
- CO4. classify various nature inspired algorithms according to their application aspect.
- CO5. compare the efficiency of various hybrid systems.
- CO6. design a soft computing model for solving real world problems.

A Drussyl AN All A

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

NETWORK SECURITY 900209 (OC-2)

COURSE OBJECTIVES

- To provide conceptual understanding of network security principles, issues, challenges and mechanisms.
- To understand how to apply encryption techniques to secure data in transit across data networks.
- To explore the requirements of real-time communication security and issues related to the security of web services.

Unit-I

Security: Principles and Attacks, Basic Number Theory: Prime Number, Modular Exponentiation, Fundamentals of Cryptography, Congruence's, Steganography, Cryptanalysis, Code Breaking, Block Ciphers and Steam Ciphers, Substitution Ciphers, Transposition Ciphers, Caesar Cipher, Play-Fair Cipher, Hill Cipher, Cipher Modes of Operation.

Unit-II

Cryptography: Symmetric Key Cryptography, Public Key Cryptography, Principles of Public Key Cryptosystem, Classical Cryptographic Algorithms: DES, RC4, Blowfish, RSA, Distribution of Public Keys and Key Management, Diffie-Hellman Key Exchange.

Unit-III

Hash Functions: Hash Functions, One Way Hash Function, SHA (Secure Hash Authentication: Requirements, Functions, Kerberos, Authentication Codes, Message Digest: MD5, SSH (Secure Shell), Digital Signatures, A AND ON Digital Certificates.

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Unit -IV

IP & Web Security Overview: SSL (Secure Socket Layer), TLS (Transport Layer Security), SET (Secure Electronic Transaction). IDS (Intrusion Detection System): Statistical Anomaly Detection and Rule-Based Intrusion Detection, Penetration Testing, Risk Management. Firewalls: Types, Functionality and Polices.

Unit -V

Phishing: Attacks and Its Types, Buffer Overflow Attack, Cross Site Scripting, SQL Injection Attacks, Session Hijacking. Denial of Service Attacks: Smurf Attack, SYN Flooding, Distributed Denial of Service. Hacker: Hacking and Types of Hackers, Footprinting, Scanning: Types: Port, Network, Vulnerability), Sniffing in Shared and Switched Networks, Sniffing Detection & Prevention, Spoofing.

RECOMMENDED BOOKS

- Cryptography and Network Security, William Stallings, Pearson Education.
- Cryptography and Network Security, Atul Kahate, McGraw Hill Education.
- Incident Response and Computer Forensics, Kevin Mandia, Chris Prosise, Tata McGraw Hill.

COURSE OUTCOMES

After completion of the course students would be able to:

CO1: define various aspects of network security.

CO2: illustrate fundamentals of number theory and cryptography.

CO3: apply security mechanisms to achieve principles of network security.

CO4: analyze the cause for various existing network attacks.

CO5: examine the vulnerabilities in applications over internet.

CO6: develop a secure protocol for achieving various network security services.

the SR AN WON A D. W. of the

Department of Computer Science and Engineering

R PROGRAMMING 900220 (OC-3)

COURSE OBJECTIVES

- To understand the critical programming language concepts.
- To perform data analysis using R commands.
- To make use of R loop functions and debugging tools.

Unit-I

Introduction to R: R Commands, Objects, Functions, Simple Manipulations, Matrices and Arrays, Factors, Lists, Data Frames.

Unit-II

Programming Using R: Introduction, Function Creation, Scripts, Logical Operators, Conditional Statements, Loops in R, Switch Statement, Creating List and Data Frames, List and Data Frame Operations, Recursive List.

Unit-III

Object- Oriented Programming in R: Introduction, S3 Classes, S4 Classes, References Classes, Debugging Principle in R, Import and Export Data from CSV, SAS and ODBC.

Unit-IV

Mathematical and Statistical Concepts, Hypothesis Testing, Different Statistical Distribution, Regression, Time Series Analysis.

Unit-V

Graphics in R: Basic Plots, Labelling and Documenting Plots, Adjusting the Axes, Specifying Colour, Fonts and Sizes, Plotting symbols, Customized Plotting, Packages in R for Windows, Linus and Mac.

RECOMMENDED BOOKS

• "R for Beginners", Sandip Rakshit, Tata Mc Graw Hill Education.

AN THE

· "R programming for Data Science", Roger D. Peng, Learn publishing.

hing.

P. W. Share

P. W. Share

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1. define basic programming constructs used in R.

CO2. explain the various commands used in R.

CO3. apply various concept of programming for controlling the flow of data using R.

CO4. analyze the concept of concept of object oriented programming in R.

CO5. choose appropriate packages of R programming for dealing various tasks.

CO6. predict results from the datasets using R commands.

数菜

Her De

¢. K

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

COMPUTER NETWORKS 900222 (OC-3)

COURSE OBJECTIVES

- Familiarize the student with the basic taxonomy and terminology of the computer networking.
- Provide detail knowledge about various layers, protocols and devices that facilitate networking.
- Enable Students to deal with various networking problems such as flow control, error control and congestion control.

Unit-I

Introduction: Computer Network, Types- LAN,MAN & WAN, Data Transmission Modes- Serial & Parallel, Simplex, Half Duplex & Full Duplex, Synchronous & Asynchronous Transmission, Transmission Medium- Guided & Unguided, Cables-Twisted Pair, Coaxial Cable & Optical Fiber, Networking Devices-Repeaters, Hub, Switch, Bridge, Router, Gateway and Modem, Performance Criteria- Bandwidth, Throughput, Propagation Time & Transmission Time, Network Standardization- OSI Reference Model & TCP/IP Reference Mode.

Unit-II

Physical Layer: Network Topologies-Bus, Ring, Star & Mesh, Line Coding-Unipolar, Polar and Bipolar, Switching- Circuit Switching, Message Switching & Packet Switching, Multiplexing: FDM – Frequency Division Multiplexing, WDM – Wavelength Division Multiplexing & TDM – Time Division Multiplexing.

Unit-III

Data Link Layer: Introduction, Design Issues, Services, Framing, Error Control, Flow Control, ARQ Strategies, Error Detection and Correction, Parity Bits, Cyclic Redundant Code (CRC), Hamming Codes, MAC Sub Layer- The Channel Allocation Problem, Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD, IEEE 802.3, IEEE 802.4 and IEEE 802.5.

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Unit-IV

Network Layer & Transport Layer: Introduction, Design Issues, Services, Routing- Distance Vector Routing, Hierarchical Routing & Link State Routing, Shortest Path Algorithm- Dijkstra's Algorithm & Floyd-Warshall's Algorithm, Flooding, Congestion Control- Open Loop & Closed Loop Congestion Control, Leaky Bucket & Token Bucket Algorithm. Connection Oriented & Connectionless Service, IP Addressing.

Unit-V

Presentation, Session& Application Layer: Introduction, Design Issues, Presentation Layer- Translation, Encryption- Substitutions and Transposition Ciphers, Compression- Lossy and Lossless. Session Layer – Dialog Control, Synchronization. Application Layer- Remote Login, File Transfer & Electronic Mail.

RECOMMENDED BOOKS

- Data Communication and Networking, Behrouz A. Forouzan, McGraw Hill.
- · Computer Networks, Andrew S. Tanenbaum, Pearson Education India.
- · Computer Networks and Internets, Douglas E. Comer, Pearson India.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. explain the fundamental concepts of computer network.
- CO2. illustrate the basic taxonomy & terminologies of computer network.
- CO3. Identify various parameter for affecting the performance of computer network.
- CO4. analyze the concepts of communication using various layer of OSI model.
- CO5. evaluate the performance of computer network in congestion and Internet.
- CO6. design the network environment and applications for implementation of computer networking concept.

Any the of B. Widney

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Annexure-4

Experiment List of
DLC Course offered by
Department of CSE
in B. Tech VII Semester
Under Flexible Curriculum
[ITEM-6]

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MACHINE LEARNING LAB 150701

COURSE OBJECTIVES:

To provide the fundamental knowledge of Machine Learning.

To analyse the working of various techniques used in Machine Learning.

To solve real world problems using machine learning algorithms.

Introduction to Machine Learning: Representation, process (Data Collection, Data Preparation, Model selection, Model Training, Model Evaluation and Prediction), Evaluation and Optimization. Data cleansing and pre-processing techniques. Types of Learning: Supervised, Unsupervised and reinforcement learning. Regression vs classification problems. Performance parameters. Supervised machine learning techniques: Linear and multilinear regression, Nearest Neighbors classification, Tree based classification, Gini index and information gain, ID3 and CART algorithms, SVM. Unsupervised machine learning techniques: Introduction, types-Partitioning, density based, DBSCAN, distribution model-based, hierarchical, Agglomerative and Divisive, Common Distance measures, K-means clustering algorithm.

RECOMMENDED BOOKS:

1. Pattern Recognition and Machine Learning, Christopher M. Bishop.

2. Introduction to machine learning with Python: a guide for data scientists, Müller, Andreas C., and Sarah Guido, O'Reilly Media, Inc., 2016.

3. Artificial Intelligence: A Modern Approach by Stuart J. Russell and Peter Norvig, Prentice Hall.

COURSE OUTCOMES: After completing the course, the student will be able to:

CO1: Understand basic concepts of Machine Learning.

CO2: Illustrate various data cleansing and pre-processing techniques.

CO3: Separate regression and classification problems.

CO4: Analysis the data for applying various supervised and unsupervised machine learning techniques.

CO5: Evaluate different machine learning models based on performance parameters.

CO6: Design machine learning solutions for real world problems.

of the Sinishan

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Program List

1. Perform Creation, indexing, slicing, concatenation and repetition operations on Python builtin data types: Strings, List, Tuples, Dictionary, Set

2. Solve problems using decision and looping statements.

- 3. Apply Python built-in data types: Strings, List, Tuples, Dictionary, Set and their methods to solve any given problem
- 4. Manipulation of NumPy arrays- Indexing, Slicing, Reshaping, Joining and Splitting. 5. Computation on NumPy arrays using Universal Functions and Mathematical methods.
- 6. Import a CSV file and perform various Statistical and Comparison operations on rows/columns.

7. Create Pandas Series and DataFrame from various inputs.

8. Import any CSV file to Pandas DataFrame and perform the following:

1. Visualize the first and last 10 records

2. Get the shape, index and column details

3. Select/Delete the records(rows)/columns based on conditions.

4. Perform ranking and sorting operations.

5. Do required statistical operations on the given columns.

6. Find the count and uniqueness of the given categorical values.

7. Rename single/multiple columns.

9. Import any CSV file to Pandas DataFrame and perform the following:

1. Handle missing data by detecting and dropping/ filling missing values.

2. Transform data using different methods.

3. Detect and filter outliers.

4. Perform Vectorized String operations on Pandas Series.

5. Visualize data using Line Plots, Bar Plots, Histograms, Density Plots and Scatter Plots.

10. Use scikit-learn package in python to implement following machine learning models to solve real world problems using open source datasets:

1. Linear Regression model.

2. Multi-linear regression model.

3. Decision tree classification model.

4. Random forest model.

5. SVM model.

6. K-means clustering model.

8 h D P. William And the all

Scheme of

B. Tech Vth Semester CSE

offered by Department of CSE

Under Flexible Curriculum

[ITEM-8]

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Scheme of Examination

B.Tech. V Semester (Computer Science and Engineering)

					D11 65 111 1		2000					F	or bate	ches ac	lmitted in	Academic .	Session .
	Subject Code	Category S	Subject Name	71		Maxi	mum Marks Alle	itted			Total Marks	Contact Hours per week		11'5	Total Credits	Mode of Teaching	of Exam
	Code	Conc		Theory Slot				Practical Slot								reacting	
1				End Sem.		Mid Sem. Exam.	Quiz/ Assignment	End Sem.		Skill based mini		L	T	Р			
				End Term Evaluat ion	*Proficienc y in subject /course					project							
1.	150511	DC	Data Science	50	10	20	20	60	20	20	200	2	-1	2	4	Blended (2/1)	MCQ
2.	150512	DC	Networking with TCP/IP	50	10	20	20		54	-	100	3			3	Blended (2/1)	PP
3.	150513	DC	Information Security	50	10	20	20	60	20	20	200	3	*	2	4	Blended (2/1)	PP
4.	150514	DC	Compiler Design	50	10	20	20			34	100	3	-11		4	Blended (2/1)	PP
5.	150515	DC	Artificial Intelligence	50	10	20	20	1923	140	*	100	2	A.		3	Blended (2/1)	PP
-	150516	DLC	Minor Project-I**	-	-			60	40		100		-	4	2	Offline	SO
7.	150517	DLC	Summer Internship Project-II (Evaluation) (DLC-4)			(*) I	-	60			60			4	2	Offline	so
8.	150518	SEMINAR/ SELF STUD	Self-				-	•	40	3	40	-		2	1	Online and Mentoring	SO
9.	2000XXX	CLC	Novel Engaging Course	130	(4)		-	50		18	50			2	1	interactive	SO
		Total		250	50	100	100	290	120	40	950	13	3	16	24		
10.	1000006	MAC	Disaster Management	50	10	20	20	-			100	2			Grade	Online	MCQ
11.	1000005	MAC	Project Management and Financing	50	10	20	20 opt for maximu	-	-		100	2	-	-	Grade	Online	MCC

Additional Course for Honours or minor Specialization

Permitted to opt for maximum two additional courses for the aw

proficiency in course/subject-includes the weightage towards ability/skill/competence/knowledge level/ expertise attained etc. in that particular course/subject.

MCQ: Multiple Choice Question

AQ: Assignment + Oral

The Minor Project-I may be evaluated by an internal committee for awarding sessional marks.

Compulsory registration for one online course using SWAYAM/RPTEL/MOOC, evaluation through attendance, assignments and presentation

Students of 2020-21 admitted batch needs to appear and complete an additional MAC course of 30 Hrs. duration on Project Management & Financing. / other models are considered to the course of 30 Hrs. duration on Project Management & Financing. / other modules related to futuristic technologies (Drones/ Robotics etc.)

Mode of Examination Mode of Teaching Theory Blended O SIP/ SLP/NEC Theory Lab NEC Lab Total Credits so MCO SO Offline PP A+0 Online Offline Offline Online 3 18 75 Credits %

Annexure-6

Syllabi of
Departmental Courses (DC) Courses
B. Tech V Semester
For batch admitted 2020-21
(Computer Science and Engineering)
Under Flexible Curriculum
[Item-9]

Department of Computer Science and Engineering

DATA SCIENCE 150511

COURSE OBJECTIVES:

- To provide the fundamental knowledge of Data Sciences.
- To analyse the working of various techniques used in Data Sciences.
- To understand the basic representation and exploratory data analysis used in Data Sciences.

Unit - I:

Introduction to Data Science: Introduction, Definition, applications of Data Science, Impact of Data Science, Data Analytics Life Cycle, role of Data Scientist.

Basics of Python: Essential Python libraries, Python Introduction- Features, Identifiers, Reserved words, Indentation, Comments, Built-in Data types and their Methods: Strings, List, Tuples, Dictionary, Set, Type Conversion-Operators. Decision Making: Looping-Loop Control statement, Math and Random number functions. User defined functions, function arguments & its types.

Unit - II:

Vectorized Computation: The NumPy ndarray- Creating ndarrays- Data Types for ndarrays- Arithmetic with NumPy Arrays- Basic Indexing and Slicing, Boolean Indexing, Transposing Arrays. Universal Functions: Fast Element, Wise Array Functions, Mathematical and Statistical Methods - Sorting Unique and Other Set Logic.

Unit - III:

Data Analysis: Series, DataFrame, Essential Functionality: Dropping Entries, Indexing, Selection, and Filtering- Function Application and Mapping- Sorting and Ranking. Summarizing and Computing Descriptive Statistics - Mean, Standard Deviation, Skewness and Kurtosis. Unique Values, Value Counts, and Membership. Reading and Writing Data in Text Format.

Unit - IV:

Inferential Statistics in Data Science: Types of Learning, Linear Regression-Simple Linear Regression, Implementation, plotting and fitting regression line. Multiple Linear Regression, Introduction, implementation, comparison with simple linear regression, Correlation Matrix, F-Statistic, Identification of significant features. Polynomial regression.

h the

Unit - V:

Exploratory Data Analysis and Visualisation: Handling Missing Data, Data Transformation: Removing Duplicates, Transforming Data Using a Function or Mapping, Replacing Values, Detecting and Filtering Outliers, Functions in pandas. Plotting with pandas: Line Plots, Bar Plots, Histograms and Density Plots, Scatter or Point Plots.

RECOMMENDED BOOKS:

- 1. Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015.
- 2. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013
- 3. Artificial Intelligence: A Modern Approach by Stuart J. Russell and Peter Norvig,
- 4. 4. Pattern Recognition and Machine Learning, Christopher M. Bishop

COURSE OUTCOMES: After completing the course, the student will be able to:

CO1: Define basic concepts of Data Sciences.

CO2: Illustrate various concepts of python that are used in data sciences.

CO3: Identify various methods for the representation and manipulation of vectors.

CO4: Analysis the data for applying various statistical modelling approaches.

CO5: Identify hidden patterns in data and transform it using data science techniques.

CO6: Apply regression techniques to solve real world problems.

An Ash 6

Sixilan

()

PROGRAM LIST

- Perform Creation, indexing, slicing, concatenation and repetition operations on Python built-in data types: Strings, List, Tuples, Dictionary, Set
- 2. Solve problems using decision and looping statements.
- 3. Apply Python built-in data types: Strings, List, Tuples, Dictionary, Set and their methods to solve any given problem
- 4. Handle numerical operations using math and random number functions.
- Manipulation of NumPy arrays- Indexing, Slicing, Reshaping, Joining and Splitting.
- Computation on NumPy arrays using Universal Functions and Mathematical methods.
- Import a CSV file and perform various Statistical and Comparison operations on rows/columns.
- 8. Create Pandas Series and DataFrame from various inputs.
- 9. Import any CSV file to Pandas DataFrame and perform the following:
 - 1. Visualize the first and last 10 records

Annound the section of the section o

- 2. Get the shape, index and column details
- 3. Select/Delete the records(rows)/columns based on conditions.
- 4. Perform ranking and sorting operations.
- 5. Do required statistical operations on the given columns.
- 6. Find the count and uniqueness of the given categorical values.
- 7. Rename single/multiple columns.
- 10. Import any CSV file to Pandas DataFrame and perform the following:
 - 1. Handle missing data by detecting and dropping/ filling missing values.
 - 2. Transform data using different methods.
 - 3. Detect and filter outliers.
 - 4. Perform Vectorized String operations on Pandas Series.
 - 5. Visualize data using Line Plots, Bar Plots, Histograms, Density Plots and Scatter Plots.

11. Use the scikit-learn package in python to implement the regression model and its related methods.

Ars In

CA & Za.yam

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR SKILL BASED MINI-PROJECTS

Implement the below mentioned models using python programming and related libraries:

- Health Insurance Cost Prediction model.
- Salary Prediction model.
- Loan Amount Prediction model.
- Crop Yield Prediction Model.
- Stock Prediction Model.

Ans the

A Dustan

Department of Computer Science and Engineering Networking with TCP/IP 150512

COURSE OBJECTIVES

- To understand TCP/IP Internetworking and Addressing.
- To understand framing, Routing, Address resolution and Error reporting mechanism used in the Internet
- To understand the working of Application layer protocols
- To Troubleshoot networking issues
- Unit-1 TCP/IP model, Addressing- Physical, logical and port addressing, IPv4 addresses: Classful addressing, Classless addressing. Special addresses, DHCP and NAT. Subnetting and Supernetting, IPv6 addressing.
- Unit-2 IP Datagram- format, options, fragmentations, checksum, IPsec. Address Resolution Protocol (ARP), Reverse address resolution protocol (RARP). Internet Control message protocol (ICMP).
- Unit-3 TCP: TCP Reliable data transfer, Connection Establishment & Release, TCP Frame, Header Checksum, Sliding Window Concept for error control, congestion control and TCP timers.
 - UDP: Format, Pseudo header, Encapsulation, Checksum, Multiplexing & Demultiplexing. Stream Control Transmission Protocol
- Unit-4 Routing Protocols- RIP, OSPF and BGP, Application Layer: DNS, FTP, TFTP, Mail Transfer protocols, TELNET, HTTP, Voice over IP.
- Unit-5 Troubleshooting Principles, Ping, Traceroute, nslookup and Netstat, Study of network packet analyzer tools: Wireshark, CISCO packet Tracer etc. Scanner Tools: Nmap, Nessus etc.

Reference Books:-

- Data and Computer Communication W. Stalling, Pearson
- Internetworking with TCP/IP Vol. I D.E. Comer, PHI
- Data Communication & Networking -B.A. Forouzan
- ISDN and Broad band ISDN with Frame Relay & ATM W. Stalling
- LANs Keiser

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Outline of the basic functionality of TCP/IP layers.
- CO2. Analyze various addressing mechanism used in the internet
- CO3. Elaborate the framing, Routing and Address translation mechanism used in the internet
- CO4. Analyze the working of Application layer protocols
- CO5. Simulate network protocols & Topologies
- CO6. Install, maintain and troubleshoot a TCP/IP Network

Bur Ste

All the end of the firm

Department of Computer Science and Engineering

INFORMATION SECURITY 150513

COURSE OBJECTIVES

- To provide conceptual understanding of Information security principles, issues, challenges and mechanisms.
- To understand how to apply encryption techniques to secure data in transit across data networks.

Unit-I

Security: Principles and Attacks, Basic Number Theory, Fundamentals of Cryptography, Steganography, Cryptanalysis, Code Breaking, Block Ciphers and Steam Ciphers, Substitution Ciphers, Transposition Ciphers, Caesar Cipher, Play-Fair Cipher, Hill Cipher

Cryptography: Symmetric Key Cryptography, Public Key Cryptography, Principles of Public Key Cryptosystem, Classical Cryptographic Algorithms: RC4, RSA, Distribution of Public Keys and Key Management, Diffie-Hellman Key Exchange.

Unit-III

Unit-II

Hash Functions: Hash Functions, One Way Hash Function, SHA (Secure Hash Algorithm). Authentication: Requirements, Functions, Kerberos, Message Authentication Codes, Digital Signatures, Digital Certificates.

Unit-IV

IP & Web Security Overview: SSL (Secure Socket Layer), TLS (Transport Layer Security), SET (Secure Electronic Transaction). IDS (Intrusion detection system), Firewalls: Types, Functionality and Polices.

Unit-V

Phishing: Attacks and its Types, Buffer Overflow Attack, Session Hijacking, Hacker: Hacking and Types of Hackers, Foot Printing, Scanning: Types: Port, Network, Vulnerability), Sniffing in Shared and Switched Networks, Sniffing Detection & Prevention, Spoofing.

RECOMMENDED BOOKS

- · Cryptography and Network Security, William Stallings, Pearson Education.
- · Cryptography and Network Security, Atul Kahate, McGraw Hill Education.
- · Incident Response and Computer Forensics, Kevin Mandia, Chris Prosise, Tata

McGraw Hill.

COURSE OUTCOMES

After completion of the course students would be able to:

CO1. explain attacks, hash algorithms and authentication mechanisms.

CO2. illustrate fundamentals of number theory and security principles.

CO3. Apply various algorithms to achieve principles of network security.

CO4. analyse the cause for various existing network attacks and describe the working of available security controls.

CO5. examine the vulnerabilities in IT infrastructure.

CO6. predict the attacks and controls associated with IP, transport-level, web and e-mail security.

A AST

2 Crim

LIST OF EXPERIMENTS:

- 1. Perform encryption, decryption using the following substitution techniques I. Ceaser cipher II. Hill Cipher
- Perform encryption and decryption using following transposition techniques Rail fence -Row & Column Transformation
- 3. Implement Playfair Cipher with key entered by user.
- 4. Implement polyalphabetic Cipher
- 5. Implement AutoKey Cipher
- 6. Implement Hill Cipher.
- 7. Implement Rail fence technique
- 8. Implement Simple Columner Transposition technique
- 9. Implement Simple Columner Transposition technique
- 10. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)

SKILL BASED MINI PROJECTS

- 1. Email monitoring
- 2. Web application firewall
- 3. Log Analyzer
- 4. Malware Analysis Sandbox
- 5. Encryption Software
- 6. Caesar code Decoder
- 7. User authentication system
- 8. Image Steganography system

9. Anomaly detection, intrusion and its prevention

Any 22 x98"

(A) Kishan

Department of Computer Science and Engineering

COMPILER DESIGN 150514

COURSE OBJECTIVES

- · To learn finite state machines and context free grammar.
- · To learn, various phases of compiler
- To understand process of compiler implementation.

Unit-I

Overview of Translation Process: Introduction to Compiler, Major Data Structures in Compiler, Other Issues in Compiler Structure, BOOT Strapping and Porting, Compiler Structure: Analysis-Synthesis Model of Compilation, Various Phases of a Compiler, Compiler Design Tools.

Unit-II

Lexical Analysis: Input Buffering, Symbol Table, Token, Recognition of Tokens, Lexeme and Patterns, Difficulties in Lexical Analysis, Error Reporting and Implementation. Regular Grammar & Language Definition, Transition Diagrams, Design of a Typical Scanner using LEX.

Any In All a Reporter

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Unit-III

Syntax Analysis: Context Free Grammars (CFGs), Ambiguity, Basic Parsing Techniques: Top Down Parsing, Recursive Descent Parsing, Transformation on the Grammars, Predictive Parsing LL(1) Grammar, Bottom-UP Parsing, Operator Precedence Parsing, LR Parsers (SLR, CLR, LALR), Design of a Typical Parser Using YACC.

Unit-IV

Semantic Analysis: Compilation of Expression, Control, Structures, Conditional Statements, Various Intermediate Code Forms, Syntax Directed Translation, Memory Allocation and Symbol Table Organizations, Static and Dynamic Array Allocation, String Allocation, Structure Allocation etc., Error Detection Indication and Recovery, Syntax and Semantic Errors.

Unit-V

Code Generation and Code Optimization: Issues, Basic Blocks and Flow Graphs, Register Allocation, Code Generation, DAG Representation of Programs, Code Generation from DAGS, Peep-hole Optimization, Code Generator Generators, Specification of Machine. Code Optimization: Source of Optimizations, Optimization of Basic Blocks, Loops, Global Data Flow Analysis, Solution to Iterative Data Flow Equations, Data Flow Analysis of Structured Flow Graphs.

RECOMMENDED BOOKS

- Compilers: Principles, Techniques and Tools, V. Aho, R. Sethi and J. D. Ullman, Pearson Education.
- Compiler Construction: Principles and Practice, K.C. Louden, Cengage Learning.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Define the concepts of finite automata and context free grammar.
- CO2. Build the concept of working of compiler.
- CO3. Examine various parsing techniques and their comparison.
- CO4. Compare various code generation and code optimization techniques.
- CO5. Analyze different tools and techniques for designing a compiler.

CO6. Design various phases of compiler.

SHI CONTIN

Annexure-7

Experiment list/ Lab manual for all the Laboratory Courses

B. Tech V Semester

For batch admitted 2020-21

(Computer Science and Engineering)

Under Flexible Curriculum

[Item-10]

Department of Computer Science and Engineering

DATA SCIENCE 150511

EXPERIMENT LIST

- 1. Perform Creation, indexing, slicing, concatenation and repetition operations on Python built-in data types: Strings, List, Tuples, Dictionary, Set
- Solve problems using decision and looping statements.
- 3. Apply Python built-in data types: Strings, List, Tuples, Dictionary, Set and their methods to solve any given problem
- 4. Handle numerical operations using math and random number functions.
- 5. Manipulation of NumPy arrays- Indexing, Slicing, Reshaping, Joining and Splitting.
- 6. Computation on NumPy arrays using Universal Functions and Mathematical
- 7. Import a CSV file and perform various Statistical and Comparison operations on rows/columns.
- 8. Create Pandas Series and DataFrame from various inputs.
- 9. Import any CSV file to Pandas DataFrame and perform the following:
 - 1. Visualize the first and last 10 records
 - 2. Get the shape, index and column details
 - 3. Select/Delete the records(rows)/columns based on conditions.
 - 4. Perform ranking and sorting operations.
 - 5. Do required statistical operations on the given columns.
 - 6. Find the count and uniqueness of the given categorical values.
 - 7. Rename single/multiple columns.
- 10. Import any CSV file to Pandas DataFrame and perform the following:
 - 1. Handle missing data by detecting and dropping/ filling missing values.
 - 2. Transform data using different methods.
 - 3. Detect and filter outliers.
 - 4. Perform Vectorized String operations on Pandas Series.
 - 5. Visualize data using Line Plots, Bar Plots, Histograms, Density Plots and Scatter Plots.
- 11. Use the scikit-learn package in python to implement the regression model and its related methods.

A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

SKILL BASED MINI-PROJECTS

Implement the below mentioned models using python programming and related libraries:

- Health Insurance Cost Prediction model.
- Salary Prediction model.
- Loan Amount Prediction model.
- Crop Yield Prediction Model.

Stock Prediction Model.

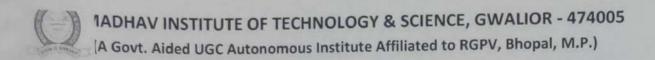
2 Dixion

Department of Computer Science and Engineering

INFORMATION SECURITY 150513

LIST OF EXPERIMENTS:

- Perform encryption, decryption using the following substitution techniques I. Ceaser cipher II. Hill Cipher
- Perform encryption and decryption using following transposition techniques Rail fence -Row & Column Transformation
- 3. Implement Playfair Cipher with key entered by user.
- 4. Implement polyalphabetic Cipher
- 5. Implement AutoKey Cipher
- 6. Implement Hill Cipher.
- 7. Implement Rail fence technique
- 8. Implement Simple Columner Transposition technique
- 9. Implement Simple Columner Transposition technique
- 10. Demonstrate intrusion detection system (ids) using any tool (snort or any other s/w)


SKILL BASED MINI PROJECTS

- 1. Email monitoring
- 2. Web application firewall
- 3. Log Analyzer
- 4. Malware Analysis Sandbox
- 5. Encryption Software
- 6. Caesar code Decoder
- 7. User authentication system
- 8. Image Steganography system
- 9. Anomaly detection, intrusion and its prevention

And Divising the

Annexure-8

Skill Based Mini-Projects
B. Tech V Semester
For batch admitted 2020-21
(Computer Science and Engineering)
Under Flexible Curriculum
[Item-11]

Department of Computer Science and Engineering

DATA SCIENCE 150511

SKILL BASED MINI-PROJECTS

Implement the below mentioned models using python programming and related libraries:

- Health Insurance Cost Prediction model.
- Salary Prediction model.
- · Loan Amount Prediction model.
- Crop Yield Prediction Model.

· Stock Prediction Model.

x Del

P. W. Story

Department of Computer Science and Engineering

INFORMATION SECURITY 150513 SKILL BASED MINI –PROJECTS

- 1. Email monitoring
- 2. Web application firewall
- 3. Log Analyzer
- 4. Malware Analysis Sandbox
- 5. Encryption Software
- 6. Caesar code Decoder
- 7. User authentication system
- 8. Image Steganography system

9. Anomaly detection, intrusion and its prevention

200-

h

2. Wisher

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Annexure-9

Scheme of

B.Tech IIIrd Semester Computer Science and Design(CSD)

offered by

Department of CSE

Under Flexible Curriculum

[ITEM-13]

Scheme of Examination

B.Tech.in Computer Science and Design

Semester III

S. No.	Subject Code	Category Code		Maximum Marks Allotted TheorySlot PracticalSlot					ContactHours perweek			Mode of	SS Mode				
				200000000000000000000000000000000000000		Mid Sem.	Mid Quiz/	End	LabWor k&Sessio	SkillBa sedMi	Total	L	Т	P	Total Credits	(Offline/On line)	of Exam
				EndTerm Evaluation	Proficiency in subject /course		ment		nal.	niProje ct	Marks				Credits		
1.	290301	DC	Discrete Structures	50	10	20	20	-		72	100	3	1	2	4	Offline	PP
2.	290302	DC	Design & Analysis of Algorithms	50	10	20	20	60	20	20	200	2	1	2	4	Blended (2/1)	PP
3.	290303	DC	Operating Systems	50	10	20	20		100		100	3	-		3	Blended (2/1)	PP
4.	290304	DC	Computer System Organization	50	10	20	20	3			100	3	2.	*	3	Blended (2/1)	PP
5.	290305	DC	Computer Graphics and Animation	50	10	20	20	60	20	20	200	3	*	2	4	Blended (2/1)	PP
6.	290306	DLC	Digital Circuit Design Lab	1041				60	20	20	100	38		2	1	Offline	SO
7.	290307	DLC	Self- learning/Presentation(SWAY AM/ NPTEL/MOOC)	٠	•				40		40	-	-	2	1	Online and Mentoring	1 50
8.	200XXX	CLC	Novel Engaging Course			0	-	50	-	- 4	50	(4)	-	2	1	Interactive	so
9.	290308		Summer Internship Project-I (Institute Level)(Evaluation)		-		+	60	*	-:	60	(Se)	-	4	2	Offline	so
		To	otal	250	50	100	100	290	100	60	950	14	2	14	23	-	-
0.	1000005		Project Management and Financing	50	10	20	20	•	•	-	100	2	-	-	GRADE	Online	MCQ

Proficiency in course/subject – includes the weightage towards ability/ skill/ competence /knowledge level /expertise attained etc. in that particular course/subject SSMCQ: Multiple Choice Question SSAO: Assignment + Oral SSOB: Open Book SSPP: Pen Paper SO: Submission &Oral

Modeof Teaching ModeofExamination											
Theory				Lab	NEC		Theory		Lab	SIP/ SLP/NEC	TotalCredits
Offline	Online	Blended		Offline	Interactive	PP	A+O	MCQ	so	so	Thate reals
Offline		Offline Online	Onnine								
4		8	4	6	1	18		-	1	4	23
17.39	1 48 1	34.78	17.39	26.08	4.34	78.26			4.34	17.39	Credits %

And A P.W. SMIL

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-10

Syllabi of
Departmental Courses (DC) Courses
B. Tech III Semester
For batch admitted 2020-21
(Computer Science & Design)
Under Flexible Curriculum
[Item-13]

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Engineering Mathematics and Computing

Discrete Mathematics 290301

Objective of Course

- To have knowledge of basic algebra and discrete numeric function.
- To describe function and its relation
- To familiarize propositional logic
- To know about the graph theory and its application in computer
- To familiarize the discrete numeric function and generating function

L	T	P	C
3	1	0	4

UNIT 1:

Sets, Subsets, Power sets, Complement, Union and Intersection, Demorgan's law Cartesian products, Relations, relational matrices, properties of relations, equivalence relation, functions, Injection, Surjection and Bijective mapping, Composition of functions, Permutations, the characteristic functions and Mathematical induction.

Partial order set, Hasse diagrams, upper bounds, lower bounds, Maximal and minimal element, first and last element, Lattices, sub lattices, Isotonicity, distributive inequality, Lattice homomorphism, lattice isomorphism, complete lattice, complemented lattice distribution lattice.

UNIT 3:

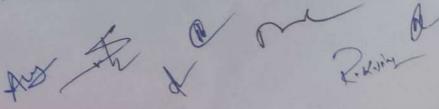
Group axioms, permutation group, sub group, co-sets, normal subgroup, semi group, Lagrange theorem, fields, minimal polynomials, reducible polynomials, primitive polynomial, polynomial roots, applications.

UNIT 4:

Finite graphs, incidence and degree, isomorphism, sub graphs and union of graphs, connectedness, walk, paths and circuits, Eulerian and Hamiltonian graphs. Trees: properties of trees, pendant vertices in tree, center of tree, spanning trees and cut vertices, binary tree, matrix representation of graph, incidence and adjacency matrix and their properties, applications of graphs in computer science.

UNIT 5:

Introduction to discrete numeric functions and generating functions, introduction to recurrence relations and recursive algorithms, linear recurrence relations with constant coefficients, homogeneous solutions, particular solutions and total solutions


Course Outcomes

After completing this course, the students will be able to:

CO's	Description of CO's					
COI	Acquire Knowledge of set theory					
CO2	Analyse the concept of Lattices					
CO3	Identify the concept of Group Theory					
CO4	Derive the Inferences from Graph theory					
CO5	Illustrate the Discrete numeric function and recursive relation					

Recommended Books:

- 1. J.P Tremblay and Manohar: Discrete Mathematical Structures with Application to Computer science, McGraw-Hill, 1st Edition 2017
- Narsingh Deo: Graph Theory, PHI Learning, 2014.
- C.L. Liu: Element of Discrete Mathematics, Mc Graw Hill, 4th Edition 2016.
- Rosen: Discrete Mathematics and its Applications, McGraw Higher Ed, 7th Edition 2008.
- 5. I.N. Herstein: Topics in Algebra, Wiley, 2rd Edition 2006.

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

DESIGN & ANALYSIS OF ALGORITHMS 290302 (DC)

COURSE OBJECTIVE:

- To introduce the topic of algorithms as a precise mathematical concept.
- To demonstrate the familiarity with major algorithm design paradigms and methods of analysis.
- To design efficient algorithms for common computer engineering problems.
- To enhance the skills using well-known algorithms and data structures for solving real-life problems.

Unit-I

Introduction to Computational Model: RAM model, Algorithms and its importance, Recurrences and Asymptotic Notations, Growth of function, Mathematical Analysis of Non-Recursive and Recursive Algorithm, Review of Sorting & Searching Algorithms, Basic Tree and Graph Concept: Binary Search Trees, Height Balanced Tree, B-Trees and Traversal Techniques.

Unit-II

Divide and Conquer Method: Introduction and its Examples such as Finding the maximum and minimum, Binary Search, Merge Sort, Quick Sort and Strassen's Matrix Multiplication.

Unit-III

Greedy Method: Introduction, Characteristics, greedy activity selection. Minimum Cost Spanning Trees: Prim's and Kruskal's Algorithm, knapsack Problem, Single Source Shortest Path: Dijkstra's single source shortest path algorithm, Huffman Coding.

Unit-IV

Dynamic Programming: Introduction, The principle of Optimality, Examples of Dynamic Programming Methods such 0/1 Knapsack, Travelling salesman problem, Floyds All Pairs Shortest Path, Longest Common Subsequence and Reliability Design.

Ans the of 2. Williams

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Unit-V

Backtracking: Concept and its Examples like 4-Queen's Problem, Knapsack problem Hamiltonian Circuit Problem, Graph Coloring Problem etc. Branch and Bound: Introduction and its Examples like - Travelling Salesperson Problem etc. NP Completeness: Introduction, Class P and NP, Polynomial Reduction, NP-Hard and NP-Complete problem.

RECOMMENDED BOOKS:

- Fundamentals of Computer Algorithms, Horowitz & Sahani, Universities press
- Introduction to Algorithms, Coreman Thomas, Leiserson CE, Rivest RL, PHI.
- Design & Analysis of Computer Algorithms, Ullman, Pearson.
- Algorithm Design, Michael T Goodrich, Robarto Tamassia, Wiley India.

COURSE OUTCOMES:

After Completion of this course, the students would be able to:

CO1: Tell the basic features of an Algorithms.

CO2: Outline major Algorithms and Data Structures.

CO3: Apply various algorithmic design paradigms.

CO4: Analyze the asymptotic performance of Algorithms.

CO5: Compare different design techniques to develop algorithms for computational problems.

CO6: Design algorithms using greedy strategy, divide and conquer approach, dynamic programming, backtracking, branch and bound approach.

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

DESIGN AND ANALYSIS OF ALGORITHM 290302(DC)

List of Programs

- WAP to implement the following using array as data structure and analyze its time Complexity.
 - a. Insertion sort b. Selection sort c. Bubble sort d. Quick sort
 - e. Bucket sort f. Radix sort g. Heap sort h. Merge sort
- 2. WAP to implement Linear and Binary Search and analyze its time complexity.
- 3. WAP to implement Matrix Chain Multiplication and analyze its time complexity.
- 4. WAP to implement Longest Common Subsequence Problem and analyze its time Complexity.
- 5. WAP to implement Optimal Binary Search Tree Problem and analyze its time complexity.
- 6. WAP to implement Huffman Coding and analyze its time complexity.
- 7. WAP to implement Dijkstra's Algorithm and analyze its time complexity.
- 8. WAP to implement Bellman Ford Algorithm and analyze its time complexity.
- 9. WAP to implement DFS and BFS and analyze their time complexities.
- 10. WAP to Implement 0/1 knapsack using dynamic programming.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Relate the principles of algorithm design in solving problems.
- CO2. Demonstrate basic algorithms and different problem solving strategies.
- CO3. Build creativeness and confidence to solve non-conventional problems.
- CO4. Analyze running times of algorithms using asymptotic analysis.
- CO5. Compare various algorithm design approaches for solving real world problems.
- CO6. Design and implement optimization algorithms in specific applications

Aug Sha

R. W. W. W.

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

OPERATING SYSTEMS 290303 (DC)

COURSE OBJECTIVES

- Provide basic knowledge of computer operating system structures and functioning.
- Compare several different approaches to memory management, file management and process management
- Understand various problems related to concurrent operations and their solutions.

Unit- I

Basics of operating systems: Generations, Types, Structure, Services, System Calls, System Boot, System Programs, Protection and Security.

Process management: Process Concepts, Process States, Process Control Block, Scheduling-Criteria, Scheduling Algorithms and their Evaluation, Threads, Threading Issues.

Unit-II

Process synchronization: Background, Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors.

Deadlock: System Model, Deadlock Characterization, Deadlock Prevention, Detection and Avoidance, Recovery form Deadlock.

Unit-III

Memory management: Main Memory, Swapping, Contiguous Memory Allocation, Paging, Structure of Page Table, Segmentation, Virtual Memory, Demand Paging, Page Replacement Algorithms, Allocation of Frames, Thrashing.

Unit-IV

Storage management: Mass-Storage Structure, Disk Structure, Disk Attachment, Disk Scheduling, RAID Structure.

Aus

and a

or N

P. x. shus

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Unit-V

File system interface: File Concept, Access Methods, Directory Structure, File System Structure, Allocation Methods, and Free-Space Management.

System Protection: Goals, Principles, Domain of Protection, Access Matrix, Access Control.

RECOMMENDED BOOKS

- Operating System Concepts, Silberschatz, Ninth Edition, Willey Publication.
- Operating Systems, Internals and Design Principles, Stallings, Seventh Edition, Pearson Publication.
- Modern Operating Systems, Tanenbaum, Fourth Edition. Pearson Publication.

COURSE OUTCOMES

After the successful completion of this course, the student will be able to:

- CO1. Outline the basic concept of operating systems
- CO2. Analyze the working of operating system
- CO3. Examine the working of various scheduling/allocation approaches
- CO4. Measure the performance of various scheduling/allocation approaches
- CO5. Analyze the various operating system problems/issues
- CO6. Develop the Solution of various operating system problems/issues

Aux De Ranslaus

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

COMPUTER SYSTEM ORGANIZATION 290304 (DC)

COURSE OBJECTIVES

- To provide the fundamental knowledge of a computer system and its processing units.
- To provide the details of input & output operations, memory management and performance measurement of the computer system.
- To understand how computer represents and manipulate data.

Unit-I

Introduction: Von-Neumann Model, Various Subsystems, CPU, Memory, I/O, System Bus, CPU and Memory Registers, Program Counter, Accumulator, Register Transfer and Micro Operations: Register Transfer Language, Register Transfer, Tree-State Bus Buffers, Bus and Memory Transfers, Arithmetic Micro-Operation, Logic Micro-Operation, Shift Micro-Operation Register Transfer Micro Operations, Arithmetic Micro-Operations, Logic Micro-Operations and Shift Micro-Operations.

Unit- II

Computer Arithmetic: Addition and Subtraction with Signed-Magnitude, Multiplication Algorithm, Division Algorithm, Division Algorithms, Floating-Point Arithmetic Operations.

Central Processing Unit (CPU): General Purpose Register Organization, Stack Organization, Instruction Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced Instruction Set Computer (RISC). Hardwired and Micro programmed Control.

Unit -III

Microprocessors: Introduction of 8085 Microprocessor: Architecture, Instruction Set, Addressing Modes, Interrupts and Basic Assembly Language Programming.

Unit -IV

Input-Output Organization: Peripheral Devices, I/O Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt, DMA (DMA Controller, DMA Transfer),

1

~

& P.K.sim

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Input-Output Processor (IOP), Data Transfer- Serial/Parallel, Simplex/ Half Duplex/ Full Duplex.

Unit-V

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory- Organization and Mappings, Memory Management Hardware, Introduction to Pipelining & Multiprocessors.

RECOMMENDED BOOKS

- Computer System Architecture, Morris Mano, PHI.
- · Microprocessor Architecture, Programming and Applications with the 8085, Gaonkar,
- · Computer Organization, Carl Hamacher, THM.
- · Computer Architecture and Organization, J P Hayes, Mc-Graw Hills, New Delhi.

COURSE OUTCOMES

After completion of the course students would be able to:

- CO1. Recall the basic building blocks of computer Architecture.
- CO2. Explain different memories and the functional units of a processor.
- CO3. Explain the concept of working of microprocessor, multiprocessor and pipelining.
- CO4. Analyze various modes of Input-Output data transfer.
- CO5. Evaluate the arithmetic related to the number system.
- CO6. Develop the skill of writing low level programming.

Am A Pinson

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

COMPUTER GRAPHICS AND ANIMATION 290305(DC)

COURSE OBJECTIVES

- To provide an introduction to the theory and practice of computer graphics.
- To give a good exposure related to Computer Graphics algorithms and to design various graphics primitives.
- To enhance the proficiency in programming skills related to animation and graphics object Design

Unit-I

Introduction to Computer Graphics: Interactive Computer Graphics, Application of Computer Graphics, Random and Raster Scan Displays, Storage Tube Graphics Display, Calligraphic Refresh Graphics Display, Flat Panel Display, Refreshing, Flickering, Interlacing, Resolution, Bit Depth, Aspect Ratio etc.

Unit-II

Scan Conversion Technique: Image representation, Line drawing: DDA, Bresenham's Algorithm. Circle Drawing: General Method, Mid-Point, DDA, Bresenham's Circle Generation Algorithm, And Ellipse Generation Algorithm, Curves: Parametric Function, Bezier Method, B-Spline Method.

Unit-III

2D & 3D Transformations: Translation, Rotation, Scaling, Reflection, Shearing, Inverse Transformation, Composite Transformation, World Coordinate System, Viewing Transformation, Representation of 3D object on Screen, Parallel and Perspective Projections.

Unit-IV

Clipping: Point clipping, Line Clipping, Simple Visibility Line Clipping Algorithm, Cohen Sutherland Line Clipping Algorithm etc., Polygon Clipping, Convex and Concave Polygon, Sutherland Hodgeman Polygon Clipping Algorithm etc., Area Filling, Hidden Surface Elimination: Z-Buffer algorithm and Painter's Algorithm.

AND SE

~

A Zining

0/

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Unit-V

Color Models: RGB, YIQ, CMY, HSV. Computer Animation: Introduction, Uses, key frames and tweening, types of animation, 2D and 3D animation, Principles and techniques of Animation.

Image Manipulation and Storage: Introduction to Digital Image Processing (DIP), Fundamental Steps and Components of DIP, Digital image enhancement, contrast stretching, Histogram Equalization, smoothing and median Filtering.

RECOMMENDED BOOKS

- Computer Graphics, Donald Hearn and M.P. Becker, PHI Publication.
- · Computer Graphics principle and Practice, FoleyVandam, Feiner, Hughes.
- · Principles of Computers Graphics, Rogers, TMH.
- Computer Graphics, Sinha and Udai, TMH.
- · Digital Image Processing, Gonzalez.
- · Principle of multimedia Ranjan Parekh, TMH.

COURSE OUTCOMES

After completion of the course students will be able to:

- CO1. Explain interactive Computer Graphics, various display devices and explore applications of computer graphics.
- CO2. Illustrate various line generations, circle generation, curve generation and shape Generation algorithms.
- CO3. Apply various 2-Dimensional and 3-Dimensional transformations and projections on Images.
- CO4. Classify methods of image clipping and various algorithms for Line and Polygon clipping.
- CO5. Choose appropriate filling algorithms, Hidden Surface Elimination algorithm and apply on various images.
- CO6. Analyis various color models, shading methods, animation and Digital Image Processing.

Aug Andrew A Resident

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

COMPUTER GRAPHICS AND ANIMATION 290305(DC)

List of Experiments

- Installation and Introduction to OpenGL basics, graphic functions, commands for compiling and executing an OpenGL Program.
- 2. Write a Program to create an output window, to plot a point with given coordinates and other basic demonstrations.
- 3. Write a Program to implement DDA Line Drawing Algorithm.
- 4. Write a Program to implement Bresenham Line Algorithm.
- 5. Write a Program to implement Mid-Point Circle Algorithm.
- 6. Write a Program to implement following 2D transformations:
 - i. Translation of a point, line and polygon.
 - ii. Scaling of a line and polygon.
 - iii. Rotation of a line and polygon around origin.
- 7. Write a Program to implement:
 - i. Flood Filling Algorithm using polygon.
 - ii. Boundary Filling Algorithm using polygon.
- 8. Write a Program

COURSE OUTCOMES

After completion of the course students will be able to:

- CO1. Demonstrates the fundamental concepts of Computer Graphics and its applications.
- CO2. Explain and use hardware's and software's component of computer graphics
- CO3. Apply various image generation, manipulations and color model techniques in coding.
- CO4. Implement algorithms for create and manipulate image in programs.
- CO5. Develop the ability to write computer programs for create image and animation using graphics concepts.
- CO6. Develop application programs and projects in terms of image and animation using computer graphics.

Any John

S. x. yau

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

Digital Circuit Design Lab 290306 (DLC)

COURSE OBJECTIVES

- To study and verify the truth tables of various logic gates
- To study and design various combinational circuits
- To study and design various sequential circuits
- To perform the analysis and design of various digital electronic circuits.

Logic Gates:

Study of various logic gates. Realization of various logic gates using universal logic gates.

Combinational Circuit:

Half Adder, Full Adder, Half-subtractor, Full Subtractor, Multiplexer & Demultiplexer , word comparator and parity checker etc.

Sequential Circuit:

RS, D, JK, Master slave flip flops, flip flops with various triggering methods and timing diagram.

Counters and Registers:

Asynchronous and Synchronous, Up/Down, Johnson Counter, MOD N, BCD counter using Decade counter, Ring counters, Shift registers, and Universal Shift Register etc.

RECOMMENDED BOOKS

- · Digital Design, Morris Mano M. and Michael D. Ciletti, IV Edition, Pearson Education.
- · Digital Electronics: Principles, Devices and Applications, Anil K. Maini, Wiley.

Jan Mr. of J.v. liver

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

COURSE OUTCOMES

After completion of the course students would be able to:

CO1: Understand the truth tables and functions of various logic gates.

CO2: Understand the importance of logic circuits

CO3: Design basic combinational logic circuits

CO4: Design various sequential logic circuits

CO5: Analyse and implement digital logic circuits.

CO6: Develop and implement some basic Applications of digital electronics

Aus wh

A Dixistra

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering DIGITAL CIRCUIT DESIGN 290306 (DLC)

List of Experiments

- 1. To study and verify the truth table of various logic gates.
- 2. To realize Half Adder and Full Adder by using Basic logic gates
- 3. To realize Adder and Subtractor by using Basic logic gates
- 4. To design and set up 4:1 Multiplexer (MUX) using only NAND gates.
- 5. To design and set up 1:4 Demultiplexer (DE-MUX) using only NAND gates.
- 6. To realize One & Two Bit Comparator and study of 7485 magnitude comparator
- 7. To study and verify Truth Table of RS Flip Flop
- 8. To study and verify Truth Table of D type Flip Flop.
- 9. To study and verify Truth Table of JK type Flip Flop.
- 10. To study and verify Truth Table of T Flip Flop.

11. To study and verify Truth Table of JK Master Slave Flip Flop.

Aus of

a thism

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal, M.P.)

Department of Computer Science and Engineering

SELF-LEARNING/PRESENTATION (SWAYAM/NPTEL/ MOOC) 150316 (SEMINAR / SELF STUDY)

S.No.	Course Name	Duration	Offered by	Course Link
1	C Programming and Assembly Language	4 Weeks	IIT Madras	https://onlinecourses.nptel.ac.i n/noc21 cs81/preview

Note: Compulsory registration for one online course using SWAYAM/NPTEL/ MOOC, evaluation through attendance, assignments and presentation

Aus The Dusin

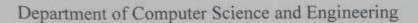
R /

Skill based mini-project of
Laboratory Courses
B. Tech III
Semester
(Computer Science and Design)
Under Flexible Curriculum
[Item-14]

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering COMPUTER GRAPHICS AND ANIMATION 290304(DC)

Skill Based Projects


- Develop a project to implement a stretch band effect. In which a user will click on the screen and drag
 the mouse / arrow keys over the screen coordinates. The line should be updated like rubber-band and
 on the right-click gets fixed.
- 2. Develop a project to implement the DDA algorithm for drawing line. In this project a programmer is expected to shift the origin to the center of the screen and divide the screen into required quadrants.
- Develop a project with menu option to input the line coordinates from the user to generate a line using Symmetrical DDA algorithm, Brenham's algorithm and DDA algorithm on a single screen with different colors.
- 4. Develop a project to demonstrate 2D animation such as clock simulation, vehicle movement etc.
- 5. Develop a project to demonstrate 2D animation such as rising sun, sunset, blinking stars.
- 6. Develop a project to implement the bouncing ball inside a defined rectangular window.
- 7. Develop a project to draw Bezier and B-Spline Curves with interactive user inputs for control polygon defining the shape of the curve.
- 8. Develop a project to demonstrate shear transformation in different directions on a unit square situated at the origin.
- Develop a project in which a set of lines and a rectangular area of interest is given by user, the task is to remove lines which are outside the area of interest and clip the lines which are partially inside the area.
- 10. Develop a small graphics editor with line, circle, parabola, hyperbola generation.

Please Note: Each project has to be submitted by a group of 2 to 4 students (Depending upon project), and each group will be assigned only one project.

And of

0

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

DESIGN AND ANALYSIS OF ALGORITHM 290302(DC)

Skill Based Projects

- Develop a project to show graphical implementation of any two sorting methods.
- 2. Develop a GUI project for implementation of Sorting and searching methods.
- 3. Implement Kruskal and Prim's algorithm for solving minimum spanning tree problem on Different graphs, and on the basis of complexity analysis deduce which among them is the best suited algorithm.
- 4. Implement Greedy algorithm and Backtracking algorithm to find a solution for the graph coloring problem on various graphs, and on the basis of complexity analysis deduce which among them is the best suited algorithm.
- 5. Solve Travelling Salesman Problem using Greedy Algorithm and Brute Force Algorithms, and on the basis of complexity analysis deduce which among them is the best suited algorithm.
- 6. Using complexity analysis, deduce among brute force and greedy algorithm, which is better for solving 0/1 Knapsack problem.
- 7. Implement Merge sort, Insertion sort and Quick sort for the following cases:
 - a. Unsorted list of numbers (with size of list > 100)
 - b. Sorted list of numbers (with size of list > 100)
 - c. Unsorted list of numbers (with size of list <= 20)
 - d. Sorted list of numbers (with size of list <= 20)

Then on the basis of complexity analysis, deduce which among them is best suited for each

- 8. Compare the Exhaustive Search Algorithm and Greedy Algorithm for solving Job Scheduling Problem.
- 9. Implement different shortest path algorithms on various graphs and compare the performance with each other in order to conclude the best among them.

Please Note: Each project has to be submitted by a group of 2 to 4 students (Depending upon project), and each group will be assigned only one project. my of G

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

DIGITAL CIRCUIT DESIGN 290306 (DLC)

Skill Based Project

- Design a 4 bit comparator
- · Design a parity checker
- Design a 4 bit Ripple counter
- · Design a Synchronous counter
- · Design a Ring Counter
- Design a left shift counter
- · Design a right shift counter

Please Note: Each project has to be submitted by a group of 2 to 4 students (Depending upon project), and each group will be assigned only one project.

AND THE PRINTING

P

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-11(a)

Scheme of
B.Tech III & IV Semester
For batch admitted 2021-22
(Computer Science & Engineering)
Under Flexible Curriculum
[Item-15]

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Scheme of Examination
B. Tech. III Semester (Computer Science and Fo

No.	Subject Code	Category Code	Subject Name			Maxims	m Marks Allott	ed			Total Marks	Con	tact Hi er wee	nurs	Tot al Cr edi ts	Mode of Teaching (Offline/ Online)	¹³ Mo de of Exa m
					The	ory Slot			Practical St	30							
				100000000000000000000000000000000000000	Term uation	Continuous	Evaluation	End Sem.	Conti	nuous		L	Ť	P			
				End Term Evaluation	Proficienc y in subject /course	Mid Sem. Exam.	Quiz/ Assignment		Lab Work & Sessional	Skill based mini project							
1.	100025	BSC	Engineering Mathematics-II	50	10	20	20	-	(4)		100	2	1	*	3	Offline (3/0)	PP
2.	150311	DC	Computer System Organization	50	10	20	20	-			100	2	1	4	3	Blended (2/1)	PP
3.	150312	DC	Operating Systems	50	10	20	20	- 7	-	-	100	2	1	*	3	Blended (2/1)	PP
4.	150313	DC	Computer Graphics	50	10	20	20	60	20	20.	200	2	1	2	4	Blended (2/1)	PP
5.	150314	DC	Design & Analysis of Algorithms	50	10	20	20	60	20	20	200	2	1	2	4	Blended (2/1)	PP
6,	150315	DLC	Computer Hardware & Troubleshooting Lab	192	-			60	20	2.0	100	-	*	4	2	Offline	so
7.	150316	SEMINAR/ SELF STUD		-					40		40			2	1	Online Mentoring	SO
S.	200XXX	CLC	Novel engaging courses		7.0		363	50			50	3	-	2	E	Interactive	50
9.	150317	DLC	Summer Internship Project –I (Institute Level) (Evaluation)	120				60			60			4	2	Offline	SO
		3.5	Fotal	250	50	100	100	290	100	60	950	11	4	16	23		1
10.	1000005	MAC P	roject Management and Financing	50	10	20	20	12/		*	100	2	-	-	Grade	Online	MCQ

		Mode	of Teaching	2				Mode of Exan	nination		
	T	heory		Lab	NEC		Theory		Lab	SIP/ SLP/ NEC	Total Credits
Water !	0.11	Blei	nded	Offline	Interactive	PP	A+O	MCQ	so	so	Total Cicuits
Offline	Online	Offline	Online	Offfine	Interactive	T.	ATO	mcQ	30	30	
3	1	8	4	7	1	17			2	4	23
13.04		34.78	17.39	30.43	4.34	73.91	37	721	8.69	17.39	Credits %

@ d to # 3 \$ 2 A P. King

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

List of Courses offered for Self-Study/Seminar in III Semester (2021 admitted batch)

Course ID: noc22-cs68	C Programming and Assembly Language
Course ID: noc22-cs79	Introduction to Quantum Computing: Quantum Algorithms and Qiskit
Course ID: noc22-hs74	Patent Drafting for Beginners
Course ID: noc22-mg62	Decision-Making Under Uncertainty

La Au 22 XX Brank

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-12(a)

Scheme of
B.Tech I Semester
For batch admitted 2022-23
(Computer Science and Engineering)
ITEM No-18

THE THEOF TECHNOLOGY & SCIENCE, GWALTOR

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Scheme of Examination
B. Tech, I Semester (Computer Science and Engineering)

-	Subject	E				Maxim	um Marks	Allotted					or batches ac		cademic Se	ssion 2022-2	3 Onwun
S.	Code	Category	Subject Name		Theory	Slot			Practical Sto	t	Total	Contact	Hours per	Week	Total		Mode .
140.	10000			End S	iem.	Mid Sem.	Quiz/ Assignm	End Sem.	Lab work	Skill Base	Marks	L	Т	Р	Credits	Mode of Feaching (Offline)	
				End Term Evaluation	Profici ency in subject /course		ent			mini Project						Online)	
1.	230102	ESC	Introduction to Computer Programming	50	10	20	20	60	20	20	200	2	1	2	4	Offline (3/0)	A+O
2.	100022	ESC	Basic Electrical & Electronics Engineering	50	10	20	20	60	20	20	200	2	1	2	4	Blended (2/1)	MCQ
3.	100020	ESC	Basic Civil Engineering & Mechanics	50	10	20	20			7)	100	3			3	Blended (2/1)	PP
4.	100021	ESC	Basic Mechanical Engineering	50	10	20	20				100	3	-		3	Blended (2/1)	MCQ
5.	100015	HSMC	Energy, Environment, Ecology& Society	50	10	20	20		700	-	100	3			3	Online (0/3)	MCQ
6.	150111	DLC	IT workshop		-	_		60	20	20	100			4	2	Offline	SO
			Total	250	50	100	100	180	60	60	800	13	02	08	19		
7.	1000004	MAC	Engineering chemistry	50	10	20	20	-	-		100	2		*	Grade	Online	MCO

apetence/knowledge level/ expertise attained etc. in that particular course/subject.

01Theory Period=1 Credit; 02 Practical Periods=1 Credit
SSPP: Pen Paper SSO: Submission + Oral
Mode of Examination
Lab SSMCQ: Multiple Choice Question Mode of Teaching Theory Lab Theory Lab Total Credits Blended Offline Online Offline A+0 MCQ Offline so Online 4 21.0 10 52.6 10.5 19 Credits %

@ W AN one & # & From



Annexure-12(b)

Scheme of

B. Tech 1 Semester For batch admitted 2022-23 (Computer Science and Design)

ITEM No-18

Annexure-12(b)

Scheme of B. Tech I Semester For batch admitted 2022-23 (Computer Science and Design) ITEM No-18

MALHARICICICICICA

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to RGPV, Bhopal, MP)

B. Tech in Computer Science and Design

-						I Sen	nester				For bate	h adm	itted i	n acad	emic session	2022-23	
0	5.1.				Theory S		m Marks Alle	otted	Practical SI	ot	Total Marks		Conti ours weel	ict per	Total Credit	Mode of Teaching (Offline/ Online)	SS Mode of Exam.
S. No.	Code	Categor y Code	Subject Name	End Tern	n Evaluation		tinuous	End	Contin Evalu							- Jamey	
				End Sem. Exam	SProficiency in subject /course	Mid Sem. Exam.	Quiz/Assig	Sem	Lab Work & Sessional	Skill Based Mini Project		L	Т	P			
1.	290101	DC	Introduction to Computer Science and Design	50	10	20	20	-	-		100	4	(*)	*	4	Blended (3/1)	MCQ
2.	230102	ESC	Introduction to computer programming	50	10	20	20	60	20	20	200	2	1	2	4	Blended (2/1)	A+O
3.	100022	ESC	Basic Electrical & Electronics Engineering	50	10	20	20	60	20	20	200	2	1	2	4	Blended (2/1)	MCQ
4.	250100	BSC	Linear Algebra	50	10	20	20			-	100	3	1		4	Offline	PP
5.	100015	HSMC	Energy, Environment, Ecology & Society	50	10	20	20				100	3	*	4	3	Online	MCQ
		Total		250	50	100	100	120	40	40	700	14	3	4	19		
7-	1000004	MAC	Engineering Chemistry	50	10	20	20	4/	-		100	2	-		Grade	Online	MCO

Induction program of first three weeks (MC): Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visit / Virtual Visit to local Areas,

Familiarization to Dept./Branch & Dept./Branc

		Mode	of Teachin	g				Mode of Exam	nination		
	T	neory		Lab	NEC		Theory		Lab	SIP/SLP/NEC	
Offline	Online	Online Blended Offlice In			80					Total Credits	
Offiline	Online	Offline	Online	Offline	Interactive	PP	A+0	MCQ	so	SO	
4	3	7	3	2	1000	4	4	11	-		19
21.05	15.78	36.84	15.78	10.52		21.05	21.05	57.89			Credits %

AM of the A frida

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-13

Review the CO attainments, identify gaps and corrective measures for the improvement in the CO attainment levels for (i) I year November 2021 – February 2022 Semester (ii) July-December 2021 Session for II to IV year students ITEM No-19

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALLOR
(A Govi., Aided UGC Autonomous & NAAC Acceding Institute Affiliated to RGPV, Bhopat)
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Remedial classes are conducted and related assignments are given Extra classes are conducted and related assignments are given Action taken for Not Attained Attained/not Not Attained Not Attained Artained Attained Attained Arrained Attained Attained Attained Attained Attained Attained Attained Attainment (To be set for Overall CO Attainment) -2.5 2.5 2.5 2.5 2.5 2.5 2.1 2.1 2.3 2.3 2.5 m 17) CO indirect Overall CO attainment attainment level 13 20 5.8 2.7 23 2.8 2.7 15 CO attainment with Gap Analysis and action taken for II to IV Year July-Dec. 2021 & 1st Year Nov. to Feb. 2022 2.5 2.9 10 -2.7 CO attainment CO attainment CO attainment CO direct CO direct CO direct CO direct CO direct from Quiz (% Assignment (% Town Quiz 88.57 78.16 77.2 77.77 65.38 73.56 70,11 96'89 71.26 76.34 76.34 75.26 75.26 96'04 66,67 72.5 74.1 80 2.8 2.8 6.1 2,6 2.8 2.8 -* 81 6175 73,4375 73,1075 68.01375 77,0075 70,39625 67.915 69.7825 65,67625 74,50625 59.1225 70.8175 6837 743 74.15 72.94 68.3 79.27 51.65 87.2 68:05 72,22 80,55 80.97 83.19 85,14 70.14 7.1 92.8 72.8 68.51 68.7 69.4 77.6 76 85.71 59.66 51.8 80.25 62.96 67.85 65.62 69.42 64.52 8.69 72,4 71.2 62.2 68.9 71.2 62.2 74 77 96.36 75.75 53.03 67.87 99.99 68.12 69,32 75.75 65,51 87.14 86.72 78.31 86.11 85,65 99 66.36 75 75 53.03 99.90 67.87 53.69 80.69 48.63 50.62 00 62.4 63.8 60.3 58.6 10.09 56.21 64.23 19 circle generation, curve generation and shape Generation algorithms. Discuss various color models, shading methods, animation and Digital Image Choose appropriate filling algorithms, Hidden Surface Elimination algorithm and apply Graphics, various display devices and Apply various 2-Dimensional and 3-Dimensional transformations and Analyze various modes of Input-Output data transfer. Classify methods of image clipping and various algorithms for Line and Explain different memories and the Evaluate the arithmetic related to the rumber system. Develop the skill of writing low level Evaluate the arithmetic related to the Illustrate various line generations, Explain the concept of working of microprocessor, multiprocessor and CO2 Explain different memories and the functional units of a processor. explore applications of computer Explain the concept of working of microprocessor, multiprocessor and Analyze various modes of Input-Develop the skill of writing low level Recall the basic building blocks of computer Architecture Recall the basic building blocks of computer Architecture. functional units of a processor. Explain interactive Computer Course Outcome Statements projections on Images. Output data transfer. on various images Polygon clipping number system 000 cos 500 100 900 C02 500 cos CO3 (0) 500 900 100 500 500 900 C02 150311-Computer System Organization 150313-Computer Graphics 150311-Computer System Section Cource code & 8 4 < Anjula Mehto Dr. R. K. Gupta Dr. Manish Dixit Sem Faculty Name Dr. III Ε H

The state of the s

Attained

2.5

80.5

78

80

80

84

CO1 | Tell the basic features of an Algorithms

MADHAY INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Added UGG Autonomous & NAAC Accredited Institute Affiliation to RGPV. Bhopsif DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

tan 12	Facility Name	Section	Courté code & name		CO attainment w	CO attainment from Quit (% agn)	CO attainment from Arrignment (% Age	from Mid Sem	CO attainment	CO direct	CO direct	CO indirect attainment (% age) (Calculated using CO Ob, End Sem Seminar, I min Paper writing)		Overall CO attainment	Target (To be set for Overall CO Attainment)	Attained/net attained	Action taken fac Not Attained
				CO2	Outline major Algorithms and Data Structures	N1	89	84	11:23	H2.865	3	89	3	.5	2.5	Attained	*
				002	Apply various algorithmic design paradigms	79	28	76	76.07	70.66	7	90	3	3	2.5	Attained	+
m	Ms. Aishwarya	A&B	150314-Design and Analysis of	1	Analyze the asymptotic performance of Algorithms	71	81	71	75.29	76 145	3	79	3	3	2.5	Anamed	
	2 22 20 20 20 20 20 20 20 20 20 20 20 20	1000	Algerithms	C05	Compare different design techniques to develop algorithms for computational problems	66	67		72.11	20.00	3	77	3.	9	2.5	Attained	
				CO6	Design algorithms using greedy strategy, divide and conquer approach, dynamic programming, backtracking, branch and bound approach.	65	69	34	74028	37049.25	3.	71	3	3	2.5	Attained	
				C01	Relate the principles of algorithm design in solving problems	¥	19	786	11	34.5	1	10	3	3	2.3	Attained	
		0		C01	Demonstrate basic algorithms and different problem solving strategies	*	-	578	75	76.5	3	84)	3	2.3	Attained	
			150314-Design	C03	Build creativeness and confidence to solve non-conventional problems.			69	(66	67.5	(2.8	66	3	2.8	23	Attained	-
823	Ms. Alshwarya	A&B	and Analysis of Algorithm LAB	C04	Analyze running times of algorithms using asymptotic analysis			65	71	68	2.8	78	3.	2.8	2.3	Attained	
				COS	Compare various algorithm design approaches for solving real world problems		1.0	60	74	71.5	3	77	3	3	2.3	Attained	
	S			C06	Design and implement optimization algorithms in specific applications	*	7.6	6t	62	63	2.3	-68	2.8	2.4	2.5	Attained	2
				COL	Understand logical notation to define and reason mathematically about the fundamental data types and structures used in computer algorithms and systems.	84	89	77	71.66	76.705	. 3	14	3	/3	2.5	Attained	
				1002	Outline various mathematical concepts along with their applications.	81	88	81.25	85.33	84,1023	3	12	3	3	2.5	Amined	
			150501-Discrete		Implement the applications of various types of graphs to solve real life problem.	78	78	74	08.5	72.25	3	76	3	3	2.5	Amined	
V.	Ms. Aishwarya	A&B	Structures	C04	Apply the mathematical concepts to solve angineering problems.	75	75	84	65.4	72.45	3	74	3	3	23	Attained	
į				COS	Analyze the set theory, prepositional logic, graph theory, discrete numeric function and algebraic structure to examine the real world problem.	76	79	11	66	72.625	3	77	3	9	2.5	Attained	
				CD6	Design analytical skill and interpret applications of engineering in real time troubleshooting.	65	68	75	68	69.375	2.9	71	3	2.9	2.3	Attained	
				001	explain the various fundamental concepts of software engineering	65.6	87	83	82.5	81.075	-3	86.11	3	3	2.5	Attained	
				202	develop the concepts related to software design & analysis.	63.6	76	74	77.5	74.7	3	83.33	3	3	2.5	Attained	
v	Mr. Mie Shahnawar	4.67	150502-Seftware	CO3	compute the techniques for software project management & estimation.	58	72	68	93.25	79,875	3	83.33	3	3	22	Attained	2
**	Alemed	A&B	Engineering		choose the appropriate model for real life software project.	6)	71	72	52	60.5	2.1	75.6	3	2.3	22	Attained	

All one of the priving

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR ided UGC Automonous & NAAC Acceptated Institute Affiliated to RGPV, Bhopati, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SCIENCE AND ENGINEERING SCIENCE AND ENGINEERING SCIENCE AND ENGINEERING AND ACTUAL SCIENCE AND ENGINEERING AN

Anna I Washington and Anna I washington and an anna I washington and a washington a washington and a washington and a washington and a washington a washington and a washington and a washington and a washingto	PERSONAL PROPERTY.	District Control of the last o	_									b. 2022				Andrew Control of the
Fuculty Name	Section	Courte tode &			CO attenment from Quiz (% ege)	CO attainment from Assignment (% age	CO attainment from Mid Sem (%ags) Avg. of mid sem I & II	CO attainment from End Sem (Wage)	CO direct attainment (%age)	CO direct attainment level	CO indirect attainment (%agr) (Calculated uring CO 0h, End Sem Seminar, I min Paper writing)	CO indirect attainment fevet	Overall CO attainment	Target (To be set for Oversit CO Attainment)	Attained	Action taken for Not Attained
			COS	design the software using modern tools and technologies	65	66	64	58	0.1.625	2.2	71	3	2.4	2.1	Attained	
			C:06	iest the software through different approaches	66	76	11	30	78	1	91.67	3	3	2.5	Attained	
			cou	explain the basic concepts of switching and finite automata theory & languages.	60.23	112	81	88	83.22875	1	90	3	3	2.5	Attained	
			CO2	relete practical problems to languages, automata, computability and complexity	65	14.33	96	54	84.66625	3	18.33.	-:0	3	2.5	Attained	
			anton	construct abstract models of computing and check their power to recognize the languages.	70.2	7)	.90	72	76.4	3	90	1	3	22	Attained	
Parmar	A&B	Computation	C04	analyze the grammar, its types, simplification and normal form	65	73	92	60	70/25	3	73.6	3	3	2.2	Attained	
			cos	interpret rigorously formal mathematical methods to prove properties of languages, grammers and automata.	62 15	66	94	80	79.51873)	15	3	j	2.5	Attained	
100			CO6	develop an overview of how automate theory, languages and computation are applicable in engineering application	60.23	94,33	87	60	69.83	3	X11.33	3	3	2.5	Attained	
			coi	compare the architecture and feature of different 16-bit microprocessor interfacing chips & microcompilers.	72	:84	74	71.09	73.545	(3)	84)	3	2.5	Amined	
		150504-	CO2	develop programming skills in assembly language of 8086 microprocessor and 8051 microcontroller	79	89	71	67.27	72,385	1	85	9	3	2.5	Anained	*
Ms. Aithwarya	A&B	Microprocessor & Interfacing	cor	demonstrate the concept of interfacing with peripheral devices.	11	76	68	74.1	73 675	3	77	3	3	2.1	Amined	
		CONSTRUCTION OF THE PARTY OF TH	CO4	make use of different interrupts and addressing modes.	13	94	72	73.3	76.775	3	13	3	3	2.5	Attained	1 2
			CO5	design an interfacing for I/O devices	75	81	71	69.96	72:23	3	71	3.	2.	2.3	Attained	+>
			COE	build a system based on 8086 microprocessor and 8051 microcontroller	68	75	64	73.82	70.785	3	67	2.7	2.9	2:3	Attained	
			COL	Judge various model of computation	-	2 3	54.43	70.23	62.33	2.2	89.09	3	2.4	2.3	Attained	*
			10000	ESTABLE OF CHARLES AND ADDRESS OF CHARLES	38.	- 25	57.29	60.43	58.86	1.9	78.03	3	2.1	2.3	Not Attained	Remedial classes are conducted and related assignments are give
		150503-Theory of	cus	computing to recognize the languages.			65.63	73.23	69,43	2.0	90,09	3	2.9	2.3	Attained	+
Mr. Mahesh Parmar	A&B						72.23	58.63	65.43	2.5	87.72	3	2.6	2.3	Attained	-
				Explain the limitations of computation in solving problems	-		57.29	73.23	65.26	2.5	90,09	3.	2.6	2.3	Attained	
			C06		- 12		62.23	38 63	60.43	2	78.66	3	2.2	2.3	Not Attained	Remedial classes are conducted and related assignments are given
			cor	define the concept of computer network and various layered architecture.	70	72	75	78	75.5	3	78	3	3	3	Attained	
			CO2	compare the classless and class full addressing of IPV4	69	64	65	76	70.75	3	76	3	3	2.7	Attained	
	Mr. Mahesh Mr. Mahesh	Mr. Mahesh Parmar A&B Mr. Aishwarya A&B	Ms. Mahesh Parmar A&B 150303-Theory of Computation Ms. Aithwarya A&B 150304-Microprocessor & Interfacing	Ms. Mahesh Parmar A&B 150503-Theory of CO3 CO3 CO4 Ms. Aishwarya A&B 150503-Theory of CO4 CO5 CO6 CO7 CO7 CO8 Ms. Mahesh Parmar A&B 150503-Theory of CO4 CO5 CO6 CO7 CO7 CO8 CO8 CO8 CO9 CO9 CO9 CO9 CO9	Mr. Mahesh Ms. Aishwarya A&B 15930-Theory of Ms. Aishwarya A&B 15930-Theory of Computation Cod definer in-bell increased and feature of define the concept of computation in solving problems. Obding a set of rides for year wax verification or related areas of theory of computation in solving problems.	A&B 150503-Theory of Computation Ms. Aishwarya A&B 150503-Theory of Computation A&B 150503-Theory of Computation Ms. Aishwarya A&B 150503-Theory of Computation A&B 150503-Theory of Computation A&B 150503-Theory of Computation A&B 150503-Theory of Computation COI analyses are already and process of the process o	Section Course code & name Course Guecome Statements Course Guecome Course Guecom	Costain Cost	Section Course Cuteoms Statements Course Cuteoms Sta	Contract Contract code	Continue Courters catch & Courters Cut and Statements Count and Courters Cut and Statements Count and Courters Cut and Statements Count Courters Cut and Statements Courters Cut and Sta	Add	No. Nakuth Na.	Particus Name Section Course Cutations Statements Course Cutations Statements Course Cutations Course Cutatio	Part	Part

Aug on 2 \$ A a P. Kinh

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt Addel UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV. Bhopal) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ions	Faculty Name	Section	Cource code &		CO attainment w			CO attainment from Mid Sem		CO direct		CO indirect attainment ("Auge) (Calculated using CO Fb. End Sem Seminar, 1 min Paper writing)	CO indirect	Overall CO attainment	Target (To be set for Overall CO Attaiomeux)	Attained attained	Action taken for Not Attained
				COS	identify the different types of networking devices and their functions within a network.	60	60	60	80	70	3	80	3	2	2.5	Attained	
VII	Ms. Kharkhee Agrawal	1	Networking with TCP/IP	C04	analyze various protocols of computer networks for assisting network design and implementation	50 :	55	77	25	-21	3	.75	3	3	2(5):	Attained	
			-	cos	design client server applications and communication model and protocols for communication.	55	- 55	80	7)	70.25	3	n	3	3	2.5	Attained	N. N.
				C06	elaborate various TCP/IP protocol for achieving multimedia and security services	50	53	60	78	66.875	2.7	78	3	2.8	25	Amined	
				COL	classify various databases systems and data models of data warehouse.	52	52	74	16.4	74.7	3	7536	3	3.	3	Attained	
				1000	compare various methods for storing & retrieving data from different data sources/repositors	53	53	66	92.8	76.15	3	75.36	1	3	3	Attained	4
VII	Dr. R. K. Gupta	1 2	150712-Data Mining &	C03	apply pre-processing techniques for construction of data warshnips	43	43	69	14.8	69 65	3	69.56	3	3	3	Attained	*
			Warehousing	CO4	analyse data mining for knowledge discovery & prediction.	33	33	78.66	84.8	70.315	3	72.46	3	3	3	Attained	
				CO5	explain data mining methods for identification of association for transactional databases	-48	48	68.28	10.0	73.47):	25:36	3.	3	3	Attained	4
				CO4	develop various classification and clustering algorithms for data using data mining	34	34	62.85	78.4	63.4125	2.3	69.56	3	2.4	2.4	Attained	
			1-11-1	COI	Tell the basic elements and concepts related to distributed system technologies.	82.2	80.12	76	81.05	79.815	3	81 48	ÿ	3	3	Attained	*
					Demonstrate knowledge of the core architectural aspects of distributed systems.	31,1.	78.52	72.1	68.93	72.4425	3	81.48	3	3	3	Attained	-
VII:	Dr. Anjula Mehro	745	150713- Distributed	CO3	Identify how the resources in a distributed system are managed by algorithm	62.7	65.23	0.68	83.62	57.97125	1.8	66.66	2.7	2	2.5	Not Attained	Extra classes are conducted and related assignments are given
			Systems		Examine the concept of distributed file system and distributed shared memory	82	86.23	81.4	78.44	80,59875	3:	81,48	3	3	3	Attained	+
1				C05	Compare various distributed system algorithms for solving real world problems	50.2	60.25	62.5	75.75	67.30625	2.7	66 66	2.7	2.7	2.5	Attained	-
					Develop application for schieving various services of distributed system	55	61.25	63.2	53.16	56.91125	1.7	77.77	3	2	2.5	Not Attained	Extra classes are conducted and
				coi	Understand the key component that make up an IOT system		-	60	80	80	3	78	3	3	2.5	Attained	otlated assignments are given
				CO2	Explain the defination andusage of the term "internet of Things" in different context			73	74	73.5	3	76	3)	2.5	Attained	4
	Ma. Khushboo		150701-Internet	CO3	Differentiate between the levels of the IOT stack and be familiar with the key technologies and protocol employed at each layer of the stack.	(2)	*	70	70	70	3	80	3	3	2.5	Attained	
m	Agrawal	3	of Things LAB	C04	Apply the knowledge and skills acquired during the course to build and test a complete, working ICT system involving prototyping, programing and data analysis			70	71	70.5	3	75	3	3	2.5	Attained	*

@ Am ron ? # At a fix. sin

MADHAY INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous & NAAC Accretised Institute Affiliated to RGPV. Bhopel DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

em	aculty Name	Section	Course code &		Course Outcome Statements	CO attainment from Quiz i*- agei	CO attainment from Assignment (% age	CO attainment from Mid Sem (Nage) Avg. of mid sem t & H			CO direct	CO indirest attainment (%age) (Calculated using CO Fb. End Scin Seminar, I min Paper writing)	CO indirect attainment level	Overall CO attainment	Target (To be set for Overall CO Attanament)	Attained attained	Action taken for Not Attained
				cos	Understand where the IOT concept M within the broader ICT industry and possible future trends	16	*	68	72	70	3	73	3	3	2.5	Annined	
				COS	Appreciate the role of big data, cloud computing and data hitytics in a typical to system	10	- 2	70	70	76	3	78	3	3	2.5	Attained	
				COL	Define a Structured Problem Solving Process	100	5 5	72.41	88.75	80.58	1	- 85	3	3	2.5	Attained	
			1 3	C02	Understand Cause-Effect-Symptom- Problem Retallonships in Problem Definition			79,48	96.79	311.125	.3	91	2.	3:	2.5	Amined	
	Mr. Mir	1		CO3	Apply Cause-Effect Tools and Techniques and Develop Root-Cause Analysis	2	- 0	14.40	71.79	61.125	2.3	76	3	2.4	2.1	Attained	
VII:	Shahnawaz	**	Creative Problem Solving		Apply Idea Generation Tools and Techniques in Formulating Creative Solutions	12	- 3	54,46	69,3	61.88	2.2	84	3	2.4	2.1	Attained	
				COS	Apply Evaluative Tools and Techniques for Decision Making Process	(8)		57,98	74.23	66.105	2.6	74	3	2.7	2.1	Attained	
				COE	Identity Strategy: Considerations in Evaluating Risks and Implementing Solutions			72.01	68.48	80.245	3	78	3	3	2.1	Attained	
				COL	Identify situations where computational methods and computers would be useful.	81.02	82.4	80,35	79.25	80.2425	3	87.68	3	3	2.5	Attained	-
		1		COI	Describe the basic principles of imperative and structural programming.	81.92	82,4	84.7	79.23	83,33	3	06.00	3	3:	2.5	Attained	
Ш	Mr. Mie		236102- Introduction to	COJ	Develop a pseudo-code and flowchart for a given problem.	70.16	70.16	77,58	76.07	74.97	7	89.95	3	3	2.1	Attained	*
1	Shahnawaz Ahmad		Computer Pengramming	100.000	Analyze the problems and choose suitable programming techniques to develop solutions.	81,28	81,28	78.2	92.49	86.115	3.	86.23	3	3.	2	Attained	
7				CO5	Design, implement, debug and test programs.	09.07	71.47	74,65	72.11	72.285	3	84.78	3	3	2.2	Attained	
				CO6	Design computer programs to solve real world problems.	75.16	79	73.88	95.58	85.475	3	86.23	3.	3	2	Attained	-
1					Identify situations where computational methods and programming would be useful.	74	82	84	83.33	82 165	3	89	3	3	2.5	Attained	-
				002	implement the basic principles of imperative and structural programming.	75	119	79	79,55	80.025	3	85.5	3	3	2.5	Attained	
1	Mr. Mir		230102- Introduction to		Develop a pseudo-code and flowchart for a given problem.	64	74	75	74.2	73.1	3	86.4	3	3	2.5	Attained	-
	Shahnawaz Ahmad	-	Computer Programming LAB	CO4	Analyze the problems and choose suitable programming techniques to develop solutions.	61	76	68	67	67.625	2.8	75.6	3	2.8	2.9	Attained	7.
			3445		Design, implement, debug and test programs	65	68	66	71.58	68 915	2.9	71	3	2.9	2.5	Attained	
					Design computer programs to solve real world problems.	62	71	64	60	62.625	. 23	74	3	24	2.5	Not Attained	Additional sessions for discussir implementing and analysing the skill based inini projects were conducted.
				00,	Understand the basic concept and structure of application software	80,32	82.45	83,38	64.2	83.28625	3	81.81	3	3	3	Attained	-
1					Identify the existing configuration of the computers and peripherals	80.32	87,12	74.63	80.12	79.6475	3	83.33	3	3	3	Attained	

eston? & A Drisin

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Gov. Added UGC Autonomous & NAAC Accredited Institute Affiliated to RCPV, Bhopat) DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

See	Faculty Name	Section	Course code &	10.0	Course Outcome Statements									**********	·		
	The state of the s	Section	name		Course Outcome Statements	from Quiz (%	CO attainment from Assignment (% age	from Mid Sem	CO attainment from End Sem (%age)	CO direct attainment (%age)	attainment	CO indivers attainment (Mage) (Calculated using CO Ob, End Sem Seminar, I min Pager writing)	CO indirect affainment level	Overall CO attainment	Target (To be set for Overall CO Attainment)	Attained out attained	Action taken for Net Arrained
1	Mr. Amit Manjwar & Mr. Mahesh Parmar		150111-IT Workshop	cox	lotegrate the PCs into local area network and re-install operating system and various application programs.	89.31	87.12	68.75	70	74 24125	3	81.81	d:	3	3	Attained	
	Treasure More			CO4	Design and develop basic web pages using HTML and CSS	69.07	70.61	75.6	79	75.86	9)	89	3	3	3	Amised	8
				CO5	Design & create and implement a static and dynamic webpage	78.15	75.45	85	67	70.23	3	79,78	3	3	3	Attained	*
				COS	Design and implement a program to solve a real world problem.	77.23	69.68	68.59	66	70.03625	13/	80	31.0	3	3	Amined	*

	Excellent (3)	Very Good (2)	Good (1)
Attainment Levels	70	60	50

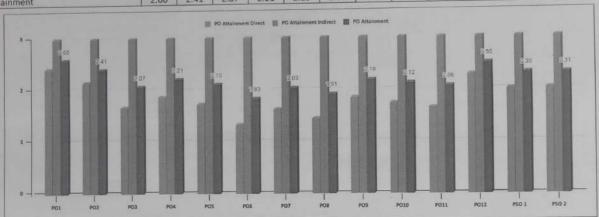
Total CO Attainment = 80% of Direct CO Attainment + 20% of Indirect CO Attainment
Direct CO Attainment = 12.5% of Weekly Quit Scare +
12.5% of Weekly Assignment Score +
25% of Mid Sem Exam Score +
50% of End Sem Exam Score
by respective course immostror, was collected tvia Institute's MOODLE), along with the course and seminar

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-14

Review of PO attainment 2017-2021 batch, CO-PO Mapping Matrix with attainments and gap analysis

ITEM No-20


Madhav Institute of Technology & Science Gwalior Department: Computer Science & Engineering

S.No.	Course Code & Name	1 001	T nee	T many	1	-	T		-		2017-2				
1	150301: Digital Electronics	P01	P.O.2	P03	PO4	P05	P06	P07	P08	PO9	POTR	P011	PO12	PS0 1	P50
2	150302 Data Structures	2,50	2,17	1.61	1.33	0.83	1.67	0.67	3.00	1.33	2.00	1,47	1.87	1,58	0.93
3	150304, OOPs and methodology	1.83	2.00	1.50	1.89	2.00	1.22		1.50	1.94	2.00	1,42	2.33	1.93	2.00
4	150303: Computer Graphics and Multimedia	2.80	2.40	1.80	2.33	1.00	2.00	1.11	2.33	2.00	0.67	2.67	2.40	2.33	1.00
5	150302: Date Structure LAB	2.67	2.50	1.83	2.33	2.00	1.40	2,00	1,00	2.00	3.00	1.75	2.80	2.20	3.00
6	150303: Computer Graphics LAB	2.67	2.50	1.67		1000000	1.33	2.00	1,50	2.17	1.50	1.75	2.50	2.33	2.63
7	150304: Object Oriented Programming LAB	2.67	2.30	1.83	1,75	2.00	1.20	2.25	1.50	2.17	2.00	1.75	2.50	2.33	2.50
R	150305 Hardware LAB	2.50	1.83	1.83	2.00	1.50	1.50	2.00	1.50	2.00	2.50	1.75	2.67	2.17	2.50
9	150401: Design and Analysis of Algorithm	1.69	1.63	1.83	1,53	1.53	1,39	1.92	1.42	1.78	1,47	1.28	2.33	1.94	2.00
10	150402: Database management system	1.39	1.56	- Maria	0.93	0.89	1.06	1.33	0.87	1.39	0.83	1.33	1.78	1.67	1.61
11	150403: Operating system	2.25	2.00	1,33	1.58	1.22	1,00	1.33	0.83	1.39	0.67	1.08	1.56	1.89	1.61
12	150404: Computer System Organization	2.11		1.75	2.00	2.50	1.00	1,75	1.67	1.75	1.50	1.00	2.00	1.75	1.00
13	150401: Design and Analysis of Algorithm Lab	2.67	1.22	1.22	1.44	1.44		1.53	1.44		1.53	1.33	1.44	1.00	0.93
14	150402: Database management system Lab	100000	110010000	1.50	2.33	2.00	1.50	1.80	1.50	2.17	2.50	1,75	2.83	2.33	2.83
15	150405: Programming Lab	1.78	2.60	2,00	2.00		1.75	1.75	2.00	2.25	2.00	2.00	2.60	2.20	2.40
16	150503: Theory of Computation	- United	1.50	1,17	1.11		1.00	1.53	0.83	1.22	2.00	1,00	1.83	1.39	1,83
17	150502: Software Engineering	1.61	1.50	0.94	1.78	0.44	0.73	1.25	0.83	1.17	1.83	1.25	1.67	1.33	1.44
18	150504: Microprocessor & Interfacing	1,87	1,60	1,60	0.89	1.47	0,83	1.56	1.00	1.80	2.00	1.33	1,73	1.80	1.87
19	150501: Discrete Structures	1.73	1,73	1.20	1.33	0.67	0.93	1.42	1.00	1.53	0.67	1.78	1.67	1.53	1.60
20	150503: Theory of Computation LAB	2.43	2.18	1.60	1,67	0.89	1.98	1.42	2.00	1.63	0.67	1.95	2.67	1.71	1.40
21	150502: Software Engineering LAB	2.50	2.39	1,56	1,75	2.50	1,22	2.00	1.33	2.06	2.50	1.83	2.33	2.17	2.17
22	150504: Microprocessor and Interfacing LAB	2,67	2.50	1.67	1.75	2.00	1.20	2.25	1.50	2.17	2.00	1.75	2.50	2.33	2.50
23	150602: Computer Networks	2.67	2.33	1.67	2.00	1.50	1.20	2.25	1.50	2.17	2.50	1.75	2.50	2.33	2.50
24	150601: Compiler Design	3.00	1.60	2.00	1.83	2.00	1.00	1.33	1.50	2.00	2.00	1.50	1.60	2.00	1.25
	160611: Network and Web security	2.83	2.17	1.83	2.00	2.20	1.00	1,00	1.25	1.60	1.75	1.75	2.50	1.83	2.00
25	150613: MOBILE COMPUTING	2.67	2.50	1,67	2.25	2.33	1,20	2.00	1.25	1.80	1.50	1.83	2.50	2.17	1.83
26	900106 (OC): DATA STRUCTURE	2.83	2.20	1,67	2.00	1.00	1,17	2.40	1.33	2.00	3.00	1.75	2.67	2.20	2.67
27	900107 (OC): Python Programming	2.83	2.50	1.67	2.00	3.00	1,20	2.25	1.25	1.83	1.67	1.75	2.50	2.17	2.67
28	150711: Networking with TCP/IP	2.83	2.33	2.33	2.20	1.50	2.00	1.00	1.00	1.33	1.00	2.60	1.83	2.00	2.00
29		2.67	2.67	1.67	2.00	2.00	1.20	1,00	1,17	2.17	1.00	1.75	2.50	2.33	1.50
30	150713: Distributed Systems	2.83	2.67	2.17	2.67	2.50	1,67	1,00	1.50	1.83	1.17	2.00	2.67	2.00	1000
31	150712 Data Mining and Warehousing	3.00	3.00	2.17	2.25	1.75	1.17	1,00	1,33	2.17	1.50	1.80	2.33	2.83	2.33
	Internet of Things LAB	2.83	2.25	2.17	2.40	2.00	1.00	1.00	1.17	1.50	1.50	1.50	2.83		2.33
	100008: Intellectual Property Rights	2.50	2.60	1.67	2.00	2.00	3.00	3.00	1,80	2.17	2.50	1.60		2.00	2.50
34	Internation Project	2.50	2.60	1.83	2.00	2.67	1.00	1,40	2.50	2.17	2.17	2.00	2.50	2.33	2,50

Department : Computer Science & Engineering

Batch: 2017-2021

	Excellent 60.00	50.00	40.00											
	ğ	802	2		POS	ž		804	2		POIL	FOTO	PSOIL	
Column1										0.00	0.86			2.01
PO Attainment Direct	2.42	2.15	1.67	1.87	1.72	1.32	1.62	1.44	1.84	1.74	1.65	2.28	2.00	2.01
	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
PO Attainment Indirect	3,00	3.00	3.00	3.00	3.00	1.12	2000	00.000			2.00	2.50	2.30	2.31
PO Attainment	2.60	2.41	2.07	2.21	2.10	1.83	2.03	1.91	2.19	2.12	2.06	2.50	2.50	2.31

Aly

27\$

A.

- Pikanz

Batch:	2017-2021			co	Attainm	ent					co-	POI	/latr	ix:										p	O Att	ainme	nt					
Sem	Course Code & Name		Course Outcome	Direct % Attainme nt	Indirect % Attainm ent	Total % Attainmen t	104	POT	503	NO4	808	101	NOS.	103	POLL	1101	P50.1	1001						701	-			F	1868	-		
3.01	97	CO1	Illustrate various number systems, Binay codes and its application in digital design	88	72	84.8					-	H	+	t	2				84.0	84.8		56.53	28.266						56.533	24.0	56.533	***
.00	cronic	.CO2	Identify the logic functions, circuits, truth tables and also apply the laws of Boolean algebra to	84	76	82.4	1	1	,	1 1	2	Н		,	2	3	2	1	27,46	27.46	54.93		27.466				54.933	-	54.933		54.913	NOO()
101	Olgital Ste	CO3	Develop the formal procedures for the analysis and design of combinational circuits	42	59	45.4	3	2	2	2 1	2	П		T	2		1	1	45.4	30.26	30.26	30.26	15.133	30.266					30.266	15.133	15 133	15.13
10	D)O	CO4	Analyse sequential circuit's components and their usability in digital circuits.	68	59	56.2	1	2	1	2 1	3	П	3 3		2	2	2	Ì	22.06	44.11	22.06	44.13	22.066	66.2		66.2	22.066		44.133	44.133	44.133	
101	150301:	CO5	Compare the concept of memories, programmable devices and digital ICs.	70	- 6t	68.2	2	1	1	1 1	1							1	45.46	22.73	22.73	22.73	22.733	22.731				45.466				22.73
101		C06	Design and analyze circuits for digital arithmetic	19	53	25.8	2	1		2		2	3	9	2	3		1	17.2	8.6			17.2	- 15	17.2		25.9		17.2	25.8		8.6
(1)		100											150	301:	Digita	al file	ictror	olex	40,4	36.3	32.5	36.2	22.1	43.5	17.2	66.2	34.3	45.5	40.6	50.5	42.7	26.1
101	22	CO1	Outline the basics of algorithms and their performance criteria.	85	72	82.4	3	2	2	3	1			2	1	П	2		82.4	54.93	54.93	82.4		27.466			54.933		27.456		54.933	
III	uctur	C02	Explain the working of linear and non-linear data structures	77	74	76,4	(3)	2	2	2	1		2 3	2	2		2		76.4	50.93	25.466	50.93		25,466		50.93	50.933		50.933		50.933	
- 01	Ta Ser	CO3	identify the appropriate data structure to solve the specific problems.	61	56	60	3	3	2		2.			2		2	2		60	60	40			40			40			40	40	
UI.	2: Data	CO4	Analyse the performance of various data structures and their applications.	32	49	35,4	3	1	2	2	1			2	2		2	3	35.4	35.4	23.6	23.6		11.8			23.5		23.6		23.6	35.4
101	150302:	COS	Evaluate the time and space complexities of various data structures and their applications	68	78	70	3	2	2		2		1 3	2	2	3		3	70	46.66	45,66			46.666		23.33	46.666		46,666	70		70
101		COS	Design the optimal algorithmic solutions for various problems	.7.1	62	69,2	2	3	2	2	1			3 2		2	3	2	46.13	69.2	46.13		45.133	23.066			69.2	46 133		46.133	69.2	46.13
111	Marine Mal	190											1	5030	2: Da	ta St	ructu	tron.	61.72	52.85	939,46	52.31	46.133	29.07		37.13	47.550	46.133	37.156	52,044	47.73	50.51
101	Allopo	CO1	Relate the concepts and significance of OOPs in real world.	75	70	74	2	2	1	3 1		1	T	2	3	2	3		49.33	49.33	3 24.66	74	24.666		24.664		49.333		74	49.333	74	13.635
101	ethod	CO2	Demonstrate adeptiness of object oriented programming to solve problems using Object	56	83	61.4	3	3		3		2	3	T	3	3			61.4	61.4		51.4			40.93	61.4			51.4	61.4		
- 01	E pu	CO3	Apply object oriented programming to develop solutions of problems using standard language	59	65	60.2			2	3 1			2 3	3	3	3	2				40.13	60.2	20.066			40.13	60.2		50.2	60.2	40.133	
10	00 s	CO4	Analyze data flow diagrams and flow charts for small/ moderate problems	35	82	44,4	1	3		2	3	1		3 2	3	3			14.8	44.4		29.6		44.4	14.8		44.4	29.6	44.4	44.4		
.10	150304; 0	CO5	Determine how to simulate the problem in field of Operating system, Computer networks and real	58	85	63,4			2				2		3		2				42.26					42.26			63.4		42.766	
111	150	C06	Develop software using concepts of objects, associations and integrity constraint.	57	83	62.2	2	2	1	2 1	3				3	3		1	41.46	41.46	6 20.73	41.46	6 20,733	62.2					62.2	62.2		20.7
- 111												150	104: 0	OP	and r	meth	lodol	OEY.	41.75	49.15	31.95	53.33	21.822	53.3	26.8	47.93	51.311	29.6	60.93	55.506	52.13	20.7
W.	pun	C01	Illustrate the fundamental concepts of Computer Graphics, hardware & software components and	59	65	60.2	3	2	2	3	1	2		2 2	1 1	3	2	3	60.2	40.13	3 40.13	60.2		20.06	40.13		40.133	60.2	20.06	660.2	40.131	60.2
m	phics	COZ	Explain various graphical image genration & manipulation methods and algorithms.	63	60	62,4	3	2	1	2	1			2	2	3	2	3	62.4	41.6	20.E	41.6		20.8			41.6		41.6	62:4	41.6	62.4
111	er Gra	CO3	Apply various methods of generation & manipulation of images for creating graphical	70	62	68,4	3	3	2		2	3		2		2	2	3	68.4	68.4	45.6			45.6	68.4		45.6			45.6	45.6	68.4
100	Computer	CO4	Explain various rendering, illumination and color models of realistic image or pictures using image	93	80	90,4	2	3	2	2	1	1	-	2	2	3	2	3	60.26	90.4	60.26	60.26	4	30.13	30.13	1	60.266		60.25	690.4	60.268	2000
III.		COS	Discuss various methods to create natural seen & realistic images in 2D &3D space	63	55	61.4	3	2	2		2	2	1 :	2	2	3	3	3	61.4	40.93	3 40.93			40.93	40.93	20.46	40.933		111111111111111111111111111111111111111	1000	10100	61.4
.00	150303	CD6	Design & analysis of various graphical image processing techniques and animation	57	50	55.6	2	1	9	1			4 3						37.06	55.6	37.06		37.066	18.53		18.53	155.E	37.068			655.6	37.0
10	The Party	1 100		14-		34,4	111111			15030)3: C	mpu	er Gr	aphi	es and	d Mu	Itimi	ella	65.53	250.20	34154			2000	2000	Lays	1	200	Sec.		-	200
1100						**				1	100									200.53	741.34	34.02	1	31,50	44.3	20.46	45.706	50.2	40.71	154	49.8	68.5

@ Ald word &

Ag

& P. K. Sing

atch:	2017-2021			co	Attainn	nent					CO-	PO N	fatri	×				П							PO At	ainm	ent					
Sem	Course Code & Name		Colorse Outcome	Direct % Attainme nt	indirect % Attainm ent	Total % Attainmen t	FOI	POT	103	105	101	101	109	0104	FO11	1012	1000	100		700	THE REAL PROPERTY.					100	700	THE STREET			1	1000
111		CO1	Outline the houses of algorithms and their performance criteria	80	75	79	5	2 7	1 3		1	2	2	1	1	2	2 3	79	52	666 5	7,666	79		26.33	52.66		52.66	26,337	26.33	3 53.466	51.66	79
111	Na.	COZ	Explain the working of linear and non-linear data attractures	64	71	65.4	3	2 3	1 2	8	1		2 2		2	3	2 3	65	4 43	6 2	1.8	43.6		21.8		43.5	43.6		43.6	65.4	41.6	65,4
m	tructi	C03	Identify the appropriate data structure to solve the appearing problems	68	66	67.6	3	3 3	2		2	3	2			2	2 3	67	6 67	6 A	5.066			45.066	67.6		45,068			45.066	45.054	67,6
111	Data Str	C04	Analyse the performance of various data structures and their applications	92	82	90	2	3 2	2 2		1	1	2		2	3	2 3	60	90	60	0 1	60		30	30		60		60	90	60	90
101	150302: 0	C05	Evaluate the time and space complexities of various data structures and their applications	76	.66	74	3	2 2			2	2 1	2		2	3	3 3	74	49	333 45	0.333			49.333	49,33	24,66	49.33		49,33	74	74	74
311	150	C06	Design the optimal algorithmic solutions for various problems	76	68	74.4	2	3 2		2	1		3	2		2	3 2	49.	6 74	4 4	9,6		49,6	24.0			74.4	49.6		49.6	74.4	49.6
THE.			100000										5030	2: 0:	ita St	tuctu	ne LAI	65.	933 62	933 41	5.411	60.866	49.6	32.880	49.9	34.13	54.17	37.966	44.81	62.788	58.28	70.93
01	9	CO1	Demonstrates the fundamental concepts of Computer Graphics and its applications	76	64	73,6	3	2 1	1 2		1	2	1	3	1	3	2 2	73.	6 49	066 24	1.533	19.066		24.533	49.06		24.533	73.6	24.53	73.6	49.05	49.06
111	Pilos	COZ	Explain and use hardware's and software's component of computer graphics	88	69	84.2	3	2 1	2		1		2		2	3	2 3	84.	2 56	133 28	1.066	56.133		28.066		56.13	56.133		56.13	84.7	56.13	384.2
101	ir Ga	CO3	Apply various image generation, manipulations and color model techniques in coding	80	88	81,6	3	3 2	1	2	1	5	3	1		1	2 3	81.	5 81	6 5	4.4	77.2	54.4	27.2	81.6		81.6	27.2		27.2	54.4	81.6
101	mpute	C04	Implement algorithms for create and manipulate image in programs	76	73	75,4	2	3 2	2		1	10	2		2	3	2 2	50.	266 75	4 50	0.266	50.266		25.133	25.13		50.266		90.26	75.4	50.26	50.26
111	97.00	C05	Develop the ability to write computer programs for create image and animation using graphics	80	84	80.8	3	2 2			2	3 2	2		2	3	3 3	80.	8 53	866 53	1.866			53.866	80.8	26.93	53.866		53.866	8,08	80.8	80.8
m	15030	C06	Develop application programs and projects in terms of image and animation using computer	84	91	85.4	2	3 2		2			3	2		2	3 2	56	93385	4 56	5,933		56.933				B5.4	56,933		56.933	85.4	56.93
111												15030	3: Co	mpu	ter G	raphi	cs LAE	71	233 66	911 4	5,677	15,666	55,669	31.76	59.15	41.53	38.633	52.577	46.7	66.355	62.67	67.14
10		CO1	Select proper arithmetic, logical, relational, and string manipulation expressions to process data.	72	65	70,6	3	2 2	3		1	2	2	3	1	3	2 3	70.	5 47	066 47	7.066	70.6		23.533	47.06		47.066	70.5	23.53	70.6	47.066	70.6
ш	AB	C02	Demonstrate the use of various OOPs concepts with the help of programs	92	84	90.4	3	2 2		2	1	2	2		2	3	1 2	90,	4 60	266 50	0.266		60.269	30,133		60.266	60.266		60.268	90.4	30.13	60.26
101	150304: Object Oriente Programming LAB	C03	Apply validation techniques to build a retiable solution to a given problem	64	75	66.2	2	1 2			2	3	1			3	2 3	44	133 22	068 44	1,133			44.133	66.2		22.068			66.2	44.131	66.2
III	igo:	C04	Analyze and write programs to solve more complicated problems using the concepts of	88	79	86.2	31	3 2		1	1	1	2		2	2 :	2 3	86	2 86	2 57	7.466	1	28.733	28.733	28,73		57.466		57,466	57.466	57.46	86.2
311	10E05	C05	Chouse appropriate programming concepts as and when required in the future application	72	81	73.8	3	2			3	2 1	2		2	3	3 3	73.	3	45	7.2			73.8	49.2	24.6	49.2		49.2	73.8	73.8	73.8
m		C06	Construct a complete class definition with in the class definition, write class and instance methods	64	51	63,4	2	3 1	1		1		3	2		2	3 1	42.	266 63.	4 23	1133	21.133		21.133			63.4	42.266		42.266	63.4	21.13
111	MO PER L								139	15030	4: Ot	ect C	rient	ed Pr	rogra	mmir	ig LAS	67.5	55.	8 46	5.544.4	5.866	44.5	36.911	47,8	42.43	49.91	56,433	47.616	66.788	52.66	63.03
101		CO1	Explain basics of different computer peripherals and interfaces.	40	55	43	3	3 3	2	2	1	2 2	2	1	2	2	2 3	43	43	43	2	8 666	28.666	14.333	28.66	28,556	28.666	14.333	28.664	28.666	28.660	43
101	# IAB	C05	Demonstrate architecture of various computer hardware devices and their functioning	72	79	73.4	3	2 2	1	2	3	2 2	2	1	2	3	3 3	73./	48.	933 48	1933 2	4.466	48.933	73.4	48.93	48.933	48.93	24,468	48.93	73.4	73.4	73.4
111	rdwar	C03	Demonstrate the details of system buses, memory system, and I/O interfaces	60	72	62.4	2	3 2	2	1	1		3	2	1	2	3 1	41.5	62	4 41	1.6	11.6	20.8	20.8	0		62.4	41.6	20.8	41.6	62.4	20.8
101	5. Ha	C04	Identify the existing configuration of the computers peripherals and creating wireless	58	69	60.2	3	2 2	3		1	2	2	3	1	3 3	3 3	60.3	40.	133 40	1336	0.2		20.066	40.133		40.133	60.2	20.056	60.2	40.133	60.2
111	150105:	C05	Analyze progress in contemporary peripherals and bus systems.	84	83	83.8	3	2 2		2	1	2	2		2	3 :	1 2	83.8	55.	866 35	.866		55.866	27.933		55.B66	55.866		55.866	83.8	27.933	55.86
m		C06	construct a networking based on IPv4 address scheme.	64	75	66.2	3	1 2	1	2	2	3 1	1	1	1		2 2	66.2	22	066 44	133 2	2.066	44.133	44.133	66.2	22.066	21.066	22.066	22,066		44.13	44.13
-3111	THE OWNER.					7	110		-				10	0305	S. Mar	rfwar	re LAS	61.3	66 45	4 45	6113	5.4	39.68	33.444	45.983	38.883	43.01	32,533	32.733	57.533	45.11	49.56

@

+ mis

Sp

A.

P.K.Shar h

atch.	2017-2021			co	Attainm	ent				- 9	co-	POI	Mate	ix.										, ,	O Att	ainme	nt		F.	-	T	6
Sem	Course Code & Name		Crime Dutcame	Direct % Attainme nt	Indirect % Attaiom ont	Total % Attainment t	FOI	100	101	200	100	rest	200	FC20	MOII	RON	1054	1064	1													
111		CO1	Retrieve the engineering application problems to	59	35	54.2	3	3	2 2	2 1	1	2		2 3	1	2	2	3	54.2	54.3	36,133	56.13	18.000	18.00	36.13		30.153	54.2		1	30.33	
111	7	CO2	Describe the basic concept of Comptex Variable Linear Programming Problem and Numerical	48	44	47.2	3	2	3 3	2	3	1	1 2	2	2	3	2	3	A7/2	31.46	47.3	31.460		47.2	15,73	15.731	31.466		32:466	77/12	31.46s	100
III	Heed Heed	CO3	Classify Complex Variable Linear Programming Problem and Numerical Methods so as to apply	72	52	68	3	3	2	1	1	1	1 1	1		2	2	2	68	68	45 33	22.66		22,660	22.666	22.664	22.000			-	45.300	1
101	100001: Engines Mathematics	COA	Inculcate malytical and computational skill to interpret the topics for engineering problems	68	43	63	2	3	2	3	2	2	1 1	1	2	2	2	3	42	83	42	63		A2	102	2.1	31		-	97.	47	67
100	N/21	cos	Analyze the Complex Variable, Linear Programming Problem and Numerical Methods to	61	81	61	3	2	2		3		2 3	2	2	2	2	3	01	40.664	40.666			63.	-	40.566	40,666		40,666	40.666	-	100
111		CD6	Evaluate and Implement autable techniques relevant for industries and counstant to the	58	32	52.0	2	3	2	2	2		3	3 2		2	3	2	35.2	52.8	20000		and a little	35.2	-		52.4	2000011		177	52.0	85
m			Peter and your analysis of the Control of the Contr								10	0001	Engle	neerli	ng Mi	athen	nuttes	at .	51.260	51.68	43.08	30.33	26,63)	37.68	29.13	25.010	-	Total State of		1000	A1.4	00
IV	8	COL	Define the basic properties of algorithm	94	82	91.6	3	1	3	1	1	2		1 1	1	3	2	2	91.6	30.53	-	30.53	-	-	n1.066		O SALID	30.533			61.064	P
IV	- isk	COZ	Analyze the complexity of an algorithm	58	81	61	3	2	1 3	2 1	1		1	1	2	2	2	2	61	40.664	20.33	40.66	20.133	-	-		40.666		10000	40.660	-	4
IV	A PER	CO3	Apply mathematical preliminaries to analyse and design stages of different types of algorithms	49	57	50.6	3	1	2	1	2	1	1	1	2	3	2	2	50.6	50.6	33.73	33000000		120//	50.6	16.86	-				33.73	н
10	Design and A	CO4	Examine algorithms for a number of important computational problems	33	66	39.6	2	3	2	2	1	1	1	2	2	3.	3	2	26.4	39.6	26.4	20.4		19.2			26.A	-	26.4	99.6	19.6	1
IV	11: De	cos	Compare different design techniques to develop algorithms for various computational problems.	88	71	83	2	2	2	1	2	2	1	2	2	2	3	3	N. 8.18-311	No. of Contract of	55.33		-	Section.	55.33	20000	100000	-	100000	255.33		
IV	15040	CO6	Build the general principles and good algorithm design techniques to develop efficient computer	30	52	34.4	2	3	2	1 2	2	1	1	3 2	3	2	2	2	200000000000000000000000000000000000000		10000	0.000	22 9 8 3	1000	-	-	-	****	-	-	122.93	+
IV										150	401:	Desi	ger am	d Ana	sizyla	of Al	gorith	m	51.31	41.85	41.72	\$25.1N	23.64			-	200000000	_	COLUMN 2	450.12	100000	10
IV	ent.	CO1	Demonstrate the concepts of different type of database system	97	52	8.8	2	2	2	3	1	2		2	1		3	2	58.66	58.66	58.66	88			3 58.66		\$8.666		29.33		11.11	25
IV	- Sem	CO2	Apply Relational algebra concepts to design database system.	45	54	46.8	9	1	1	2	1	1	2	2	2		3	2	46.8	15.6	15.6	31.2		15.6	000000	31.2	31.2		91.2		40.0	3
IV	WE WE	CO3	Make use of queries to design and access database aystem.	58	75	61.4	1	3	2	1	2	2		2		2.	3:	3	20.46	61.4	40.93		20.464		3 40.93	-	40.931	-	CONTRACT OF THE PARTY OF THE PA		361.4	4
19	syntee	CO4	Analyze the evaluation of transaction processing and concurrency control	30	73	38.6	2	3	3	2	1	1		2	2		2	3	25.73	30.6	38,6	25.73		100000	6 12.86		25.73)	-	25.73	-	25.73	+
IV	- Ida	cos	Determine the optimize database for real world applications	97	74	92.4	3	2	2	2 2	2	2	1	2	2	2	3	2	92.4	61.6	61.6	1000	61.6	\$15000C	10000	30.8	61.6		61.6	61.6	92.4	6.
IV	150402:	C06	Design a database system for a real world application.	38	71	44.6	2	3	2	2	1			3 2	t .	2	2	3.	2000	1000	29.73		10000	14.86	No.	700	-	29.733	200	2000	29.73	-
IV								-	_	- 1	15040	02: D	tabas	ie ma	nage	ment	syste	m		46,74	BOX	100	37,26		37,93	31	- Indiana		20,00	44.00	-	٠
īV	2	CO1	Outline the basic concept of operating systems	67	62	66	3		2	2 3	1			1 1			2	1	66		44	44	66	22			724	22			44	2
IV.	1	CO2	Analyze the working of operating system	66	75	67.8	2	1	2	3		2		2	1		1		45.2	22.6	45.2		67.8	-	45.2		45.2	-	22.6		22/6	H
IV.	ating	COB	Examine the working of various scheduling/allocation approaches	59	74	62	2	2		2	1				-		Н	-	41.33	41.33	3		0.000	20.66		10393		Disc	1000		1000	H
IV	Oper	CO4	Measure the performance of various scheduling/allocation approaches	67	71	67.8		2		3		1	1	- 2	1		2			45.2			67.B		-	22.6		11994	22.6		45.2	-
IV	50403:	cos	Compare the various operating system problems/insucs	76	81	77	2		2	2	1	1	1	2	1		2	-	51.33	-	51.33		10000		6 25.66				25.66	42.53	51.33	7
IV.	H	CO6	Develop the Solution of various operating system problems/asses	67	51	63.8		3	1	2	1	3	3	2	1	2		1	(2) (3) (1)	63,8	21.26	1			663.8		42,53	-	22.50	I A Chicago		-12
16													150	0403	Ope	rating	syste	m	50.96	43,23	3 40,45	94	56.13	n 22.4	39.31	97.35	40.26	33.6	23.62	2 42 53	140.78	Δŝ

@ ALY DE

The

A PARILAN

etich:	2017-2021			co	Attainm	ent				14	CO-P	OM	atrii	Č.										P	O Atta	inme	nt	-		1		Y
Sem	Course Code & Name		Courie Outcome	Direct % Attainme nt	Indirect % Attainm ont	Total % Attainmen 1	MOI	103	FON	105	106	902	908	9010	1011	rom	1501							896				- 2	1994	Real Property lives	T	
IV		COL	Demonstrate the computer architecture for	68	65	67.4	3		1	2		2 3		2		1	1	67	4	22,466		22.465	44,933		44,933	44.933		44,933		22,466	22,466	
IV	E	CO2	defining basic component and functional unit. Recall different number system and solve the	58	71	60.6	3	1	T	1		2 1		2		1	1 1	60	\6 Z	20.2			20,2		40.4	20.2		40,4	-	2012	2000	20.2
IV	flor S	CO3	basic arithmetic operations of signed and Develop the fundamental concept to understand	59	58	58.8	3	1		1		1				2	1	58	.0	19.6			19.6			19.5				39.2		19.6
iv	t. Computer Sy Organization	CO4	the working of microprocessor Explain the basic concept of input output	64	54	62	2	2 3	2	1		1 1		1		2	1	41	333	41,333	20.666	41.333	20.666		20.666	20.666		20.666		41.333	000000	20.666
IV	0400	COS	Organization Compare various memory and mapping	62	45	58.6	2	2 2	8	3		2 3		2		2	1 2	39	.066	39.066	39.066		58.6		39,066	58.6		39.066		39.066	2000	100000
IV	85	C06	Develop the skill of writing assembly language	58	55	57.4	2	2 2	2	3		2 3	3	2	2	3	2 1	38	266	38.266	38,266	38.266	57,4		38.266	57.4		20000	(CANADA	57.4	100000	10111
IV			programming							1	50404	: Com	pute	r Syst	em C	Organi	zation	50	911	30.155	32.666	34.02	16.9		36.666	16.9		HOASES	NESSTINES.	36.611	-	100000
iv	10	CO1	Label basic algorithms and different problem	72	64.1	70.42	3	2 2	3		i	2	2	3	1	3	2 3		1,42	46.946	45.946	70.42		23,473	46.946		46.946	70.42	23.473	70.42	46.946	70.42
iv	Design and Analysis Algorithm Lab	COZ	Demonstrate methods to solve non-convenional problems and expertise for analyzing existing	92	62.39	86.678	2	2 1	2		1	1 :	2 2		2	3	2 3	86	.07B	57.385	28 692	57.38				57.365	1		57.385	86.078		
IV	m Lab	CO3	Experiment with the algorithms as a precise mathematical concept	84	60	79.2	3	2 1			2	2	2			3	2 3	75	1.2	52.8	26.4			-	52.8		52.8				52.8	-
IV	dina.	CO4	Examine the design algorithms, establish their correctness, their efficiency and memory	88	66,66	83.732	2	3 7	2		1	2	2		7	3	2 3	55	821	83,732	55.82	55,82	1	27.910	*******	-	55.82		02000000	83.732	SENSOR.	2000
iv	90.4	COS	Solve the problems using different algorithm solving paradigm.	72	61.53	69.996	3	2 1			3	2	1 2		2	3	3 3	65	9.906	46.604	23.30			69.906	46.50	23.30	46.60		46.604	69.906	69.90	69.90
iv	150401:	C06	Develop programming skills to practice well- known algorithms and design data structures to	88	58,97	82.194	2	3 2	2	2	1		3	2		2	3 2			82,194	RANNS	-	150000	27.398	-		-	54.791			82.19	-
IV									15	50401	: Desi	ign an	d Ana	alysis	of Al	gorit	ım La	6	9.370	61,610	39.32	61.20	8 54.796	38.36	46.17	40.34	56.95	62,600	45,821	74,022	60.84	2 74.02
īV	16	C01	Construct database schema for a given problem domain	75	85	77		2	1	2	3		3		2	3	2			51.333		51.33	3	77		77			51.33	77	51.33	
iv	1000	C02	Apply integrity constraints on a database schema using a state-of-the-art RDBMS.	76	75	75.8	2							2			3	5	0.533									50.53	3			25.20
IV	Distabuse man system Lab	C03	Apply SQL queries using DDL and DML to design and access database system	71	75	71.8	2	3	2 3	2		1	2		2	3	2 1	4	7.866	71.8	47.86	6 47.88	6		23.93	3	47.86	6	47.86	671.8	47.86	671.8
IV	Tarpa Aspara	C04	Make use of operators and functions used in query	85	76	83.2	3	2			2	2	1 2		2	3	3 2	8	3.2	35.456				55.46	55.46	6 27.73	3 55.46	6	55.46	6 83.2	83.2	83.2
IV	2: Dill	C05	Distinguish Tables and Views for database system.	64	84	68	3	3	Z		1	3	3			1	2 3	6	8	58	45,33	3		22.66	668		58			22.66	6 45.33	3 68
IV	150402:	COS	Develop a small project for real world scenario.	59	81	63.4	2	3	2	2	1	1	2		2	3	2	4	2.266	63.4	42.26	6 42.26	56	21.13	3 21.13	3	42.26	6	42.26	663,4	42.28	6 42.2
IV				Tole:						1504	102: 0	ataba	se m	anage	emen	it syst	em La	b 5	8.373	52	45.15	\$ 47.15	55	44.06	6 42.13	3 52.36	6 53.4	50.53	3 49.23	3 63.61	3 54	58.1
IV		COL	Demonstrate the fundamentals of computer programming	52	64	54.4	3	2	2	3	1	2		1 3	1	3	2	3 5	4.4	36.26	36.26	654.4		18.13	3 36.26	66	36.28	654.4	18.13	354.4	36.26	58 54.4
1V	200	CO2	Read, understand and trace the execution of program	32	75	40.6	3	2	1	2	1		2 2	2	2	3	2	3 4	0.6	27.06	6 13.5	27.0	56	13.53	3	27.08	6 27.0	6	27.06	40.6	27.0	66 40.6
IV	- imm	C03	Develop Conditional and Iterative Statements	72	71	71.8	3	3	2		2	3		2		3	2	3 7	1.8	71.8	47.86	6		47:86	6 71.8		47.8	56		71.8	47.8	66 71.8
IV	Program	C04	Design the program using functions	32	68	39.2	2	3	2	2	1	1		2	2	3	2	3 2	6.133	39.2	26.13	3 26.1	33	13.06	6 13.0	56	26.1	33	26.13	33 39.2	26.1	33 39.2
IV	130405: 1	COS	Implement the programs using Derived and User defined data types	64	64	64	3	2	2		2	2	1 :	2	2	3	3	3 1	14	42.66	6 42,61	6		42.66	66 42.6	66 21.3	33 42.6	56	42.66	66 64	64	54
1V	951	C06	Design program for a given problem using computer programming	44	71	49,4	3	3	2		2	3		2		3:	2	3	19.4	49.4	32.9	33		32.93	13 49.4		32.9	33		49.4	32.9	33 49.4
IV.		1											150	0405:	Penp	ramn	ing L	ab !	51.055	44.4	33.2	33 35.8	68	28.03	33 42.6	4 24.2	35.4	88 54.4	28.5	53.21	33 39.0	44 53.2

@ A4-0-3 \$

Ast .

R. K. Siya-

BUCH.	2017-2021			co	Attainm	ent				1	CO-P	O M	atri										p	O Att	ainm	ent					
Sem	Course Code & Name		Course Outcome	Direct % Attainme nt	Indirect % Attainm ent	Total % Attainmen	104	102	10)	POS	100	200	604	90104	POIS	FOUL	1080	MOTO	-	100	E.			1				4		1944	12
٧	tion	CO1	Explain the basic concepts of switching and finne automata theory and languages	60	63.56	60,712	-						-					60.71	2 40 47	20.22	3 40 474		20 222	40.474		20.22				-	
٧	upodu	CO2	Relate practical problems to languages, automata, computability, and complexity	57	61,89	57,978	3		1 2		1	2	- 3	3	1	3 2	2		-		9 38.652		19.326		-	38.652	-		57.97E	1000	100
٧	of Co.	CO3	Construct abstract models of computing and analyse their power to recognize the languages	44	71.04	49,408		2			î.	, 1	-		1		3			6 32.93		16.469	No.	49 408	-	49.406				32.938	
٧	, Logo	CO4	Construct and analyze the grammar	67	69.03	67,406	-	1		Ť		3	1			1 2	3 3	10000	120000	0.00000	44.937	200000	-	22.468	-	44.937		TEN IN	67.406	-	
٧	##	CO5	Apply mathematical models and descriptors in various computing theories	36	63.78	41,558	2	3	2 1 2		1	3	12	Н	2	3 2	2	10000	2000	4 27.70	10000		5110	100000		27.704		IV-Sec.	41.556	TO COM	No.
٧	13080	C06	Solve problems in computer science using mathematical and formal techniques.	18	72.71	28,942	2	2	2	1	2	3 3	2		2	3 3	1 3	10000	200	2 19.29	-	19.294	27.704	44.336	13.83	2000	19.294	2000	19.294		20000
٧			the recommendation of		1 12.11	20.042	2	2	21	12			3	12		2 1 3	110000	Name of Street	A STATE OF	100000	1	16.538	21 241	38.474	26.29	-	-			-	
V	uz C	CO1	List various software models with respect to their accuracy and needs of the customer requirement	60	T	63,268						1505	03: 11	leory	of Co	mput	ation	1	10000	-		42.178	-	-	-				63 268		
٧	ineeri	CO2.	Explain the real world problems using software engineering concepts.	55	76.34	58,314	3	3	1 2	2	1	2	1	3	1	3 2	2		-			19,438	0.00000	100000		38.876		CONTRACTOR OF THE PERSON NAMED IN	58 314		
٧	No.	C03	Develop the technique and results with customer expectations.	49	69.92	53,184	-	3	1 4	1	1	9	1		2	3 2	3	1	200000	4 35.45	1000000	-000	THE REAL PROPERTY.	53.184	Silico	53.184		200000	25 200	35.456	20100
V	E MA	CO4	Identify and how to use various cost estimation techniques used in software engineering	57	70.46	59,692	2	, I	2 1	3	,	,	1	H				39.79	4 39,79	4 59.69	19.897	59.692	200000	100000	1	39.794			59.692	22/20/2	1000
V	8 20	cos	Compare design of a system, component, or process to meet desired needs within realistic	53	69.38	56.276	3	2	3 1	2	,	2 1	1		2	2 2	2	10000	10000			37.517			-				56.276		-
٧	1505	CO6	Develop the techniques, skills and software engineering tools necessary for engineering	74	71.75	73,55	,	,	2	1			Ť,			2 2				3 49.03	100000	49.033					49.031		E STATE OF	73.55	1
٧	F-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 5 5			7.111.0	10.00				1		100	una.	Softu	are E	n wlan	n/ina	53.31	1 43 43	0 40.16	4 29 92	40.552	23.134	42.88	28.81	44.00	56.150	34 319	50.717	47.58	49.7
V		COL	Classify the concepts of different advanced microprocessors and microcontroller	52	87	59		1	4 3	1	,	,	1	30114	4	a la	e ing	59	1	100,00	6 39.33	-	EALV	39.33	10000	19.66	10000	19.666	1	39.331	109000
٧	Sord	002	Illustrate the various peripheral interfaces, controllers and but standards	49	88	56.8	3	,	1 2	Ť	2	,	1	3	1	3 2		56.8	37,88	6 18.93	3 37,86		37.866	6	37,86	37.86	8	56.8		37.866	
V	proce	CO3	Build a system using peripheral devices and controllers for 8086 microprocessor	52	86	58.8	3	3	2 1		-	3	1			1 2		58.8	58.8	39.2	19.6		19.5	58.8		58.8			19.6	39.2	35.2
v	Micro	CO4	Distinguish the interface with various devices to the inicroprocessor.	68	75	69.4	2	3	2 2		1	1	2		2		2	46.26	6 69.4	46.26	6 46.25		23.13	3 23.13	3	46.26		46.266	68.4	45.26	45,21
¥	150504;	COS	Design an interface for various devices on 8086/8051 based systems	50	74	54.8	3		2		2	3 5	1 2		2			54.8	36.53	3 36.51	3		36.53	354.8	18.26	§36.53		36.533	541	54.8	54.8
٧	22	C06	Develops skills in assembly language programming for 8051 & 8086 applications	36	72	43.2	,	2	,	5	,	3	3	2		, ,		28.8	43.2	28.8		28.8	14.4	28.8		43.2	28.8		28.8	43.2	28.8
٧		100				-	desir				15050	30-30	lerno	mran	ene R	ferture	factor	49.09	3 49.16	33.94	8 34.57	28.8	26.30	641.38	3 28.06	44.53	328.9	46.533	45.88	49.25	45.1
٧		CO1	understand the basic concepts of set theory, propositional logic, graph theory, discrete	69	78.8	70,96	3	1					1	T	2	3 2			70.96		1	6 23.653	-			23.65		No. of Lot	70.96		
٧	udur	CO2	Illustrate the knowledge of course content and distinguish between them in terms of their	84	67.59	80.718	2		2 .		2		, ,		2		1	53.81	2	53.83	2 26.90	q	53.81	1	53.81	253.81	2	- CONTROL OF	80.71	1000	1000
V	ete Stn	COS	Implement the course content to solve the	87	62.33	82.066	3	2		1 1	2		2		2	,		82.06	6 54.71	10	54.71	27.355	54.71	0		54.71	0	54.710		27.35	\$ 27.30
٧	Discret	CO4	Apply the concept of studied topics with suitable technique faced in engineering problems	68	68.39	67,678		2		2	3				2	3 2			45.11	LIE	45.11	15	67.67	8	67.63	9		45.118	8 67.671	1 45.17	4
V	0 :100	005	Analyze the basic concepts of set theory, propositional logic, graph theory, discrete	94	69.36	89,072	3		,		2			-				89.07	2 59.33	59.31	1		59.38	1			59.38			53.38	229.60
V	150	COS	Design the analytical skill and interpret	59	59.73	59,146	2	1	-	2	5	2	-	-	2	3	,	39.43	0 19.7			39.430		35.43	d	59.14	4	39.430	958.14		19.7
v		LUS	applications of engineering beneficial in real time		1 39.13	1 00.140	-	1	100		1				-		ctures	67.06	2 40.0	77 56 50	6 43 51	1 30 146	SH 89	239 43	dian's	442.93	-	0.0000	-	3 45.33	3 100/00

6 AM 05 \$

Ser

& Prump

tatch:	2017-2021			co	Attainm	ent				-	CO-1	ON	atrix											PC) Atta	inmer	nt					
Sem	Course Code & Name		Course Outcome	Direct % Attainme nt	Indirect % Attainm ent	Total % Attainmen t	104	101	P03	105	406	103	109	9010	POII	1015	1054			1	E	Heli	100			20	- MON					
v	6	COI	Judge various model of computation	84	84	84	3	2 :	1 2	1	1	2	1	3	1	3 2	2 2	84	5	6	28	56	84	28	56		28	177.0			~	56
V	nutati	CO2	Construct abstract models of computing	84	85	84.2	3	2	1 2		2		2		3	3 4	2 3	84	1.2 5	6.133	28.066	56.133		56.133		56.133	56,133			84.2		NO.
V	Comp	C03	Infer the power of abstract models in computing	56	88	62,4	3	3 :	2 1		1	1	3			1 2	2 2	62	6.4	2.4	41.6	20.a		20.8	62.4		62:4				415	
V	LAS LAS	C04	Demonstrate analytical flunking and intuition for problem solving artuations in related areas of	80	75	79	2		2 2		1	1	2		2	1	2 2	52	1.6667	9	52.666	52.666		26.333			52,666	-	52.666	100	52,666	200000
V	- 4	C05	Explain the limitations of computation in solving	56	74	59.6	3	2 3	2		2	3	2		2	3	3 3	59	9,6 3	9.733	39,733			39.733	59.6	-	-		29,713			59.5
v	20503	C06	Define set of rules for syntax verification	92	73	88.2	2	3 3	2	2	1	2	3	2		2 :	3 2	58	3.8 8	8.2	58.8		58.8	29.4	58.8			58.8			200	58.8
V											150	SOA:	heary	of C	ompi	itatio	on LAT	68	5.944 6	3.577	41,477	46.4	-		52,626		HEAT STATE	200		64.4	-	-
V	2	CO1	Define basic concepts of UML	88	85	87.4	3	2	1 2		1	2	1	3	1	3	2 2	87	7.4 5	8.266	29.133	58.266		29.133	58.266		29.133	2000	200	57.4	-	2010
V	- Deed	coz	Illustrate the software development process using different tools	88	74	85.2	3	2	1 2		1		2		2	3	2 3	85	5.2 5	6.8	28,4	56.8		28.4		1000	56.8		56.8	200	56.8	
٧	in the state of th	C03	Apply the UML to solve different common modeling problems	98	75	91.8	3	3 3	2 1	2	1	3	3	1		1	2 3	91	1.8 9	1.8	61.2	30.6	61.2		91:8			30.6		-	61.2	-
V	- Fresh	CO4	Utilize the knowledge of Software engineering and project management	92	85	90.6	2	3 3	2 2		1	1	2		2	3	2 2	60	5.4 9	0.6	60,4	60.4		30.2	30.2		60.4		1000000		60.4	
V	22: 50	C05	Analyze the vocabulary, rules, and idioms of the UMI, and learn how to model it effects ely.	96	86	94	3	2	2		2	3	2		2	3	3 3	94	4 6	2,666	62.666			62.666	94	31.333	A STATE OF THE STATE OF		62.666			94
v	75051	C06	Design the systems, from concept to executable artifact, using object oriented techniques	92	82	90	2	3	2	2			3	2		2	3 2	60	9	G	60		60				90	60		60	Constant of	60
V			Interest Company								1	50502	Soft	ware	Eisgle	nearle	ngiAf	75	200	(200)	50.3			-			Asia se	No.	-	74.633		
V	9	CO1	Explain types of instructions and addressing modes	64	88	68.8	3	1	1 2		1	2	1	3	1	3	2 2	68	8.8	2.933	22.933	45.886		22.933	45.866		22.933		22.93	1000	45.866	2000
V	locr an	COZ	Make use of Hex code needed in assembly language	100	85	97	3	2	1 2		1	2	2 2		2	3	2 3	9	7 8	4.666	32.333	64,666		32.333		64.666	64.666		64.660		64.666	-
V	I IAE	CO3	Experiment with various peripheral devices to interface with microprocessor	68	74	69.2	3	3	2	1	1	3	3			1	2 3	6	9.2	9.2	46.133		23.066	23.066			69.2				46.13	
V	150504: Microprocess interfacing LAB	C04	Sumplify the arithmetic, Logical, etc. problems using instruction set of 8086/8051	88	85	87.4	2	3	2 2		1	1	2		2	3	2 2	51	8.266	37.4	58.256	58.268		29.133	29.133		58.26		58.26	2000	58.26	2000
٧	Inta	COS	Determine the process required in interfacing with 8086/8051	64	72	65,6	3	2	2		2	3	1 2		2	3	3 3	6	5,6	13.733	43,733			43.733	65.6	21.866	1000000		22070	1000	65.5	1000
v	1565	C06	Develop the assembly language programs in 8086/8051 to solve a real world problem.	80	71	78.2	2	3	2	2			3	2		2	3 2	5	2.133	1000	52 133		52.133				1000	52.133	-	100000	378.2	-
V	100								1/2	15050	14: M	cropr	ocessa	or and	inte	rtaci	ng (Al	B 8	8.5	1.022	42.588	56.76	37.6	30.24	52.45	43.26	36,16	60.466	47,4	65.666	59.78	8 54,6
VI	24	CO1	Explain the fundamental concepts of Computer Networks	74.33	68,33	73.13	3	2	2 2	2 2	1				2	1	2 1	7	3.13	18.753	48.753	48.75	48.753	24.379					48.75	3 24,37		2000
VI	twork	COZ	Illustrate the basic taxonomy & terminologies of computer network protocols	75.67	69,67	74.47	3	2	1			1		2	1		1	7	4.47	19.546		49.64	8		24.82	1		49,64	624.87	1	24.82	
VI	tor Ne	CD3	Develop a concept for understanding advance computer network	75,67	69,67	74.47	3	1	1 1	2	1			2		1	1	7	4.47	24.823	24.82	24.82	3 49.64	24.82	3			45.64	6	24.82	1	24.8
VI	ndwo	CO4	Build the skill of IP addressing and routing mechanism	77	71	75.8	3	2	2 1	2		1	1			2	2	7	5.8	50.533	50.533	25.26	50.53	1	25.26	25.26				50.53	3 50.53	3
VI	602: Ce	cos	Predict the performance of computer network in congestion and Internet.	70,33	64,33	69.13	3	1	2 2	2 2				2		2	3 1	6	9.13	23,043	46.08	45.08	6 46,08	i i				46.08	8	46.08	69.13	23.0
Vi	1506	CO6	Construct the petwork environment for implementation of computer networking concept.	81	75	79.8	3		3 3	2	1	2	2 2			2	2	7	9.8		79,8	79.8	53.2	25.5	53.2	53.2	53.2			53.2		53.2
VI			Imperior and of congress the second of concept.									1	50607	Con	noute	or Ne	twork	5 3	4,456	39.36	49.99	45.72	49.64	25.26	634.43	39.23	353.2	48.46	36.78	39.80	448.3	313

& AMM

The second

& Push

latch:	2017-2021			co	Attainm	nent				- 33	CO-I	ON	latri											O Att	ainme	nt					
Sem	Course Code & Name		Course Dutcome	Direct % Attainme nt	Indirect % Attainm ent	Total % Attainmen t	104	20/	HOS	102	90%	HOT	808	F010	FOIL	1013	1901					100	2	-			The state of the s				
VI		COL	Recall the concepts of finite automata and context	77														75.8	1		6 50.53		25.26		25.26			50.533		50.533	
VI	Deedign	CO2	free grammar Build the concept of working of compiler	66,33	60.33	75.8 65.13	3	1 1	2	-	1		1		2	1 2	1 7			43.4		-	21.71		23.26	-	21.71	59,537	21.71	A CONTRACTOR	1000 1000 1000 1000 1000 1000 1000 100
VI	pater D	C03	Examine various parsing techniques and their comparison	71.67	65,67	70.47	2	3 7	2	2	1	1	1 1	1	10	1 2	2 2	46.91	70.4	46.98	46.98	46.98	23.49	23.49	23.49	23.49		23,49	70.47	46.98	45.9
VI.	Com	C04	Compare various code generation and code optimization techniques.	7.7	71	75.8	3	2 2		2	1		1 2	1	1		2	75.8	50.5	3 50 53	3	50.533	25.26	4	25.26	50.53	25.266	25.266	75.8	25.266	50.5
VI	120601:	COS	Analyze different tools and techniques for designing a compiler	70.33	64.33	69.13	3	2 3		2	1	1	2	2		9 1	2	69.1	46.0	6 46.01	a	46.000	23.04	23.04	1	46.08	46.086		69.13	46.086	45.0
VI	7	CO6	Design various phases of compiler	77	71	75.8	3	3 2	2	3	1	1	2 2	3	3	2 2	2 2	75.H	75.8	50.53	3	75.8	25.26	25.26	6 50:53	50.53	75.8	75.8	50.533	50.533	50.5
VI												200	150	601:	Comp	der.c	lesign	68.1	6 51.9	9 43 80	B 48.75	52.56	24.00	23.93	31.19	38.476	42.215	43.772	60.577	43.803	48.0
VI		COL	Explain cryptographic algorithms, hash algorithms and authentication mechanisms.	79.67	73,67	78.47	1	2	2		1	2	1	2	1	3 2	2 2	78.4	52.3	3 26 15	6 52.31	1	26.15	52.31	3	26.15	52.313	26, 156	78,47	52.313	52.3
VI	a pu	CO2	Illustrate fundamentals of number theory, attacks and accurate principles	89	83	87.8	1	2 1	2	2	1	. 6	2 1		2	3 2	1 3	87.8	58.5	29.20	650.53	3 58.53	29.26		58.53	29.26		58.533	87.8	58.533	87.0
VI	Network a security	CO3	Apply number theory and various algorithms to achieve principles of security	81	75	79.8	3	3 1	2		1	2	1	1	2	1 3	1	79.8	79.8	53.2			26.6	53.2	26.6		26.6	53.2	26.6	53.2	26.6
VI		CO4	Analyze the cause for various existing network attacks and describe the working of available	66	60	64.8	2	3 3	2 2		1	1	1 2	1	2	3 2	2 2	43.2	54.8	43.2	43.2		21.6	21.5	21.6	43.2	21.6	43.2	64.5	43.2	43.2
VI	160611:	CO5	Examine the vulnerabilities in IT infrastructure	63,67	57.67	62.47	3	2 2		3	2	3	1 2		2	3	1	62.4	41.5	641.64	6	62,47	41.64	62.47	20.82	41.64		41.646	62.47	62.47	20.8
VI	77	CO6	Predict the attacks and controls associated with IP, transport-level, seeb and e-mail security	63,67	57.67	62.47	2	3 3	3	2			3	2	2	2 2	2 2	41.6	662.4	41.54	662.47	41.546				62.47	41.546	41.646	41.54	641.646	41.5
VI		1997									16	0611:	Netw	ork a	nd We	b se	curity	65.5	54 59.93	7 39 18	654.12	9 54 218	29.05	47.39	\$ 31.88	40.54	35.54	44.063	60.29	51.893	45.3
VI	ING	CO1	explain the basic concepts of mobile telecommunications system.	97	91	95.80	3	1	1 2		1	2	1	3	1	3 2	2 2	95.8	31.9	3 31.93	3 63.86	e	31.93	63.86	4	31,93	95.8	31.933	95.8	63,866	63.8
VI	150	COZ	demonstrate the infrastructure to develop mobile communications system	99.67	93.67	98.47	3	2	1 2		1		2 2		2	3 2	2 3	98.4	65.6	6 32.B	3 65,64	d	32.82	3	55.64	65.64		65.646	98.47	65.646	90.4
VI	8	CO3	classify the different generations and technology for mobile communications.	101	95	99.80	3	3 7	2	1	1	3	3			1 2	3	99.8	99.8	66.53	3	33.26	33.26	8,66		99.8			33.266	66.333	99.8
VI	MOBILE COMPUTING	CO4	examine the working of different protocols of wireless mobile communication technology.	99.67	93,67	98.47	2	3 2	2 2		1	1	2		2	3 2	2 2	85.6	698,4	65.64	6 65.64	-	32.82	32.82	3	65.64		65.646	98.47	65.646	65.6
VI	150613.7	CO5	determine the importance of each technology suitable for different situation of mobile and	97	91	95.80	3	2	2		2	3	1 2		2	3 3	3	95.8	63.8	6 63.81	6		63.86	8.22	31.93	63.86		63.866	695.8	95.8	95.8
VI	951	CO6	develop protocols for Adhoc and infrastructure based wireless networks.	93	87	91.80	3		2	Ш	1	3	1 2			3	3	91.8		61.2			30.6	91.8	30.6	61.2			91.8		91.8
VI	1 19 19 19 19	15.00										15	06131	MOB	ILE CO	MPL	ITING	91.2	1971.9	3 53.6	7 65.05	33.26	37.55	76.31	8 42.72	54,68	195.8	56.773	85.60	1 71 498	55,8
VI	196	CO1	Outline the basics of algorithms and their performance criteria's	97	91	95.8	3	2	1 2		1	2	1	2	1	3 2	2 2	95.8	53.8	6 31.9	3 63.86	6	31.93	3 63.86	ā	31.93	63.868	31.93	95.8	63.868	63.8
VI	TO LO	CO2	Explain the working of linear / Non linear data structures	97	91	95.8	3	2	2		1		2		2	1 2	2 3	95.8	63.8	6 31.9	3 63.86	E	31.93	3		63.88	4	63.866	695.8	63.866	95.8
VI	NTA ST	CO3	Identify the appropriate data structure to solve specific problems	95.67	89,67	94.47	3	3	2		1	3	1 1	1		1 2	2 3	94.4	94.4	62.9			31.49	94,47	31.49	31.49	31.49		31.49	62.98	94.4
VI	<u> </u>	604	Analyze the performance of various data structures & their applications	97	91	99.8	3	3	2 2		1	1	1 2		2	3 2	2 2	95.8	95.8	63.B	63.86	6	31.93	31.93	3 31.93	63.86		63.866	95.8	63.866	63.8
VI	SOUTOS (OC): DATA STRUCTURE	COS	Evaluate the time/ space complexities of various data structures & their applications	97	91	95.8	3	2	2		2	3	1 2		2	3 3	3 3	95,8	63.8	63.8	-		63.86	95.8	31.93	63.86		63,866	95.8	95.8	95.8
VI	900	CO6	Design the optimal algorithmic solutions for various problems	97	91	95.8	2	3	2 2	3			2 3	2		2 2	2 3	63.8	95.8	63.8	6 63,86	8.26			63.86	95.8	63.86		63.86	663,866	95.8
VI		100										900	10610	On D	ATA S	TRUC	TURE	90.2	56 79.6	1 53.0	4 63.86	6 95.8	38.23	71.51	7 39.80	58.47	53.07	55.88	79.75	5 59.04	84.9

@ Amon?

*

A.E.

S.x.v.z

latch:	2017-2021			co	Attainm	ent				C	O-P	0 M	atrix	K										p	O Atta	inme	nt					
Sem	Course Code & Name		Course Outcome	Direct % Attainme nt	Indirect % Attainm ent	Total % Attainmen t	101	100	NO4	202	NOS	F07	109	00.00	F013	1013	1000	1007	1 100	100				1000		200			7	HER		
VI		CO1	explain the numbers, Math, functions, Strings, List, Tuples and Dictionaries in Python	83	77	81.8	1	2 3		1	1	1 1			П	,	2 2		11.11	54,533	54.533		27.266	27,266	27.266	27.366	27,266			27.266	54,533	54.521
VI	50 40	CO3	apply different Decision-Making statements and Functions	112.5	76.5	81.3	3	2 1	1 2	Í,	,		1			2	2 2		81.3	54.2	54.2	54.2	27.1	27.1		27.1	27.1			54.2	54.2	54.2
W	900107 (OC): Pytho	C03	identify the Object-oriented programming in	77.3	71.3	76.1	2	2	1	2	2			1	,	2	1 2		50.733	50.733	50.733	25.366	50.733	50.733		25.366	25.366	25 366	25.366	50.733	25.366	50.733
VI)O) 10	CO4	analyze the different File handling operations	66.33	60.33	65,13	3	3	1 2	ì	2		1	1	1	2	2 3		65.13	65.13	65.13	43.42		43.42		21.71	23.71	21.71	21.71	43.42	43.42	43.47
VI	1008	005	design GUI Applications in Python and evaluate different database operations	86	10	84.8	3	2	1 2		,	v	,	1	1	2	3		84.8	56.53	RA.R	84.8		84.8	28.76		54.531	28.246	84.8	36.533	39.533	56-537
I.VI		COS	develop Chent-Server network applications using	62.33	56.13	61.11	1	3	2 3	2	3	1	,	1	,	2	3		61.13	61.13	40.753	61.13	40.75	61.13	20.37	20.371	40.75	20.376	51.13	40.753	61.13	40.753
VI			33000		1:29(32	21.13	1.7.1	- 1	-10	113.54	200	0107	incl	Part.	on Fr	2			70.815	57.04	58.350	53.78	36.46	49.07	\$25.30	24.36	33.12	23.93	48.251	45.484	69 197	50.02
VIII	alla	COI	define the concept of computer network and various layered architecture.	75	87	77.4		4	1 5			1	1	1	-	1	3	,	77,4	77.4	25.8	51.6		25.8	25.6	25.8	25.6	25.8	25.8	77,A	51.5	51.6
VII	27.40	C02	compare the classless and class full addressing of	81	85	41.8	3	5	1 2		i		, ,		,	3	2		31.8	54.53	27.26	54.53		27.25		54.53	54.53		54.533	81.6	54.537	27,256
VII	3 20	603	identify the different types of networking devices and their functions within a network	71	74	71.6	3		, .		1		1 3		-	3	7		71.6	71.6	A7.73			23.86	23.86	23.80	71.5	23.86		23.86	47.75	323.866
VII	Nw Dr. K	CO4	analyze various protocols of computer networks for assisting network design and implementation.	76	81	77	2		, ,		,		1 2				2		51.333	77	51.33	51.33	3	25.56	6 25.56	625.66	51.33	3	51.33	77	51.33	351,333
VII	- 3	C05	design client server applications and communication model and protocols for	69	89	73	1	,	-		1	1			1	-	1		73	48.66	42.55			48.56	6 24 33	3 74.33	48.66	24.33	48.66	73	73	24.331
VII	1005	C06	elaborate various TCP/IP protocol for achieving multimodia and security services	71	80	72.8	2		2	1	-				-	3	3	1	48.53	72.8	48.53	3	48.53	3		24.25	72.8	24.26		45 53	572.8	48.53
VII			mutimedia and security services.		1 00	12.0	14	2-1	4.1	14	100	1507	11-N	letwo	rking	with	TCP	/w	67.27	57	41.55	552,41	8 48.53	30.25	24.91	6 29.74	54.12	224.56	45.0E	63.6	58.5	37.82
VII	2	CO1	tell the basic elements and concepts related to distributed system technologies	75.2	81	76.36	1	2	2	2	1			, ,	T	3	2	,	76.36	76.36	50.90	4	50.50	6 50,90	6 15.43	3	50.90	Q 25.45		50.90	50.30	75.36
VII	- Astron	CO2	demonstrate knowledge of the core architectural aspects of distributed systems.	85,6	84	85.28	1	1	2 2		1	,		1	1,	3	2	,	56.85	85.28	56.85	3 56.85	53	28.42	5 28.4	19	56.85	3 28.42	9 56.85	3 85 29	56.85	13 56.85
VII	T Page	CO3	identify how the resources in a distributed system are managed by algorithm.	76	79	76.6	1	2	,		,	1	,	2 1	3	7	,		76.6	51.0	551.06	6		31.06	6 25.5	33 25.51	351.0	25.53	351.06	476.5	76.6	25.53
VII	gtrib	CO4	examine the concept of distributed file system an distributed shared memory	d 88	82	86.8	9	2	,	3	1		,	, ,	,		Ĺ	,	86.8	57.8	56 57.86	4	57,8	6 28.9	13	57.8	657.8	4 28.93	3 57.85	686.8	28.93	57.86
VII	D SEL	COS	compare various distributed system algorithms for solving real world problems	r 85.6	76	83.68	3	2	3	1 2	,	,			Ť	0	2	-	83.68	83.6	83.68	83.5	8 83.6	55.71	36 27.8	93	27.B	27.85	1	83.68	55.79	16,13,58
VII	1507	C06	develop application for achieving various service of distributed system	85.6	72	82.88	-	3	2	1 1	7	1		, ,	,	2	7	3	82.88	82.8	55.25	53 82.8	8 82.8	55.2	53 27.6	26	55.2	53 55.25	3 55 25	55.21	3552	5 8 8 2 8 8
VII		000	Ox distributed system	1	1.4	04.40	1 4:	131	100	13	1.	1.4.1		12.0		-	Date:	-	77.19	5728	55 59 27	73 74.4	71 58.B	33 45.0	62269	86 41.7	43.5	73 31 5	5 55.29	73.00	54.0	53 (3.8)
VII		(44)	Illustrate various tools of Data Mining and their	61.6	85	20.00	122						1507	13: 0	BETHE	utea	3	ma	66.28	66.2	8 56.23	3 44.1	85 44 1	86 22 0	93	22.0	93 44 1	86 22.0	13 22 0	43 55 2	9 65.3	8 44.11
VII	- and	001	Apply data preprocessing and data quality for	60	85	66.28	3	1	5	2 2	1	Н	1	2 1	1	3	3	2	65	65	43.3		1000	66 21 6	-		43.3		1000	33 43 33		43.3
VII	alng sling	COZ	Identify various data bases and modeling of data	64.8		65	3	3	2	1	1			2	1	1	3	2	5550	68.8	100000		4 45.8		-	45.8	1000	311				14 58.8
VII	Data Mining A	CO3	warehouse and comparing various methods for Develop various classification algorithms for dat	TAX STATE	85	68.84	3	3	2	3 2	3 21		2	2 1	2	2	3	3	-		42.9	9 222	300	200	66 21.4	2 232	2000	-	2333	0.000	2000	133 42.5
VIII	N 3	CO4	Make use of data miring methods for	60.8	82	64,4	3	3	2	2	1	1		2 0	2	3	2	2	1000	-	-	-	-	-			-	4		10000	-	NA HELD
VII	150	CO5	identification of association for transactional Analyse data mining for knowledge discovery &	-	87	66.04	3	3	2	2 2	2	1	1	2	3 2	3	3	3	65	66	44	100		22	22	-	66		1100	22	56	44
VII	-	CO6	prediction	1	90	66	13	3	2	1	1	1		3	100	11	3	2	55.0	227	151	4449	196 39 0			125 30	100	200 37 -	10.00	155		515 51.5
-			understand the key components that make up an	68		1000					1507	12: D	ata N	Aining	and	War	chou	sing	69.4	1000	20100	11 000	266 46.3		100				34000			133 46.2
VII		COI	loT system	90	75	69.4	3	1	1	2 2	1		1	1	1 1	3	11	2	03.4	-	2323.2	2746	100 00	29.1	33	23.	23.	24 22	35 23.7	35 69 4	28.3	23/40.2

a Am ente

Ja

A.

& D. X. SMZ

				- 4-
Madhay Instit	rute of Tech	mology &	Science	Gwalior

Sem Cours VII	GAN STATES	CO3 CO3	explain the definition and unage of the term Intervet of Things' in different contexts differentials believe on the levels of the lot stack and be familiar with the lev technologies and apply the knowledge and skill seque	Direct % Attainme nt 72	indirect % Attainm ent	Total % Attainmen 1	POS	100	100	100	ros	POT.	101	910	our	0.1	0.5														
VIII	Internet of Things LAB	CO3 CO3	Interret of Things' in different contexts differentiate between the levels of the lot stack and be familiar with the key technologies and apply the knowledge and skills acquired during	- 100	71			_				ш	н		-	£	2														
VII	internet of Things	CO3	differentiate between the levels of the IoT stack and be familiar with the key technologies and apply the knowledge and skills acquired during	80		31.8	3	1	1 2		1	1	1	1	1 3	2	2	71.8		47.558	47,866		23:500		47 364E.	13.533	3.3116.7	0.7587	1.0	7.866	17 500
VII	internet of		apply the knowledge and skills acquired during	00	84	80.8	2	2 2	1 2	2	1	,	2	1	1 2	2	3		-	-		51,864			26.91183		-	-	-		
	later .		the course to build and test a complete, working	80	68	77.6	3	3 3	3	1 2	1	1 1	2	2	2 3	2	2	201150	2000	2017	220	2020	2000	0320003	25.8463	-	-	-	-		-
VII		CO5	understand where the IoT concept fits within the broader ICT industry and possible future trends	80	71	78.2	5	1 3	1 3	1 5	1	1 1	1	2	2 3	3.	3	-	79.2	10000	(3)(1)	1000	_	_	28,006	-	_	-	_	_	78.2 47.4
	-	C06	appreciate the role of big data, cloud computing and data analytics in a typical IoT system	68	0.5	67.4	3	13	1	1	1	1. 3	2	2	2 3	L	3	67.4		44.933			-		29 722	-	-		-	-	1000
VII	Britain I						,	-	-	-	-	-		ntern	et of I	hings	TAB	-	-						-	-			-	-	
VII	è	COL	Imhibe the knowledge of Intellectual Property and its protection through various laws	06.67	75	68,336	2		1 2		2	3	1	3	1 3	2	2	45.55	-	10000	45.553		18.334		1	22,778	1000	-		-	
VII	Prope	COZ	apply the knowledge of IPR for professional development.	61.33	68	62,664	3	2	1 2	2	3	3	2	Н	2 1	2	3	20000	9 200100	-	41,776		2200		A1.776			41.776		42.4	
VII	The state of	CO3	Identify the appopriate data structures to solve specific problems	64	62	63:6	3	3	2	+	3.	3 7	2 3	Н	1	2	3	-	63.6	-	1600				43.6			43.5	1000		
VII	A PER	CO4	develop a platform for protection and compliance of Intellectual Property Rights &	64	71	65.4	2	2	2 3	2	3	3	2 2	H	2 3	2	2	2000	65.4	1000					33.792	-			2000		
VII	800	CO5	create awareness amidit academia and industry of IPR and Copyright compliance	60	65	61	3	2	2	+	3	3	1 2	H	2 3	3	3	-	20000		1000		all the	100000	40.266	Section 1	-		-	100000	
VII	100	C06	deliver the purpose and function of IPR and parenting	60	62	60.4	2	3	2	2		3 3	2 3	2	1 7	3	3		60.4		-	40.266			5 40.767		200000	200			-
VII								-	-	-	10	0008:	intelle	ctual	Prope	sty N	ights	52.40	4 2000			-		-	1000000				_	_	_
VIII		CO1	Design solutions to real world problems	85	89	85.8	3	3	2 3	2 3	1	1	3 2	1	2 3	2	2	85.8	10000	1000	NICS OF	-	-		05.0		_	-		1000	0.00
VIII.	ed	CO2	Express the technical ideas, strategies and methodologies	88	85	37.4	2	2	2 3	2 3	1	1	2	2	2 3	2	2	1000	1	1000	-	87.4				-	58.266		-	2000	
VIII	of Pro	CO3	Utilize new tools, algorithms, techniques to obtain solution of the project	78	91	50.6	3.	3	2	1	1	3	. 3	2	1	1 2	2	80.6	10000	53,73	-		26.06	-		11122	53.733	-		53.73	1
VIII	reship.	CO4	Evaluate the performance of the prototype results	81	87	12.2	2	1	2 3	2 1	1	1	2	2	2 1	1 2	2	54.8	82.2	20110	54.8	-	27,4	27.4	-	12250	200	54.0	58	36	54
VIII	inte	cos	Able to locate and use rechnical information from multiple sources	83	88	84	2		2	2 2	1	1	2	3	2 3	1 2	2	56	1000	36	56 NEC 10	56 26	-	1000	56.74	56.264		-	-	-	200.0
VIII		C06	Densonstrate the ability to communicate effectively in speech and writing	86	78	84.4	3	2	1 3	2 2	1	1	2 2	1.3	2 1	1 2	13			_		_	-		46,57100	N. Contraction			1000	111000	90000

An one & was a Riverious

Target:	2.2		
POs	PO Attainment Level	Attained/ Not Attained	Action taken for not attained
PO1	2.595898693	Attained	
PO2	2.406372549	Attained	
PO3	2.067924837	Not Attained	More interactive sessions are planned with professionals from industry in order to expose the industrial a societal problems. Skill Based Projects are introduced.
PO4	2.211013072	Attained	
PO5	2.104426523	Not Attained	Assignments and seminars are given and they are expected to study the real world problems and give presentation about their ideas to solve them. In-house internships in the form of Finishing schools and summer internships were conducted to help students to solve complex computer science and engineering problems.
PO6	1.827441077	Not Attained	Encouraged to participate in the extra-curricular activities through NSS etc. To identify the problems in the society and the scope for solving through engineering.
PO7	2.034848485	Not Attained	Additional interactive session were arranged for students in coursess like IPR and Distaster management.
PO8	1.906993464	Not Attained	EEES course was introduced to further strengthen the PO
PO9	2.186397306	Not Attained	Skill Based mini Projects are introduced for LAB courses.
PO10	2.116421569	Not Attained	In-house Summer internship program to enhance the softskills of students was arranged
PO11	2.057287582	Not Attained	Students were allowed/encouraged to take industry internships for completing 8th semester projects
PO12	2.497875817	Attained	
E North Control			

Attained Attained

PSO1

PSO2

2.302653595

2.307892157

J. P. W. Mar

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-15

Review of curriculam feedback from various stakeholders, its analysis and impact

ITEM No-21

Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV. Bhopal) Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Student Curriculum Feedback - CSE 4th Semester

Course Name & Code: Computer Networks (150411)

Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
0	11.11	14.81	37.04	37.04	80
0	7.41	14.81	40.74	37.04	81
3.7	7.41	18.52	37.04	33.33	78
0	3.7	25.93	22.22	48.15	83
0	3.7	25.93	37.04	33.33	80
0	11.11	18.52	29.63	40.74	80
0	11.11	18.52	29.63	40.74	80
	Disagree (%age Response) 0 0 3.7 0 0	Disagree (%age Response) 0 11.11 0 7.41 3.7 7.41 0 3.7 0 3.7 0 11.11	Disagree (%age Response) 0 11.11 14.81 0 7.41 14.81 3.7 7.41 18.52 0 3.7 25.93 0 3.7 25.93 0 11.11 18.52	Disagree (%age Response) Disagree (%age Response) Neutral (%age Response) Agree (%age Response) 0 11.11 14.81 37.04 0 7.41 14.81 40.74 3.7 7.41 18.52 37.04 0 3.7 25.93 22.22 0 3.7 25.93 37.04 0 11.11 18.52 29.63	Disagree (%age Response) Disagree (%age Response) Neutral (%age Response) Agree (%age Response) Agree (%age Response) 0 11.11 14.81 37.04 37.04 0 7.41 14.81 40.74 37.04 3.7 7.41 18.52 37.04 33.33 0 3.7 25.93 22.22 48.15 0 3.7 25.93 37.04 33.33 0 11.11 18.52 29.63 40.74

Course Name & Code: Database Management System (150412)

Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	0	0	42.86	28.57	28.57	77
The syllabus units are balanced	7.14	7.14	35.71	35.71	14.29	69
The learning material was available to you	0	.0	35.71	35.71	28.57	79
The content was clear and easy to understand	0	7.14	50	28.57	14.29	70
The course was relevant and updated for present needs	0	0	50	28.57	21.43	74
The course meets your career expectations	0	0	35.71	35.71	28.57	79
The course will be useful to meet your higher studies/future aspirations.	0	0	42.86	28.57	28.57	77

@ Au on P & D Prising

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

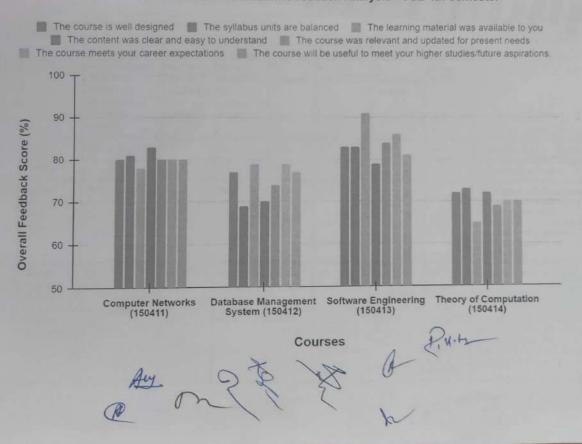
Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Course Name & Code: Software Engineering (150413)

Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	4.76	0	14.29	38.1	42.86	83
	4.76	0	14.29	38.1	42.86	83
The syllabus units are balanced	0	0	0	42.86	57.14	91
The learning material was available to you		4.76	9.52	52.38	28.57	79
The content was clear and easy to understand	4.76			- Committee Comm	47.62	84
The course was relevant and updated for present needs	0	4.76	19.05	28.57		
The course meets your career expectations	0	4.76	9.52	38.1	47.62	86
The course will be useful to meet your higher studies/future aspirations.	4.76	0	19.05	38.1	38.1	81

Course Name & Code: Theory of Computation (150414)


Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	0	0	24.14	24.14	37.93	72
The syllabus units are balanced	0	0	27.59	27.59	34.48	73
The learning material was available to you	0	0	27.59	17.24	34.48	65
The content was clear and easy to understand	0	0	27.59	17.24	41.38	72
The course was relevant and updated for present needs	0	0	20.69	27.59	34.48	69
The course meets your career expectations	0	0	31.03	17.24	37.93	70
The course will be useful to meet your higher studies/future aspirations.	0	0	31.03	20.69	34.48	70

@ Au m 2 & & De Pinish

Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Overall Student Curriculum Feedback Analysis - CSE 4th Semester

Madhav Institute of Technology & Science, Gwalior
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) **Department of Computer Science and Engineering**

Feedback Analysis (Jan. - June 2022)

Overall Student Curriculum Feedback Analysis - CSE 4th Semester Additional Suggestion by students and Action Taken Report

S.	Course name	Additional Comme	ents by students						Action Taken
No.	and code	Details of the course / contents which in the student's opinion are outdated & needs to be removed.	Name course / contents which needs to be updated.	Is any new course required to meet current needs?	Suggestion for Honours:	Suggestion for Minor specialization	Suggestion for Departmenta I electives:	Suggestion for Open electives:	
1	Computer Networks (150411)	Nii	Nil	Nil	Nil	Nil	Nil	Nil	Respective course instructor was requested to provide additional study material to the students.
2	Database Management System (150412)	Nii	Nil	Nil	Nil	Nil	Nil	Nil	The syllabus will be discussed in the upcoming BoS meeting for creating a balanced course content. Respective course instructor was requested to take additional classes to clarify the course content and shared study material.
3	Software Engineering (150413)	Nil	Nil	Nil	Nil	Nil	Nil	Nil	All the responses are Satisfactory.
4	Theory of Computation (150414)	Nil	Nil	Nil	Cloud computin g; Big Data Computin g	Artificial Intelligence: Search Methods for Problem solving	Data Science for Engineers	Computati onal Number Theory and Algebra	Respective course instructor was requested to share the study material prior to scheduled class. The course is referred for upcoming BoS meeting for updates.

& Drive

Madhav Institute of Technology & Science, Gwalior
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Student Curriculum Feedback - CSE 6th Semester

Course Name & Code: Compiler Design (150601)

No. of Responses: 7	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
	(Capolise)	0	14.29	57.14	Agree (%age	69
The course is well designed	0	0	28.57	28.57	28.57	69
The syllabus units are balanced	0	0	14.29	42.86	28.57	71
The learning material was available to you	0		110100000000	14.29	28.57	63
The content was clear and easy to understand	0	14.29	28.57			66
The course was relevant and updated for present needs	0	0	42.86	14.29		
The course meets your career expectations	0	14.29	28.57	14.29	28.57	63
The course will be useful to meet your higher studies/future aspirations.	0	14.29	28.57	14.29	28.57	63

Course Name & Code: Computer Networks (150602)

No. of Responses: 22 Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	0	9.09	36.36	13.64	40.91	77
The syllabus units are balanced	0	4.55	27.27	27.27	40.91	81
The learning material was available to you	0	4.55	31.82	18.18	45.45	81
The content was clear and easy to understand	0	9.09	31.82	13.64	45.45	79
The course was relevant and updated for present needs	0	4.55	40.91	13.64	40.91	78
The course meets your career expectations	4.55	13.64	27.27	13.64	40.91	75
The course will be useful to meet your higher studies/future aspirations.	0	13.64	27.27	18.18	40.91	77

@ ALY MP & DRIVEY

Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Course Name & Code: Network & Web Security (150611)

No. of Responses: 69

Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	1.45	2.9	33.33	31.88	30.43	77
The syllabus units are balanced	0	5.8	26.09	39.13	28.99	78
The learning material was available to you	1.45	8.7	31.88	33.33	24.64	74
The content was clear and easy to understand	1,45	4.35	34.78	31.88	27.54	76
The course was relevant and updated for present needs	1.45	8.7	27.54	34.78	27.54	76
The course meets your career expectations	1.45	8.7	30.43	27.54	31.88	76
The course will be useful to meet your higher studies/future aspirations.	1.45	4.35	28.99	36.23	28.99	77

Course Name & Code: Mobile Computing (150613)

No. of Responses: 19

Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	5.26	0	36.84	36.84	21.05	74
The syllabus units are balanced	15.79	0	31.58	26.32	26.32	69
The learning material was available to you	5.26	10.53	26.32	42.11	15.79	71
The content was clear and easy to understand	10.53	5.26	31.58	10.53	42.11	74
The course was relevant and updated for present needs	5.26	5.26	36.84	31.58	21.05	72
The course meets your career expectations	5.26	10.53	36.84	31.58	15.79	68
The course will be useful to meet your higher studies/future aspirations.	5.26	10.53	31.58	42.11	10.53	68

Aly of

1/3

& Pours

Madhav Institute of Technology & Science, Gwalior
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Course Name & Code: Disaster Management (100007)

lo. of Responses: 32 Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
	0	9.38	37.5	31.25	21.88	73
The course is well designed	0	6.25	34.38	40.63	18.75	74
The syllabus units are balanced	1000	3.13	37.5	34.38	25	76
The learning material was available to you	0	2015			25	78
The content was clear and easy to understand	0	3.13	31.25	40.63	100000	
The course was relevant and updated for present needs	0	9.38	28.13	37.5	25	76
	0	6.25	40.63	28.13	25	74
The course meets your career expectations	0	10000				
The course will be useful to meet your higher studies/future aspirations.	0	6.25	34.38	34.38	25	76

Course Name & Code: Data Structure (900106)

No. of Responses: 44 Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	0	4.55	34.09	25	36.36	79
The syllabus units are balanced	0	6.82	29.55	29.55	34.09	78
The learning material was available to you	2.27	15.91	25	25	31.82	74
The content was clear and easy to understand	0	13.64	27.27	27.27	31.82	75
The course was relevant and updated for present needs	0	9.09	29.55	22.73	38.64	78
The course meets your career expectations	2.27	6.82	25	31.82	34.09	78
The course will be useful to meet your higher studies/future aspirations.	0	6.82	25	31.82	36.36	80

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Course Name & Code: Python Programming (900107)

No. of Responses: 25

Parameters	Strongly Disagree (%age Response)	Disagree (%age Response)	Neutral (%age Response)	Agree (%age Response)	Strongly Agree (%age Response)	Overall Score (%)
The course is well designed	4	12	32	20	32	73
The syllabus units are balanced	4	8	32	20	36	75
The learning material was available to you	4	8	32	28	28	74
The content was clear and easy to understand	4	12	28	24	32	74
The course was relevant and updated for present needs	4	12	28	24	32	74
The course meets your career expectations	4	8	32	20	36	75
The course will be useful to meet your higher studies/future aspirations.	4	12	28	20	36	74

A P. King

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Overall Student Curriculum Feedback Analysis - CSE 6th Semester

■ The course is well designed ■ The syliabus units are balanced ■ The learning material was available to you ■ The content was clear and easy to understand ■ The course was relevant and updated for present needs

The course meets your career expectations ■ The course will be useful to meet your higher studies/future aspirations 90 80 Overall Feedback Score (%) Mobile Computing (150613) Compller Design (150601) Network & Web Security (150611) Disaster Management (100007) Data Structure (900106) Python Programming (900107)

Courses

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Overall Student Curriculum Feedback Analysis - CSE 6th Semester Additional Suggestion by students and Action Taken Report

S. No.	Course name and code	Additional Comme	ents by students	3					Action Taken
		Details of the course / contents which in the student's opinion are outdated & needs to be removed.	Name course / contents which needs to be updated.	Is any new course required to meet current needs?	Suggestion for Honours:	Suggestion for Minor specialization :	Suggestion for Departmenta I electives:	Suggestion for Open electives:	
1	Compiler Design (150601)	Nil	Nil	Nil	Nil	Nil	Nil	Nil	Respective course instructor was requested to share the study material prior to scheduled class. The course is referred for upcoming BoS meeting for updates, as per the suggestions of students.
2	Computer Networks (150602)	Nil	WAP	Nil	loT	Nil	Nil	Nil	All the responses are Satisfactory.
3	Network & Web Security (150611)	Nil	End to End Encryption	Yes, modern cryptographi c algorithms in optional mode. Hacking and cyber security	Arts and humanities subjects like history; Blockchain	Finance; Electrical	Web 3,0	Data Analytics and SQL	Syllabus will be discussed in the upcoming BoS meeting for the updates suggested by the students. The suggestive list of Honour, Minor and elective courses will be forwarded and presented in upcoming BoS for necessary actions.
4	Mobile Computing (150613)	Nii	Routing	Nil	Python related courses; Computer network and ip	Dbms courses	Nil	Nil	Syllabus will be discussed in the upcoming BoS meeting for the updates suggested by the students, and new routing techniques will be suggested to be incorporated in the updated syllabus.

A for Aus

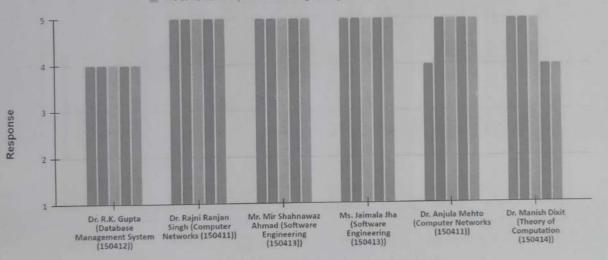
Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

					addressing				
5	Disaster Management (100007)	Nil	Nil	Nil	Nil	Nil	Nil	Nil	All the responses are Satisfactory.
6	Data Structure (900106)	Nil	Nii	Nil	Nil	Software Testing, Theory of Computation, Cryptography And Network Security, Artificial Intelligence: Search Methods For Problem solving	Nil	Nil	All the responses are Satisfactory. The suggestive list for Minor specialization courses will be forwarded and presented in upcoming BoS for necessary actions.
7	Python Programming (900107)	Nii	Nil	Nil	Nil	Nil	Nil	Nil	All the responses are Satisfactory.

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering


Feedback Analysis (Jan. - June 2022)

Faculty Curriculum Feedback Jan-June 2022 (4th Semester CSE)

The availability of books & E-learning material in the institute is good. The course curriculum/syllabi are helpful in meeting the higher studies/placement requirements according to present global trends.

The course / contents in your domain/area are well designed and frequently updated, hence need no changes at present.

The curriculum is capable of inculcating life-long learning abilities in students.

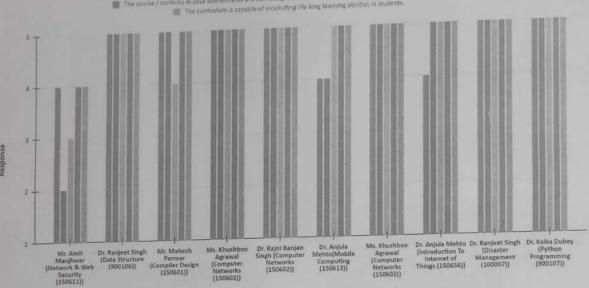
Course Instructor, Course Name & Course Code

Response Mapping: 1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly Agree

(A Govt, Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)


Faculty Curriculum Feedback Jan-June 2022 (6th Semester CSE)

The availability of books & E-learning material in the institute is good.

The course curriculum/syllabil are helpful in meeting the higher studies/placement requirements according to present global trends.

The course / contents in your domain/ares are well designed and frequently updated, hence need no changes at present.

The course/contents in your domain/ares are well designed and frequently updated, hence need no changes at present.

Course Instructor, Course Name & Course Code

Response Mapping: 1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly Agree

of a Dusing

Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering Feedback Analysis (Jan. - June 2022)

Faculty Curriculum Feedback Jan-June 2022 (1st Semester CSE)

The availability of books & E-learning material in the institute is good.
The Course and content are up to date.

The course curriculum/syllab are helpful in meeting the higher studies/placement requirements according to present global trends.

The course / contents in your domain/area are well designed and frequently updated, hence need no changes at present.

The course / contents in your domain/area are well designed and frequently updated, hence need no changes at present.

Course Instructor, Course Name & Course Code

Response Mapping: 1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly Agree

WHIM

Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Faculty Curriculum Feedback Jan-June 2022 (1st Semester CSD)

The availability of books & Elearning material in the institute is good. The Courses and content are up to date.
The course corriculum/yeliabiliare height in investing the bugnes studies/placement requirements according to present global crends, emain/are are well designed and frequently updated, hence need no changes at present. The curriculum is capable of inculcating life. Ms. Khushboo Agrawal(Introduction to Programming (290102))

Ms. Kratika Sharma (EEES(100005))

Dr. Himmat Singh(BasicElectrical and to Programming (290102)) Dr. Divya Chaturvedi(Linear Algebra(250100)) Ms. Jaimala Jha(Introductio Computer Science and Design(290101))

Course Instructor, Course Name & Course Code

Response Mapping: 1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly Agree

on & A & Ruder

Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering Feedback Analysis (Jan. - June 2022)


Faculty Curriculum Feedback Jan-June 2022 (First Semester M. Tech. CSE)

The availability of books & E-learning materiar in the institute is good.
The Courses and content are up to state.

The course curriculum/syllabiliare helipful in meeting the higher studies/placement requirements according to present global trends.

The course / contents in your domain/area are well designed and frequently updated, hence need no changes at present.

The curriculum is capable of inculcating life-long learning abilities in students.

Course Instructor, Course Name & Course Code

Response Mapping: 1 - Strongly Disagree; 2 - Disagree; 3 - Neutral; 4 - Agree; 5 - Strongly Agree

The Och & Principle

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Action Taken Report for Faculty Curriculum Feedback

S. No.	Course Instructor with course name and code	Action Taken
1.	Dr. R.K. Gupta (Database Management System (150412))	All the responses are Satisfactory.
2.	Dr. Rajni Ranjan Singh (Computer Networks (150411))	All the responses are Satisfactory.
3,	Mr. Mir Shahnawaz Ahmad (Software Engineering (150413))	All the responses are Satisfactory.
4.	Ms. Jaimala Jha (Software Engineering (150413))	All the responses are Satisfactory.
5.	Dr. Anjula Mehto (Computer Networks (150411))	All the responses are Satisfactory.
5.	Dr. R.K. Gupta (Database Management System (150412))	All the responses are Satisfactory.
7.	Dr. Manish Dixit (Theory of Computation (150414))	All the responses are Satisfactory.
8.	Mr. Amit Manjhwar (Network & Web Security (150611))	The course content will be discussed in the upcoming BoS meeting for modifications suggested by the faculty.
).	Dr. Ranjeet Singh (Data Structure (900106))	All the responses are Satisfactory.
10.	Mr. Mahesh Parmar (Compiler Design (150601))	All the responses are Satisfactory.
11.	Ms. Khushboo Agrawal (Computer Networks (150602))	All the responses are Satisfactory.
12.	Dr. Rajni Ranjan Singh (Computer Networks (150602))	All the responses are Satisfactory.
3.	Dr. Anjula Mehto(Mobile Computing (150613))	All the responses are Satisfactory.
14.	Ms. Khushboo Agrawal (Computer Networks (150602))	All the responses are Satisfactory.
5.	Dr. Anjula Mehto (Introduction To Internet of Things (150656))	All the responses are Satisfactory.
6.	Dr. Ranjeet Singh (Disaster Management (100007))	All the responses are Satisfactory.
7.	Dr. Kalka Dubey (Python Programming (900107))	All the responses are Satisfactory.
8.	Mr. Gautam Bhadoria (Basic Civil Engineering & Mechanics(100020)	All the responses are Satisfactory.
9.	Mr. Vishal Chaudhary(Basic Electrical and Electronics Engineering(100022)	All the responses are Satisfactory.
20.	Ms.Kratika Sharma (EEES(100005))	The course content will be discussed in the upcoming BoS meeting for modifications suggested by the faculty.
1.	Mir Shahnawaz Ahmad(Introduction to Computer Programming(230102)	All the responses are Satisfactory.
2.	Dr. Jyoti Vimal (Basic Mechanical Engineering(100021))	All the responses are Satisfactory.
3.	Ms.Jaimala Jha(Introduction to Computer Science and Design(290101))	All the responses are Satisfactory.
4.	Ms. Khushboo Agrawal(Introduction to Programming(290102))	All the responses are Satisfactory.
5.	Dr.Himmat Singh(BasicElectrical and Electronics Engineering(100022))	All the responses are Satisfactory.
6.	Dr. Divya Chaturvedi(Linear Algebra(250100))	All the responses are Satisfactory.
7.	Mr. Arun Kumar(Machine Learning using Python(620120))	All the responses are Satisfactory.
8.	Ms. Hemlata Arva(Network Security(620116))	All the responses are Satisfactory.

Ay on En on to fixin

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

29.	Mr. Mahesh Parmar(High speed Network(620113))	All the responses are Satisfactory.
	Wit: Wildlester arthur (Fingar spessors see 197	The course content will be discussed in the upcoming BoS meeting for
30.	Mr. Amit Manjhwar(Distributed Computing(620112))	modifications suggested by the faculty.
21		The course content will be discussed in the upcoming BoS meeting for
31.	Ms. Ankita Sengar(Database system(620111))	modifications suggested by the faculty.

Additional Comments by faculties:

- Lot of text books and e books are available.
- A I and Machine learning must be emphasized.
- In All competitive exams and public sector exams, TOC questions are always asked. For further studies through GATE, it is a very important subject. Students employability skills have been enhanced through flexi curriculum. NEC enhanced the confidence in the area of his interest.

 There are a lot of research scholars working in the department. Some research scholars are getting fellowship under NDF scheme.

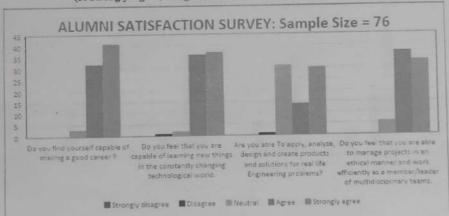
- Regular workshops and training programs are organized Yes, the institute gives all support for faculty, Suggestions for (i) Honours, (ii) Minor specialization, (iii) Departmental electives, (iv) Open electives:

Deep Learning Robotics, Machine Learning, Image Processing

A VA Zikim

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering


Feedback Analysis (Jan. - June 2022)

Shoot (Alumni Satisfaction Survey) Sample Size:76

		Numbe	r of Respons	e	-
Curriculum Evaluation Point	Strongly	Disagree	Neutral	Agree 32 32 36 1 14	Strongly agree
a to the third and corner?	0	0	3	32	41
Do you find yourself capable of making a good career? Do you feel that you are capable of learning new things in the constantly	0	1	2	36	37
changing technological world. Are you able To apply, analyze, design and create products and solutions	0	1	31	14	30
for real life Engineering problems?			6	3.7	33
Do you feel that you are able to manage projects in an ethical manner and work efficiently as a member/leader of multidisciplinary teams.	0	0	0	3,1	34

Alumni Satisfaction Index has been calculated on 5 Point Scale

(5: Strongly Agree, 4: Agree, 3: Neutral, 2: Disagree, 1: Strongly Disagree)

ato In it or of from

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Summary Sheet (Employer Satisfaction Survey) Sample Size:67

Parameter (Average Grading)	Poor	Fair	Good	Very Good	27 27 27 29 37 37 2: Fair, 1: Po	Employer Satisfaction Index
Level of technical contribution	0	14	0	26	27	3.98
Level of success in learning new areas, engaging in professional development, and adapting to technological change	2	8	0	30		4.07
Have they been deserved for elevation to a higher level ?	1	10	0	27	29	4.08
Level of ethical and social responsibility1	1	8	0	21	37	4.26
Demonstrated ability to work well on a team	1	4	0	25	37	4.38

■ Good ■ Very Good ■ Excellent Number of Responses Level of success in learning have they been deserved for new areas, engaging in professional development, and adapting to schoological change

Response Parameters

A Pan

Department of Computer Science and Engineering

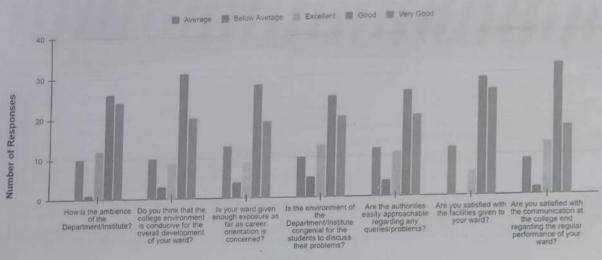
Feedback Analysis (Jan. - June 2022)

Any Other Comment / Suggestions (Please write)	Action taken
Good technical knowledge	
GOOD, KEEP IT UP	
Hardworking & smart students	
Having good technical knowledge as well as great dedication and attitude towards any given task. He is having great potential to grow in our organization.	*
Nicholas is a great addition to the team. He has shown good acumen to research new technology and solutions and find the best possible usage out of that.	
Overall Good Candidates	
Please make your study environment as per private companies standard.	Students doing internship /project for understanding company needs. Curriculum has been designed as per industry requirements.
Positive, dynamic, fast learner, good team performer. MITS rocks!!	
Require more Co -Operation and Co-Ordination.	Our training placement department coordinating.
Jai is an excellent team player and a fast learner. He is focused to the work and performs his responsibilities very well and on time. Happy to have him in the team.	
till now the journey is wonderful in terms of learning and earning, despite a lower package, the promotions were way above industrial norms good growth and a positive work environment	
More companies should be invited to the institute premises to provide greater exposure to the students.	
I think they did a great job. They just need proper guidance.	
focused on new technology	As per the industry demands some provision has been incorporated for industry person guidance in the curriculum
Need some improvement in practical aspect.	Timely workshops and training programs conducted
Please improve quality of education	Curriculum has designed as per industry needs
Excellent team player, eager to learn and strive for success. Truly carrying the MITS value.	
Very good human being. Honest and hard working professional.	
This year some freshers have joined L&T, and I am really shocked to see their attitude towords work adaptation. They need to understand that initially they have to learn to work.	•
Joining of 2020 Batch was delayed due to Covid-19 pandemic. GET batch started in Dec 20/ Jan 21. Quarterly performance review would happen in due course.	*
Very talented, adapt easily to new work environment, Never saying "no" attitude, always ready to learn new skills and help others	(4)

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)


Summary Sheet (Parent Satisfaction Survey) Sample Size:73

		Num	ber of Respon	se		
Evaluation Point	Average	Below Average	Excellen	Good	Very Good	
How is the ambience of the Department/Institute?	10	1	12	26	24	
Do you think that the college environment is conducive for the overall development of your ward?	10	3	9	31	20	
Is your ward given enough exposure as far as career orientation is concerned?	13	4	9	28	19	
Is the environment of the Department/Institute congenial for the students to discuss their problems?	10	5	13	25	20	
Are the authorities easily approachable regarding any queries/problems?	12	4	11	26	20	
Are you satisfied with the facilities given to your ward?	12	0	6	29	26	
Are you satisfied with the communication at the college end regarding the regular performance of your ward?	9	2	13	32	17	

Parent Satisfaction Index has been calculated on 5 Point Scale ((5: Excellent, 4: Very Good, 3: Good, 2: Average, 1: Below Average)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Parameters

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Suggestions given by parents for improvement

Suggestion for further improvement(if any)	Action Taken
What is the scheme related to oc i think if oc subject converted to oc student performance so much better oc is already is a subject for other subject student how to manage other branch subject in final year its time to placement preparation or any higher study preparation so i think maximum time consumed in oc course.	It is mandatory for course curriculum scheme.
Placement training part must be focused more	Various training placement activity conducted in semester-wise
Every thing is fine	
Desire of Regular Communication to and from parents with faculty on Specified WhatsApp Group,As elsewhere	Already Whatsapp groups have been created for communication.
Account Section is not cooperative. The way they are talking is just rediculous	
Classes shall be started in the offline mode as soon as possible.	Already done
Please have colleges opened offline as soon as possible Corona is here to stay but the future of my child depends highly on these remaining 2 years and we want them to be as productive to him as they can be so sincere request for opening the college offline	
Make more competitive environment and awareness among students regarding their career needs in terms of guidance.	Various activities and workshops have been conducted in every semester.
Improving network connection and completing the syllabus on time.	Syllabus completed before teaching end

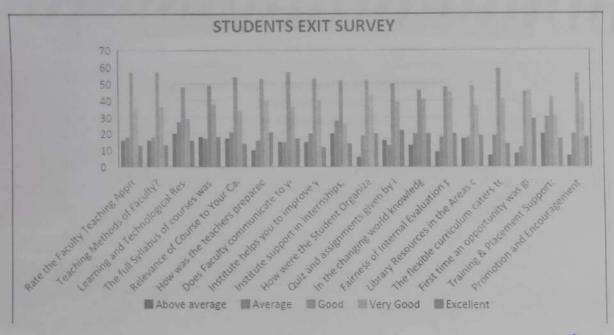
at & Pinn

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

STUDENTS EXIT SURVEY FEEDBACK REPORT- 2022 BATCH: Sample Size :140


Parameter	Average	Above	Good	Very Good	Excellent	Exit Survey Index
1.31100555		Average	57	36	13	3.14
tate the Faculty Teaching Approach in the UG or PG Programs:	18	16	57	36	13	3.07
Feaching Methods of Faculty?	18	16	17.00	29	16	2.90
earning and Technological Resources	27	20	48	38	18	3,15
The full Syllabus of courses was completed through regular &	17	18	49	36	1.0	
dditional/remedial classes				34	14	3.02
Relevance of Course to Your Career Goals or Further Study:	21	17	54	40	21	3.28
How was the teachers preparedness and communication in the class?	16	10	53		17	3,17
How was the teachers preparedness and course Outcomes (CO), Does Faculty communicate to you about Course Outcomes (CO), Program Outcomes (PO) and expected learning & competencies from	15	15	57	36		
he course?	20	15	53	40	12	3.06
Institute support in Internships, Industrial Visits, Project work,	28	20	52	26	14	2.84
Students exchange and other related activities was How were the Student Organizations, Technical & Social Clubs for	19	6	52	43	20	3.27
your overall growth and learnings?	13	16	50	39	22	3.29
Ouiz and assignments given by Faculty were helpful in learning? In the changing world knowledge of new technology and domains is expected from graduates. The NPTEL-MOOCs will help students in	20	13	46	41	20	3.2
becoming self-learners and future ready	18	9	48	45	20	3.28
Fairness of Internal Evaluation process by faculty Library Resources in the Areas of Engineering, Research, Journals &	18	17	49	37	19	3.15
e-Journals, Technical Magazines etc. The flexible curriculum caters to individual career needs by providing choice of subjects. In your opinion, this curriculum approach is	19	7	59	41	14	3.17
First time an opportunity was given for a full VIII semester internship/project. This provision will help in the career planning and growth for you and the future batches.	12	8	45	46	29	3.51
Training & Placement Support:	30	20	42	31	17	2.89
Promotion and Encouragement by Institute/Department for participation in Curricular and Extra-Curricular activities for development of students.		7	56	39	18	3.2

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Feedback Analysis (Jan. - June 2022)

Students Exit Survey Index (on a scale of 5) (5: Excellent, 4: Very Good, 3: Good, 2: Above Average, 1: Average Poor)

Any

TO COL

on the Ge

the of four

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIUR

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal)

Annexure-16

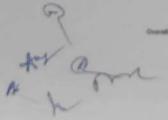
Review of Course Outcomes (COs) feedback of various courses, its analysis, and ATR

ITEM No-22

Madhav Institute of Technology & Science, Gwalior (A Govt Aided UGC Antinomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering

Course Outcomes (COs) Feedback Analysis Jan.-June 2022

cinester	Course Code	Course Name	Faculty Name		CO Statements	CO Attainment using I Min. Paper writing (%age)	CO Attainment using course end sem seminar (%age)	CO Attainment using course feedback using MOODLE (%age)	Overall Indirect CO Attainment (%age)	Overall Indirect CO Attainment Level	Target	Attained/ not attained	Action taker for Not Attained										
				COI	Outline the Data Communications System and its components	84 84	75 48	82.1	80 94	3	1	Attained	-										
				CO2	Identify the different types of network topologies and protocols.	77.27	68.45	90.47	79.9	3	2.5	Attained											
				CO3	Enumerate the layers of the OSI model and function(s) of each layer	74.24	60.65	89.28	76.18	3	2.5	Attained											
IV	150411	Computer Networks	Dr. Anjula Mehto	CO4	Identify the different types of network devices and their functions within a network	90.9	66.25	95,23	85.24	3	2.5	Attained											
				COS	Analyze the problems associated with various networking protocols and measure the Performance	87.87	64.25	78.57	77.06	. 3	2.5	Attained	•										
				CO6	Familiarity with the basic protocols of computer networks, and how they can be used to assist in network design and implementation	65.66	68:25	86.9	75.23	3	2.5	Attained											
		Software Engineering	Mr. Mir Shahnawaz Ahmad	C01	explain the various fundamental concepts of software engineering.	89	86	80.3	84 62	3	2.5	Attained	-										
				C02	develop the concepts related to software design & analysis.	84	78	78.78	80.11	3	2.5	Attained											
IV	150413			CO3	compare the techniques for software project management & estimation	78	68	81.81	76.52	3	2.3	Attained	-										
1.4.	150415			Ahmad				Ahmad							d CO4	choose the appropriate model for real life software project.	71	71	81.81	75.32	3	2.3	Attained
		100											cos d	design the software using modem tools and technologies	68	68	80,3	72.92	3	2.2	Attained		
				C06	test the software through different approaches.	92	83	81.81	85.22	3	E.J.	Zimmesi											
T				coı	Explain the basic concepts of switching and finite automata theory & languages.	92.32	75,36	80.33	82.44	3	2.7	Attained	100										
				CO2	Relate practical problems to languages, automata, computability and complexity.	89.43	80,32	80.33	83.06	3	2.5	Attained											
				CO3	Construct abstract models of computing and check their power to recognize the languages.	78.8	62	83,33	75.57	3	2.5	Attained											
īV	150414	Theory of Computation	Dr. Manish Dixit	CO4	Analyse the grammar, its types, simplification and normal form.	90	71.35	83,33	81.74	3	2.5	Attained											
				CO5	Interpret rigorously formal mathematical methods to prove properties of languages, grammars and automata.	75.62	64.18	80	73.94	3	2.5	Artained	-										
		The		CO6	Develop an overview of how automata theory, languages and computation are applicable in engineering application	71.39	59.35	80	71.22	3	2,5	Attained											
				CO1	define the concept of computer network and various layered architecture	90	85	72	81.3	3	2.5	Attained	*										
				CO2	compare the classless and class full addressing of IPV4	85	72	75	77.1	3.	2.5	Attained											


@

As ? on the A flusher

Madhay Institute of Technology & Science, Gwalior (A Dest Addel UK: Administration & NAM: Acceding Indianae Administration Department of Computer Science and Engineering

Course Outcomes (COx) Feedback Analysis Jan.-Jane 2022

Semester	Course Code	Course Name	Faculty Name		CO Statements	CO Attainment using I Min. Paper writing (Yanga)	Attainment using course end sem seminar (%age)	Aminment using course feedback using \$60000LE (%age)	Overall ladirect CO Attainment (%age)	Overall Indirect CO Artainment Level	Target	Attained/ aut attained	Action taken for Not Attained
VI	150802	Computer Networks	Mic Schurbbier Agrawal	003	identity the different types of networking devices and their functions within a network.	93	90	72	857	3	2.5	Amused	-
				000	analyze various protocols of computer networks for assisting network design and implementation.	76	69	75	79.9	3	2.5	Ammed	*
				6005	design client server application and communication model and postscots for communication	65	60	71	65.9	26	2.5	Aminel	
				(506)	elaborate various TCP/IP protocol for achieving multimedia and security services.	80	65	73	66.7	2.7	25	Artarred	-
		Nerwesk & Web Security	Mr. Amel Marghren	001	explain cryptographic algorithms, bash algorithms and authentication machanisms	5	2	72.8	72.8	3	3	Attained	*
				002	illustrate fundamentals of number theory, attacks and security principles	- 1		75.43	75.43	3	2.5	Amount	2
	(5961) DE-1			C03	apply number theory and various algorithms to achieve principles of encurity	121		75.43	75.43	3	2.5	Attained	*
				6304	analyse the cause for various existing network attacks and describe the working of		-	72.8	72.8	3	3:	Armed	-
				-005	examine the vulnerabilities in IT infestructure	4	-	71.92	71.52	3	- 3	Attamod	
	1			1006	predict the attacks and controls associated with IP, transport-level, web and e-mail			74.56	74.56	3	5	Attained	8
VI		Mobile Computing		(0)	To explain the basic concepts of mobile selecommunications system.	79.12	70.12	74.6	78.63	3	35	Ammed	-4
	150e13 [36-1			1000	To demonstrate the infrastructure to develop eachile communications system.	71.52	67.12	61.34	86.13	3	2.9	Attempt	~
				(00)	To electly the different generations and technology for mobile consumutorations	68.24	61 02	77.72	69.39	3	2.5	Attained	×
				(004	To examine the working of different protocols of wireless meltide communication technology	85.67	64.12	19.10	10:45	3	2.9	Attained	<
				C05	To determine the importance of each technology purisible for deforms equation of excitile and veintless communications	80.12	63.12	73.01	72.18	3	3.5	Attaned	
				6396	To develop protocols for adlass and advantuament based sciences autoropics.	60.23	60.25	73.61	45.35	2.5	3.9	Attend	

Attainment	(Excellent (3))	Very Good (2)	Good (1)
Levide	79%	60%	39%

Similitant GD Attainment (Kage) = 30% of CO Attainment using 1 Min. Paper writing = 20% of CO attainment using course and som service 40% of CO attainment using course and som service.

d fiver