o

0}

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

1 g

g Mg._é‘l_a _a B a)

P T
——

EY

> /
; /iis,.—"!’;bﬁ% 7
lf’] =~] s — - N e
= :
: fs Project Report
E}s on
; f‘ EmoChat
a
-
<
N Submitted By:

Pragati Bansal

55

2| 0901CS191080
>

%lé

-

L¢ - Faculty Mentor:

i g Prof. Mir Shahnawaz Ahmad

Assistant Professor, Computer Science and Engincering

-
-

LT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE

MAY-JUNE 2022

Scanned with CamScanner

MADHAYV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Project Report

on
EmoChat
A project report submitted in partial fulfilment of the requirement for the degree of
BACHELOR OF TECHNOLOGY
in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Pragati Bansal
0901CS191080

Faculty Mentor:
Prof, Mir Shahnawaz Ahmad

Assistant Professor, Computer Science and Engineering

Submitted to:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE
GWALIOR - 474005 (MP) est. 1957

MAY-JUNE 2022

Scanned with CamScanner

GO GUT OV e

¢ &

I Y IV

2

PV VWV LILILOVL

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

CERTIFICATE

This is certified that Pragati Bansal (0901CS191080) has submitted the project report titled
EmoChat under the mentorship of Mr. Mir Shahnawaz Ahmad, in partial fulfilment of the
requirement for the award of degrec of Bachelor of Technology in Computer. Science and
Engineering from Madhav Institute of Technology and Science, Gwalior.

=l

oA\ 2=

Prof. Mir Shahnawaz Aham :EIT5 Dr. Manish Dixit
Faculty Mentor Professor and Head
Assistant Professor Computer Science and Engineering
~ Computer Science and Engincering Dr. ManiSh LHSE
professor & HOD
pment of st
M.LT.S. Gwalic

Scanned with CamScanner

’d

VU W W W Y YW Y Y YW YWY YW Y WY WYY Y VY Y Y Y Y v v v 9 9@

-

MADHAV INSTITUTE OF'I‘ECIINOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

DECLARATION

We hereby declare that the work being presented in this project report, for the partial fulfilment
of requirement for the award of the degree of Bachelor of Technology in Computer Science and
Engineering at Madhav Institute of Technology & Science, Gwalior is an authenticated and
original record of my work under the mentorship of Prof. Mir Shahnawaz Ahmad, Assistant

Professor, Computer Science and Engineering.

We declare that we have not submitted the matter embodied in this report for the award of any
degree or diploma anywhere clse.

/@%

Pragati Bansal

0901CS191080

[T Year

Computer Science and Engineering

Scanned with CamS;:'crerer‘

- - oW vV v vV vV vV v w

- - -

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR
(A Govt., Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

ACKNOWLEDGEMENT

The full semester project has proved to be pivotal to my career. I am thankful to my institute,
Madhay Institute of Technology and Science, for allowing me to continue my disciplinary
project as a curriculum requirement, under the provisions of the Flexible Curriculum Scheme
(based on the AICTE Model Curriculum 2018), approved by the Academic Council of the
institute. I extend my gratitude to the Director of the institute, Dr. R. K. Pandit and Dean

Academics, Dr. Manjarce Pandit for this.

I would sincerely like to thank my department, Department of Computer Science and
Engineering, for allowing me to explore this project. I humbly thank Dr. Manish Dixit,
Professor and Head, Department of Computer Science and Engineering, for his continued
support during the course of this engagement, which eased the process and formalities involved.

I am sincerely thankful to my faculty mentors. I am grateful to the guidance of Prof. Mir
Shahnawaz Ahmad, Assistant Professor, Computer Science and Engineering for their
continued support and guidance throughout the project. I am also very thankful to the faculty

and staff of the department.

0901CS191080

III Year
Computer Science and Engineering

Scanned with CamScanner

Abstract

While talking to a person, it’s not just their words that make an impact in the way we perceive
their point of view but body language also plays an important role. As the world is moving
towards more virtual meetings and chats in particular, it becomes very casy to misinterpret
someone’s emotions if we can’t sce them. A simple solution for this problem is to just video
conference the person whom we want to talk to. But hey, it’s not always possible and we can’t
ask someone randomly for a video call.

We are building this app with the aim in mind to reduce this
miscommunication/misinterpretation. Here we are taking the help of machine learning to predict
what the chat message might want to convey using a sentiment score along with a relevant
mood emoji. The receiver will be able to see the message which the sender wants to send along
with these two elements which our deep learning model will add to the message, making it more
meaningful and less easy to misinterpret. ’

Keywords: Chats, Misinterpretation, Deep Learning Model, Sentiment, Meaningful.

Scanned with CamScanner

I

AR ST ¥ A1 FXS THY, T8 7 Fae 37 U § S e TSRO FY FHAFA & alih B
ST F ¥, afee arer et o T Fecaqul syfAT T §1 SRY-SRY gfrar st smmi
ot 3K RN T & Ao N T W &, IR G Rl Fr STt 7 &@ Fohel €t AR
mmmﬁamﬁmalwmmwmm%ﬁ?gﬂmmﬁa#m
AT T &, 3T s DT FSHRT | AT ¥, TF g o AT g & R & e |
N Fe F AT ITHT G T B EFA 6|

37 5 IO WK / I CATEAT B FH T & 3Eed @ FH 0 F AT FIE 61 TeT 69 6
awm*mmmaﬁwﬁmﬁﬁﬁﬁwmqamﬁmwm
TRR T ITANT F0F A G FAT T AT ARIN| FTecThell 3T HEU FI & ThalT 5 T9F 57
&) Teat & AT ST AT & SRy ERT g RaTor Afge Hewr A Sy &, Ot aw iR e

3T T OTET S H i T &Y AT |

Scanned with CamScanner

INDEX i

Abstract
R
List of figures

Chapter 1: Introduction
Chapter 2: Steps to Run

Chapter 3: Tech Stack
1.1 Front-end
1.1.1 React Native
1.1.2 Expo
1.1.3 Android Emulator
1.2 Back-end
1.2.1 Firebase
1.2.2 ML Model
1.2.2.1 Sentiment Categories
1.2.2.2 Accuracy vs Epochs and Loss vs Epochs graph
1.2.2.3 Model Saving
1.2.2.4 Model Simulation

Chapter 4: WorkFlow

4.1 App creation

4.2 Setting up Firebase

4.3 Adding components and Screens
4.3.1 Components include:
4.3.2 Screens include:

4.4 Running expo cli

4.5 Adding ML (NLP) Model

4.6 Final App

Chapter 5: Functionalities

5.1 App

5.2UI

5.3 Chats
5.3.1 Live Scntiment Prediction
5.3.2 Emoji Support
5.3.3 Images Support
5.3.4 Time Stamp

\

Scanned with CamScar{ner

1v

VII

QO 0~ N1 O S W W W W W N -

— bt bt s et ek
—_— o — O =

L
o I

b

(7S]

e e e
~N NNy v U

Chapter 6: Challenges
6.0.1 Integrating ML Model with React native
6.0.2 Adding Time Stamp

Chapter 7:Conclusion and Future Work

7.1 Conclusion

7.2 Future Work
7.2.1 Weckly/Monthly Mood Indicator
7.2.2 More Functionalities within the app

References

Vi

18
18
18

19
19

19
19

19
20

Scanned with CamScanner

- W v ey Wy W W WY YW Wy Y W W W W

LIST OF FIGURES
Figure Number Figure Caption Page no.
1.1 Message with Sentiment Elements |
3.1 Tech Stack Mindmap 3
32 Android Emulator 4
33 Fircbasc Authentication 5
34 Firebasc Storage 5
3.5 Firebase Profile Picture Update 6
3.6 Firebase room information 6
3.7 ML Model Sentiment Categories 7
38 Mapping classes to index 7
3.9 Epoch Accuracy and Loss Graphs 8
3.10 Saving ML Model 8
3.11 ML Model results 9
4.1 WorkFlow Diagram 10
42 Loading Dataset 12
43 ML Model - Tokenization 12
44 ML model - Padding sequences 12
4.5 Model Training Epochs 13
4.6 Final App chat prediction 14
5.1 Functionalities Mindmap 15
52 App Login Screen 15
5.3 App profile pic upload screen 16
5.4 Live sentiment prediction 17
5.5 Emoji Support 17
5.6 Images Support 17
5.7 Timestamp 17
Vil

Scanned with CamScanner

v v @ @@

w v v v @

WY YW Y TR YN W WYY Y Y Y e MY YWY @

i

CHAPTER 1: INTRODUCTION

1.1 EmoChat is a mobile application that has the ability to show live chat sentiments (emotions).
Every time when a user sends or receives a message, the sentiment that is reflected by that
particular message will be displayed next to that message in real-time.

The sentiment part of the chat message has two parts:

e Sentiment score - A value between -10 to 10, representing the polarity of the sentiments. 10
reflects the most positive sentiment whereas -10 is indicated the most negative sentiment.

® An emoji - An emoji depending on the sentiment value is also displayed, which essentially
represents the possible mood of the sender while we receive their message.

lam eicitéd!r[@] [3]7
P o737PM

Fig 1.1 Message with Sentiment Elements

Scanned with CamScanner

O 4 O UG YWY YUY $Ww e veE o ww

RS

~

~
&~

O O P TR TP

CHAPTER 2: STEPS TO RUN

2.2 For running the app, we have to first download the code file (if in zip format, just extract it).

® Open terminal in that directory (either dedicated or your fav. code editor’s terminal) and run
the following commands
O upm install
o in . -
® Now let the processes run and install required files.
e After that, we can simply run the app using the command
O npm stqrf

e This will either redirect us to a browser window or give an url which can be copied and
pasted to open a browser window.

e In that windows, we will find a QR code and some links to run the app. Make sure to
navigate the selected option to “tunnel” instead of “LAN” to enable stable connection. App
might not run on the “LAN” option.

e We have to download the expo client app - “Expo Go” from the playstore in order to scan
and run that app on our smartphone or any android emulator for that matter.

e After scanning, let it download the contents and the app will be ready to rock!

Scanned with CamScanner

Chapter 3: TECH STACK

Back-end Front-end

React

Authorization >_ e /" Native
irepase
Storage \

Tech Stack S~ Expo = Quickly start mobile app

ML Madel -/ \
Andoid Emulator == Debugging

Fig 3.1 Tech Stack Mindmap

s Building Mobile friendly Ul

Chat Sentiment Prediction

The tech stacks used here are:

3.1 Front-end

3.1.1 React Native
React Native is an open-source framework that enables cross-platform mobile application building

using JavaScript and React, which is an open-source JavaScript library.

React Native uses JSX to create native apps for Android as well as iOS. It is a powerful tool that
aids in creating apps with beautiful Uls, which are the same as native apps. It makes mobile app
creation very easy and cfficient, that is why I chose this front-end framework for my app.

3.1.2 Expo

Expo is a React Native app development framework. It's a collection of React Native-specific tools
and services. It will make it simple for us to start creating React Native apps.

It gives us a list of tools to make creating and testing React Native apps easier. Aside from that,
Expo offers a more robust and simple development approach that is also more flexible.

3.1.3 Android Emulator
It is a tool that I used to see the app in real-time in order to debug it and add clements to it. Android

emulator can be found in Android Studio.

Although T also used my physical mobile phone to run and see the application apart from the

emulator.

S

Scanned with CamScanner

-5

A B B B B B R CE B IR R RV R W R

Fig 3.2 Android Emulator

3.2 Back-end
3.2.1 Firebase

Firebase is a Google-backed mobile and web app development platform based on the backend as a
service (BaaS) system and consists of several pragmatic services and purposeful APIs to develop
high-quality applications.

Firebase provides swift and secure hosting for applications. With trusted Google authentication and
stability, It was easy for me to choose firebase for data storage (for chats and images) and

authentication.’

Scanned with CamScanner

b Firebase Emachat - Gotodocs M) 0
N Proiect Overv Authentication Y

Users Sign-in method Templntes Usage

C Swerch by el atdiess, phawe rurber or uver LD m c

enilfier Providers Crosted § Signad in Usar UID
stingd 1 com = A My 2022 A My 2022 FIRCVIWOF 1IOVINpHIrOeeNCE 2
kg oo = iy i ik a5 L.
Tows per DK v

-
Release and menitor

Analytics

Spark

Fig 3.3 Firebase Authentication

Emochat Gowdoca M 0

Storage

Files Rules Usage

GD geemochal-3156b. appspot.com m

pase and monitor

Fig 3.4 Firebase Storage

Scanned with CamScanner

. GD gavlemochat 356h appspatcom ¥ images > JIRCVIWOFI(0.
O wme stz Type Last modified

a E profilePicture jpeg 71 MR image/jpeq 4 May 2022

Fig 3.5 Firebase Profile Picture Update

-+ Add field

v lastMessage
_id: "6c98d387-e399-4483-86c0-d6c53bf73f55"
createdAt: 4 May 2022 at 22:45:06 UTC+5:30
text: "hii[£][0)°
¥ user

_id: "B6nZLeRHOIOPdsodGc5Zg0xritP2"
name: "Mayank®

v participants

Fig 3.6 Firebase room information
3.2.2 ML Model
In order to predict live sentiments in chat messages, I prepared an ML model.

[started with a machine learning model but they were not giving that much accuracy (around 50%),
so I used Deep learning for sentiment prediction using NLP techniques. The deep learning model

was giving an accuracy of over 90%.

Scanned with CamScanner

3.2.2.1 Sentiment Categories

The sentiment analysis is divided into 6 categories - sadness, anger, love, surprise, fear and joy. It
means that whenever any word or sentence will be put in this model, it will categorize it in any one

of the above mentioned categories.

plt.hist(labels,bins =11)
plt.show()

BEER

o

sadness anger

Fig 3.7 ML Model Sentiment Categories

class_to_index

{'anger‘: @, ‘fear’': 3, ‘joy': 4, 'love': 2, 'sadness': 5, ‘surprise’: 1}

Fig 3.8 Mapping classes to index

3.2.2.2 Accuracy vs Epochs and Loss vs Epochs graph

The graph of epochs vs training and validation accuracy is present on the left and the graph at the
right is between epoch vs training and validation loss.

The number of epochs used were 20.

Scanned with CamScanner

Flg 3.9 Epoch Accuracy and Loss Graphs

Final Accuracy - over 98%

3.2.2.3 Model Saving

After training the model, It needs to be saved in this state in order to use it for sentiment prediction.
model.save("EmoChat™)
import pickle
with open('tokenizer.pickle','wb') as handle:

pickle.dump(tokenizer,handle,protocol = pickle.HIGHEST_PROTOCOL)

with open('label encoder.pickle','wb') as ecn_file:
pickle.dump(index_to_class,ecn_file,protocol = pickle.HIGHEST PROTOCOL)

Fig 3.10 Saving ML Model

3.2.2.4 Model Simulation

After saving, here is the live simulation of the sentiment prediction from sentences.

Scanned with CamScanner

txt = "

while(txt I= "exit"):
txt = input("Enter chat : ")
print("Emotion : ", predicting(txt))

Enter chat : hurray! You won!
Emotion : anger

Enter chat : good

Emotion : joy

Enter chat : alas!

Emotion : anger

Enter chat : oh!

Emotion : joy

Enter chat : congratulations!
Emotion : joy

Enter chat : damn it!

Emotion : anger

Enter chat : I am sad
Emotion : sadness

Fig 3.11 ML Model results

Google Colab Link: Link

Scanned with CamScanner

CHAPTER 4: WORKFLOW

App making using
react native

\ React native makes it

easy lo work with
mobile Ul

v

Setting up Firebase

\ Using my google id to

setup the
environment

v

Adding components
and screens in app

/ \‘ Companents like

profile image,
chatHeader etc.

Screens like Chat,
Contacts, Photo,
Profile, Signin

{ Running expo cli

Expo cli to view react
app in realtime.

Addiag ML (NLP)

; Model
Integrating model | gmm"" — Bl

within the chat al b O of
prediction in live chat
screen of the app

Final App

Fig 4.1 WorkFlow Diagram

4.1 App creation

App was created using React native. For this we have to set up node modules and other files using

npm install -g create-react-native-app.

10

Scanned with CamScanner

Initiated work on the app till the login page before setting up firebase for authentication.

4.2 Setting up Firebase

Next step was to sct up authentication for the app in fircbase, in order to make the app login and

signup process hassle-free.

4.3 Adding components and Screens

Then I moved on to adding various components and screens of the app.

4.3.1 Components include:

Avatar.js
ChatHeader.js
ContactsFloatinglcon
Listltem

4.3.2 Screens include:

e Chat.js
o Individual chat screen for a separate room. Room (in database) signifies one-to-one
conversation between two users.
o Chats,js
o This screen is basically the collection of rooms as it shows all the users who you
chatted with recently.
e Contacts.js
o This screen shows all the list of contacts that have been registered in the app’s
database and are present in our contact list.
e Photojs
o This screen comes up everytime we upload or send a photo within the app.
e Profilejs
o This screen is the next screen after Signup/Login. It requires a2 name and an optional
profile picture when the user Signs in for the first time.
e Signlnjs
o This is the first screen with which a new user will interact with.
o Ofcourse, an alrcady existing user won’t meet this screen as the app will
automatically recognize him/her as an existing user.

4.4 Running expo cli

Expo cli is used hand-in-hand with react native in order to see the app live for debugging.

11

Scanned with CamScanner

For this, we have to first run the react native app using npm start which in turn runs expo cli
interface having a QR code and all the links to run the app on various screens and Operating

systems.

4.5 Adding ML (NLP) Model

Uptill now, I have pretty much wrapped up the app UI part. Now I need to add the NLP layer over
live chats to show relevant sentiment score and mood emoji with the msgs themself.

First step is to train the model. For this - these steps must be followed:
e We need a dataset, fortunately, an emotion dataset is available in the nlp library.

dataset = nlp.load dataset('emotion’)

Fig 4.2 Loading Dataset

e For feeding the model with the dataset, I processed it using Tokenization, word to sequence
conversion etc.

tokenizer = Tokenizer(num_words=10000, oov_token ="<UNK>')
tokenizer.fit on_ texts(tweets)

tokenizer.texts_to_sequences([tweets[2]])

f Fig 4.3 ML Model - Tokenization

e After tokenization, padding should be done which ensures the sentence length of the same
size for feeding the model.

maxlen =

from tensorflow.keras.preprocessing.sequence import pad_sequences

def get_sequences(tokenizer,tweets):
sequence = tokenizer.texts_to_sequences(tweets)
padded = pad_sequences(sequence, truncating = ‘post’, padding = ‘post’, maxlen = maxlen)
return padded

o padded_train_seq = get_sequences(tokenizer,tweets)

Fig 4.4 ML model - Padding sequences

e The main step comes to actually run the model training. For this I found optimum accuracy
to be coming at 20 epochs.

12

Scanned with 'CamScanner

e

T

h = model. Fit(
padded_train_seq, train_labels,

lbe it |

validation data = (val_seq,val_labels), |

epochs = 20,

)
Epoch 1/20
YT (R ——————erer I
Epoch 2/20
500/500 []-
Epoch 3/20
500/500 []-
Epoch 4/20
500/500 [It
Epoch 5/20
500/500 []-
Epoch 6/20
500/500 []
Epoch 7/20
500/500 []-
Epoch 8/20
500/500 [] -
Epoch 9/20
500/500 []-
Epoch 18/20
500/500 |]l
Epoch 11/20

(®) 500/500 []-

After training, I saved the model using inbuilt python methods and then integrated it with my native

app UL

4.6 Final App

335 49ms/step - loss: 1.3253 - accuracy:

225 Adms/step - loss: 9.6200 - accuracy
225 A5ms/step - loss: 0.3848 - accuracy
255 49ms/step - loss: 0.2766 - accuracy

235 A6ms/step - loss: 9.2008 - accuracy

- 23s A6ms/step - loss: 8,1562 - accuracy

235 45ms/step - loss: ©.1181 - accuracy
23s a6ms/step - loss: ©.1862 - accuracy
22s A5ms/step - loss: 8,0802 - accuracy
27s Sams/step - loss: ©.0923 - accuracy

225 a5ms/step - loss: ©.0792 - accuracy

Fig 4.5 Model Training

0,479 - val _loss
1 0.7796 - val_loss

: 0.8691 - val_loss

1 8.9095 - val_loss:
: 8.9359 - val_loss:
¢ 0.9531 - val_loss:
t 0.9638 - val_loss:
: 0.9671 - val_loss:
t 0.9753 - val_loss:

1 8,9715 - val_less:

1 8,9759 - val_loss

Epochs

! 9.835% -

¢ 9.6015

: 9.4712 -

: 8.5051 -

After completing every subpart in the workflow, the final App is ready in action!

13

8.4150 -

2.4464 -

8.4143 -

9.4207 -

9.4428 -

9.4598 -

9.4553 -

val_accuracy:

- val_accuracy:

val_accuracy:
val _accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:
val_accuracy:

val_accuracy:

8.7¢00

9.7855

0.8385

0.8665

a.85%

0.87e@

9.8799

9.8829

@.8755

2.8748

2.8775

Scanneld wi+h CamScanner

W ST el ior
i Trein araii Aok ol AN e G
i i - b

Comsod(@I02 1L

! o ! , ‘." 2 v e 1
3 Ll Cow(@)0)

Dagaw
“ L

e’

otk Aw

{3
| Frpeamessoga. (o] o;
A i

Fig 4.6 Final App chat prediction

14

Scanned with CamScanner

CHAPTER 5: FUNCTIONALITIES

Li\;u sentiment prediction
Can add Profile Piclures s——

Emeji Support
| Functionalities Chats
Requires Authentication == App ‘ images Support
Shows sent time of msgs
Fig 5.1 Functionalities Mindmap
1200 a0 T e ®BABT4TD

5.1 App

The application requires mandatory user registration in order to access it.

If a user is visiting the app for the first time, he/she needs to register EmoChat

himself/herself on the app and can use that id and password for logging

in the next time. o

This functionality is implemented using firebase, which verifies the
entered user id and password with its database. If it is matched with an —
entry in the database, then it allows the user to access the application.

Fig 5.2 App Login Screen Nrvty e en ctmnrs i

5.2 Ul

In the Application UI, users can also add their profile pictures in order to make it more intuitive and
not that simple. It also makes it easy to identify a chat without having to see the name.

15

Scanned with CamScanner

R

T

12:00 AM . 148KB/s @ @ B @il @ Sal 0D 12:01 AM . 119KB/s & @ B @l @ Sl O
Profile Info Profile Info
Please provide your name and an optional profile Please provide your name and an optional profile
photo photo
[0
Type your name Person 1
Fig 5.3 App profile pic upload screen
5.3 Chats

5.3.1 Live Sentiment Prediction

It is the most unique feature of this application. We have used chatting apps like WhatsApp,
Facebook, Instagram, and whatnot. But my application can show in real-time the sentiment which
is reflected by each message. It makes it very easy not-to-misinterpret the sense of the message
and the user can then reply accordingly.

16

Scanned with CamScanner

I'm glad to see (€113

7:39PM

Fig 5.4 Live sentiment prediction

5.3.2 Emoji Support

This app also supports the use of emojis. Some apps show emojis as garbage texts but this app

shows them as relevant emojis.

ocoeRs I

11:59 PM

Fig 5.5 Emoji Support

5.3.3 Images Support
Apart from text, users can also send and receive images to each other in the chats. Note that images

don’t play any role in sentiment prediction.

To send an image, the user just needs to tap the camera button which is present before the send

button in the chat UL

1242 AM

Fig 5.6 Images Support

5.3.4 Time Stamp
The messages which are sent and received in the chat UI also carry their time of sending along with

them, which makes the chat more informative.
‘ 12:41AM

Fig 5.7 Timestamp

17

Scanned with CamScanneﬁ

e e o ——

e —

TorEYT T TrTe——— T

CHAPTER 6: CHALLENGES

6.1 Integrating ML Model with React native

Integrating the ML NLP Model was a challenge as it was not easy to create and manipulate the API
of the ML model.

I had to first save the trained model and then Its API can be used in the parsing of chat messages.

To apply the model, I took the last message from the database and passed it to the ML model, whi-ch
gave a value (a number) as an output. I then used that number to show relevant emojis along with

the sentiment value using if-else statements.

6.2 Adding Time Stamp

To add this, I have to grab the time of sending the message from the database using getTime()
function and then manipulate the received value to show just below the sent and received message.

18

Scanned with CamScanner

4

CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Conclusion
We have made an application using react native which can predict and display the emotion with a
score in real time along with the text.It supports emoji,images.It runs through expo client and have

its authentication and storage on Firebase.

7.2 Future Work

7.2.1 Weekly/Monthly Mood Indicator

We can use the collected chat data for a week or month to make an overall sentiment analysis of the

user. This might help in detecting psychological stress he/she might be going through.

e For this we need to add an export data button within the app to export those chats and then

this data can be analysed by our ml model.
e We can also show the results within the app in order to make this feature more usable.

7.2.2 More Functionalities within the app

More functionalities like

e ability to delete chats,
e read receipts,
e voice message support

can also be added to the app.

19

Scanned with CamScanner

References

I. React Native - Learn once, write anywhere
1I. Expo CLI - Expo Documentation - Expo Documentation
M. How to connect ML model which is made in python to react native app - Stack Overflow

IV. Deploy Machine Learning Model using Flask - GeeksforGeeks

V. Book-Machine Learning for face,emotion and pain recognitiion

20

Scanned with CamScanner

