LECTURE PLAN

Subject: Database Management System (2150304)

Branch: CSE $3^{\text {rd }}$ Semester
Session: July-Dec 2023

Teaching Session	Content to be covered	COs	Blooms Level (BM)	\% Coverage (to be calculated based on the total syllabus)	MODE
1	Introduction: DBMS Concepts \& Architecture	CO1/CO2	LOTS	1.5\%	Offline / Black Board Teaching
2	File processing system, limitation of file processing system, Advantages of Database System	CO1/CO2	LOTS	1.5\%	Offline / Black Board Teaching
2	Data schema, independence, dictionary	CO1/CO2	LOTS	1.5\%	Learning through demonstration
3	Functions of DBA, Database languages	CO1/CO5	LOTS	1.5\%	Learning through demonstration
4	Data Models: Hierarchical Data Model, Network Data Model \& Relational Data Model	CO3/CO6	LOTS	2\%	Learning through demonstration
5	E-R Model, Comparison between Models	CO3/CO6	LOTS	2\%	Offline / Black Board Teaching
6	Introduction of File organization Techniques	CO3/CO6	HOTS	3\%	Activity based Learning
7	Relational Data Models: Entities \& Attributes, Entity types, Key Attributes	CO3/CO6	HOTS	3\%	Learning through projects
8	Relationships, Domains, Tuples, types of Attributes	CO2/CO3	HOTS	3\%	Learning through demonstration
9	Relations, Characteristics of Relations, Keys, Attributes of Relation	CO2/CO3	HOTS	3\%	Learning through projects
10	Relational Database, Integrity Constraints	CO1/CO2	LOTS	1.5\%	Offline / Black Board Teaching

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

$\mathbf{1 1}$	Relational Algebra: Concept	CO1/CO2	HOTS	$\mathbf{2 . 5 \%}$	Offline / Black Board Teaching
$\mathbf{1 2}$	Relational operations like Algebra Project, Division, Union etc.	CO1/CO2	HOTS	$\mathbf{3 \%}$	Activity based Learning
$\mathbf{J o i n ~ O p e r a t i o n s ~}$	CO1/CO2	HOTS	$\mathbf{3 \%}$	Offline / Black Board Teaching	
$\mathbf{1 4}$	Relational algebra extended operations	CO4/CO6	HOTS	$\mathbf{2 . 5 \%}$	Offline / Black Board Teaching
$\mathbf{1 5}$	SQL: Introduction of SQL, features of SQL	CO4	HOTS	$\mathbf{2 \%}$	Learning through experimentation
$\mathbf{1 6}$	Data Definition commands in SQL	CO4	HOTS	$\mathbf{4 \%}$	Learning through experimentation
$\mathbf{1 7}$	Data Manipulation	CO4mands in SQL			

Madhav Institute of Technology \& Science, Gwalior
(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

$\mathbf{3 1}$	3NF, BCNF, Multivalued dependencies and fourth normal form	CO1/CO5	LOTS	$\mathbf{1 . 5 \%}$	Offline / Black Board Teaching
$\mathbf{3 2}$	 Concurrency Control Transaction Concepts	CO1/CO5	LOTS	$\mathbf{2 \%}$	Learning through demonstration
$\mathbf{3 3}$	ACID properties, State Diagram	CO4/CO6	LOTS	$\mathbf{1 . 5 \%}$	Offline / Black Board Teaching
$\mathbf{3 4}$	Types of Transaction	CO4/CO6	LOTS	$\mathbf{2 \%}$	Offline / Black Board Teaching
$\mathbf{3 5}$	Basic idea of serializability	CO4/CO6	LOTS	$\mathbf{3 \%}$	Activity based Learning
$\mathbf{3 6}$	Basic idea of concurrency control	CO4/CO6	LOTS	$\mathbf{1 . 5 \%}$	Offline / Black Board Teaching
$\mathbf{3 7}$	Concurrent operation of Databases	CO4/CO6	LOTS	$\mathbf{1 \%}$	Offline / Black Board Teaching
$\mathbf{3 8}$	Recovery, Types of Recovery	CO4/CO6	LOTS	$\mathbf{1 . 5 \%}$	Offline / Black Board Teaching
$\mathbf{3 9}$	Basic overview of Distributed System Databases	CO4/CO6	LOTS	$\mathbf{1 . 5 \%}$	Offline / Black Board Teaching
Concepts of Object- Oriented Database System and its tools.	CO4/CO6	HOTS	$\mathbf{2 . 5 \%}$	Activity based Learning	

Online	Offline						
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentation	Activity based Learning	Onsite / field based learning
-	34.5%	09%	6%	16%	23%	11.5%	-

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Lecture Plan

Subject: Design \& Analysis of Algorithms (2150303)

Teachin g Session	Content to be covered	COs	Blooms Level (BL)	\% Coverage (to be calculated based on the total syllabus)	Mode of Teaching
1	RAM model, Algorithms, and its importance	CO-1	LOTS	2	Offline / Black Board Teaching
2	Recurrences and Asymptotic Notations,	CO-2	LOTS	3	Offline / Black Board Teaching
3	Mathematical Analysis of Non-Recursive and Recursive Algorithm,	CO-2	LOTS	4	Offline / Black Board Teaching
4	Review of Sorting \& Searching Algorithms	CO-4	LOTS	3	Group based Learning
5	Basic Tree and Graph Concept	CO-3	HOTS	4	Learning through experimentatio n
6	Binary Search Trees,	CO-2	LOTS	2	Activity based Learning
7	Height Balanced Tree,	CO-3	HOTS	2	Offline / Black Board Teaching
8	B-Tree.	CO-5	HOTS	3	Learning through experimentatio n
9	Traversal Techniques and applications.	CO-1	LOTS	2	Offline / Black Board Teaching
10	Pre-order, In-order, and Post-order.	CO-4	LOTS	3	$\begin{gathered} \text { Learning } \\ \text { through } \\ \text { demonstration } \end{gathered}$
11	Divide and Conquer Method: Introduction and Applications.	CO-3	LOTS	4	Learning through experimentatio n
12	Finding the maximum and minimum,	CO-3	LOTS	2	Offline / Black Board Teaching
13	Binary Search	CO-4,5	LOTS	2	Offline / Black Board Teaching
14	Merge Sort	CO-1	LOTS	2	Learning

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

					through demonstration
15	Quick Sort	CO-1	LOTS	3	$\begin{gathered} \text { Learning } \\ \text { through } \\ \text { demonstration } \end{gathered}$
16	Strassen's Matrix Multiplication	CO-2	HOTS	3	Offline / Black Board Teaching
17	Greedy Method: Introduction, Characteristics	CO-3	LOTS	2	Offline / Black Board Teaching
18	Minimum Cost Spanning Trees	CO-3	HOTS	4	Offline / Black Board Teaching
19	Prim's and Kruskal's Algorithms,	CO-2	HOTS	2	Activity based Learning
20	knapsack Problem,	CO-1	LOTS	3	$\begin{gathered} \hline \text { Offline / Black } \\ \text { Board } \\ \text { Teaching } \\ \hline \end{gathered}$
21	Dijkstra's single source shortest path algorithm, Huffman Coding	CO-5	LOTS	4	Learning through experimentatio
22	Dynamic Programming: Introduction,	CO-2	LOTS	2	Offline / Black Board Teaching
23	The principle of Optimality	CO-4	LOTS	2	$\begin{gathered} \text { Offline / Black } \\ \text { Board } \\ \text { Teaching } \\ \hline \end{gathered}$
24	Examples of Dynamic Programming Methods: 0/1 Knapsack	CO-1	LOTS	4	Group based Learning
25	Traveling salesman problem,	CO-4	LOTS	3	Learning through experimentatio n
26	Floyds All Pairs Shortest Path,	CO-3	LOTS	3	Offline / Black Board Teaching
27	Longest Common Subsequence	CO-5	LOTS	3	Offline / Black Board Teaching
28	Reliability Design.	CO-3	LOTS	3	Learning through experimentatio n
29	Backtracking: Concept and its Examples	CO-1	HOTS	2	Offline / Black Board Teaching
30	4-Queen's Problem,	CO-6	LOTS	2	Offline / Black Board Teaching
31	Knapsack problem Hamiltonian Circuit Problem,	CO-2	LOTS	4	Learning through demonstration

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

32	Graph Coloring Problem	CO-6	LOTS	2	Offline / Black Board Teaching
33	Branch and Bound: Introduction and its Applications.	CO-2	HOTS	3	Offline / Black Board Teaching
34	Travelling Salesperson Problem	CO-6	LOTS	2	Learning through experimentatio n
35	NP Completeness: Introduction.	CO-5	LOTS	2	Offline / Black Board Teaching
36	Class P and NP, Polynomial Reduction,	CO-4	HOTS	4	Offline /Black Board Teaching

Black Board Teaching	Group Based Learning	Learning Through Projects	Learning Through demonstration	Learning Through experimentation	Activity based learning	Onsite/field based learning
54%	7%	0%	$\mathbf{1 2 \%}$	$\mathbf{2 3 \%}$	$\mathbf{4 \%}$	$\mathbf{0 \%}$

MADHAV INSTITUTE OF TECHNOLOGY \& SCIENCE GWALIOR

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

Name of Course with Code: Project Planning \& Financing (1000005)

Unit	Day	Content to be Covered	COs	Blooms Level (BM)	Mode of Teaching	\% Coverage (to be calculated based onthe total syllabus)
I	Tuesday	Project Planning: Introduction to Project Management	1	LOTS	Blended	4
	Friday	Difference between Project and Production	1,2	LOTS	Blended	4
	Tuesday	Attributes of a Project: Time, Cost, Quality and Safety.	1,2	HOTS	Blended	4
	Friday	Stakeholders of a Project, Project life cycle.	1,2	HOTS	Blended	4
	Tuesday	Project Planning: Types of Project Plans and feasibility.	1,2	LOTS	learning through demonstration	4
II	Friday	Project Planning: Project Network logic: Project	1,2,3	HOTS	Blended	3
	Tuesday	Activity duration and methods of estimating	1,2	HOTS	Activity based learning	3
	Friday	Activity duration - One time estimate three-time estimates, Duration estimation procedure.	1,2	LOTS	Group based learning	3
	Tuesday	Use of Bar Charts, Mile stone charts and networks Network representation schemes: Activity on Arrow and Activity on Node Networks (A-o-A \& A-o-N)	1,2	HOTS	learning through projects	4
	Friday	Networking and work flows, Logic behind developing project network	1,2	HOTS	learning through experiments	4
	Tuesday	and simple network calculations, Critical paths and floats. Introduction to Project Management,	1,5	HOTS	Blended	4
III	Friday	Use of network in Decision Making: Importance of critical path,	1,5	LOTS	Blended	4
	Tuesday	Monitoring the progress and updating the project plan.	1,5	LOTS	Activity based learning	4
	Friday	Use of floats in Resource smoothening, Introduction to Precedence Diagramming Method (PDM),	1,2, 5	HOTS	Group based learning	4
	Tuesday	Different lag and lead relations in terms of SS (Start to Start), SF (Start to Finish),	1,2, 5	LOTS	learning through projects	4
	Friday	Finish to Start (FS), and Finish to Finish (FF) and composite relations	1,5	HOTS	learning through experiments	4
IV	Tuesday	Project Cost Control: Breakeven analysis in planning stage.	1,2, 5	HOTS	learning through demonstration	4

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of Computer Science and Engineering

DATA SCIENCE (150511)

COURSE OBJECTIVES:

- To provide the fundamental knowledge of Data Sciences.
- To analyse the working of various techniques used in Data Sciences.
- To understand the basic representation and exploratory data analysis used in Data Sciences

LECTURE PLAN

Teaching Session	Content to be covered	COs	Blooms Level (BM)	\% Coverage (to be calculated based on the total syllabus)	MODE
1	Introduction to Data Science - Introduction - Definition 	CO1	LOTS	2.50\%	Offline / Black Board Teaching
2	- Applications of Data Science - Impact of Data Science - Data Analytics Life Cycle - Role of Data Scientist	CO1	LOTS	3.5\%	Offline / Black Board Teaching
3	Basics of Python - Essential Python libraries - Python Introduction: Features, Identifiers, Reserved words - Indentation, Comments	CO 2	LOTS	3.5\%	Offline / Black Board Teaching
4	- Built-in Data types and their Methods: - Strings - List - Tuples	CO 2	LOTS	3.0\%	Offline / Black Board Teaching
5	- Dictionary - Set - Type Conversion - Operators	CO 2	LOTS	3.50\%	Offline / Black Board Teaching
6	Decision Making - Looping-Loop Control statement - Math and Random number functions - User-defined functions, function arguments \& its types	CO2	LOTS	4.0\%	Activity based Learning

Madhav Institute of Technology \& Science, Gwalior
(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

7	Quiz-1 and Discussion				
8	Vectorized Computation - The NumPy ndarray - Creating ndarrays	CO2/CO3	LOTS	3.50\%	Activity based Learning
9	- Data Types for ndarrays - Arithmetic with NumPy Arrays	CO2/CO3	HOTS	3.50\%	Learning through projects
10	- Basic Indexing and Slicing - Boolean Indexing	CO2/CO3	HOTS	3\%	Activity based Learning
11	- Transposing Arrays - Universal Functions	CO2/CO3	HOTS	3.5\%	Activity based Learning/ Board Teaching
12	- Fast Element Wise Array Functions - Mathematical and Statistical Methods	CO2/CO3	HOTS	3.5\%	Learning through demonstration
13	- Sorting Unique and Other Set Logic	CO2/CO3	LOTS	3.00\%	Activity based Learning
14	Quiz-2 and Discussion				
15	Data Analysis - Series - DataFrame	CO4	LOTS	2.50\%	Offline / Black Board Teaching
16	- Essential Functionality - Dropping Entries, Indexing, Selection, and Filtering	CO 4	HOTS	3.5\%	Offline / Black Board Teaching
17	- Function Application and Mapping	CO 4	HOTS	3.0\%	Group based Learning
18	- Sorting and Ranking	CO4	HOTS	1.5\%	Learning through experimentation
19	- Summarizing and Computing Descriptive Statistics	CO 4	HOTS	3.5\%	Learning through experimentation
20	- Mean, Standard Deviation, Skewness and Kurtosis - Unique Values, Value Counts, and Membership	CO 4	HOTS	4\%	Offline / Black Board Teaching
21	- Reading and Writing Data in Text Format	CO 4	HOTS	2\%	Offline / Black Board Teaching
22	Quiz-3 and Discussion				
23	Inferential Statistics in Data Science - Types of Learning	CO6	HOTS	3\%	Learning through demonstration
24	- Linear Regression	CO6	LOTS	3\%	Learning through demonstration

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

25	- Simple Linear Regression	CO6	HOTS	3\%	Activity based Learning
26	- Implementation, plotting, and fitting regression line	CO6	HOTS	3\%	Group based Learning
	- Multiple Linear Regression Introduction, - implementation, comparison with simple linear	CO6	HOTS	2\%	Group based Learning
27	regression, \quad Correlation Matrix, F-Statistic, $\quad-$ Identification of significant features	CO6	HOTS	3\%	Learning through experimentation
28	- Polynomial Regression	CO6	LOTS	3.0\%	Learning through experimentation
29	Quiz-4 and Discussion				
30	Exploratory Data Analysis and Visualization - Handling Missing Data - Data Transformation: Removing Duplicates	C05/CO6	LOTS	3.5\%	Learning through experimentation
31	- Transforming Data Using a Function or Mapping	C05/CO6	HOTS	3.5\%	Offline / Black Board Teaching
32	- Replacing Values - Detecting and Filtering Outliers	CO5/CO6	HOTS	3.5\%	Offline / Black Board Teaching
33	- Functions in pandas	C05/CO6	HOTS	3.5\%	Activity based Learning
34	- Plotting with pandas: Line Plots - Bar Plots	C05/CO6	HOTS	3\%	Learning through demonstration
35	- Histograms and Density Plots - Scatter or Point Plots	CO5/CO6	HOTS	3\%	Learning through demonstration
36	Quiz-5 and Discussion				

Onlin	Offline							
	Black Board Teachin g	Group based Learnin g	Learnin g through projects	Learning through demonstratio n	Learning through experimentatio n	Learning through experimentatio n	Onsite / field based learnin g	
-	35%	8.0%	3.5%	12.5%	14.5%	26.5%	-	

COURSE OUTCOMES: After completing the course, the student will be able to:
CO1: Define basic concepts of Data Sciences.
CO2: Illustrate various concepts of python that are used in data sciences.
CO3: Identify various methods for the representation and manipulation of vectors.
CO4: Analysis the data for applying various statistical modelling approaches.
CO5: Identify hidden patterns in data and transform it using data science techniques.
CO6: Apply regression techniques to solve real world problems.

Syllabus

Unit - I: Introduction to Data Science: Introduction, Definition, applications of Data Science, Impact of Data Science, Data Analytics Life Cycle, role of Data Scientist. Basics of Python: Essential Python libraries, Python Introduction- Features, Identifiers, Reserved words, Indentation, Comments, Built-in Data types and their Methods: Strings, List, Tuples, Dictionary, Set, Type Conversion- Operators. Decision Making: Looping-Loop Control statement, Math and Random number functions. User defined functions, function arguments \& its types.

Unit - II: Vectorized Computation: The NumPy ndarray- Creating ndarrays- Data Types for ndarraysArithmetic with NumPy Arrays- Basic Indexing and Slicing, Boolean Indexing, Transposing Arrays. Universal Functions: Fast Element, Wise Array Functions, Mathematical and Statistical Methods Sorting Unique and Other Set Logic.

Unit - III: Data Analysis: Series, DataFrame, Essential Functionality: Dropping Entries, Indexing, Selection, and Filtering- Function Application and Mapping- Sorting and Ranking. Summarizing and Computing Descriptive Statistics - Mean, Standard Deviation, Skewness and Kurtosis. Unique Values, Value Counts, and Membership. Reading and Writing Data in Text Format.

Unit - IV: Inferential Statistics in Data Science: Types of Learning, Linear Regression- Simple Linear Regression, Implementation, plotting and fitting regression line. Multiple Linear Regression, Introduction, implementation, comparison with simple linear regression, Correlation Matrix, F-Statistic, Identification of significant features. Polynomial regression.

Unit - V: Exploratory Data Analysis and Visualisation: Handling Missing Data, Data Transformation: Removing Duplicates, Transforming Data Using a Function or Mapping, Replacing Values, Detecting and Filtering Outliers, Functions in pandas. Plotting with pandas: Line Plots, Bar Plots, Histograms and Density Plots, Scatter or Point Plots

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR
(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)
Department of Computer Science \& Engineering
INFORMATION SECURITY
150513

Course Name \& Code: Information Security (150513) Class: B.Tech 3 ${ }^{\text {rd }}$ Year Session: July-Dec 2022					
Teaching Session	Date	Content to be covered	COs	Bloom Level(BM)	\% Coverage(To be calculated based on the total syllabus)
1.	Monday	Security, Principles and Attacks	CO1	L1	2.5
2.	Tuesday	Basic Number Theory	CO2	L1,L2	2.5
3.	Wednesday	Fundamental of Cryptography, steganography	CO3	L1	2.5
4.	Thursday	Crypt analysis, Code Breaking	CO1,CO3	L1,L2	2.5
5.	Monday	Block Ciphers, Stream Cipher	CO3	L2	2.5
6.	Tuesday	Substitution ciphers	CO3	L2	2.5
7.	Wednesday	Transposition ciphers	CO1,CO3	L2	2.5
8.	Thursday	Caesar Cipher	CO1	L1	2.5
9.	Monday	Play fair cipher \& hill cipher	CO1	L1	2.5
10.	Tuesday	Cryptography , Symmetric Key Cryptography	CO1	L1,L3	2.5
11.	Wednesday	Public Key cryptography	CO1, CO3	L3	2.5
12.	Thursday	Principle of public key cryptography	CO3	L3	2.5
13.	Monday	Classical cryptographic	CO3	L1, L3	2.5

		algorithms			
14.	Tuesday	RC4, RSA	CO3	L3	2.5
15.	Wednesday	Distribution of public key \& key management	CO3	L3	2.5
16.	Thursday	Diffie-Hellman Key exchange algorithm	CO5	L2,L3	2.5
17.	Monday	HASH Function , One way hash function	CO5	L3	2.5
18.	Tuesday	SHA	CO5	L3,L5	2.5
19.	Wednesday	Authentication requirements \& functions	CO5	L3,L5	2.5
20.	Thursday	KERBEROS	CO 5	L5	2.5
21.	Monday	MESSAGE AUTHENTICATION CODE	CO5	L1,L2	2.5
22.	Tuesday	SET (Secure Electronic Transaction)	CO5	L1,L2	2.5
23.	Wednesday	$\begin{aligned} & \text { DIGITAL } \\ & \text { SIGNATURE \& } \\ & \text { CERTIFICATES } \end{aligned}$	CO5	L1,L2	2.5
24.	Thursday	IP \& WEB SECURITY	CO5	L1,L2	2.5
25.	Monday	SSL,TLS	CO5	L4	2.5
26.	Tuesday	SET	CO5	L2,L3	2.5
27.	Wednesday	IDS	CO5	L3	2.5
28.	Thursday	FIREWALLS TYPES \& FUNCTIONALITIES	CO 4	L3	2.5
29.	Monday	PHISING ATTACKS \& ITS TYPES	CO4	L4	2.5
30.	Tuesday	BUFFER OVERFLOW ATACK	CO4	L4	2.5
31.	Wednesday	Session Hijacking	CO4	L5	2.5
32.	Thursday	HACKING \& TYPES OF HACKERS	CO4	L6	2.5
33.	Thursday	Hacker:Hacking and Types of Hackers	CO6	L5	2.5
34.	Monday	Foot printing, Scanning (Types: Port, Network,	CO6	L6	2.5

		Vulnerability),			
35.	Tuesday	Sniffing in Shared and Switched Networks	CO6	L6	2.5
36.	Wednesday	Sniffing Detection \& Prevention	CO6	L6	2.5
37.	Thursday	Spoofing	CO6	L6	2.5

AMIT KUMAR MANJHVAR
(ASSISTANT PROFESSOR)

Department of CSE

Disaster Management 100007
Semester: V

LECTURE PLAN

Name of Course (Code): Disaster Management (100007)			Class: B.Tech. ${ }^{\text {th }}$ Sem Session: Jul-Dec 2023		
Teaching Session	Content to be covered	COs	Blooms Level (BM)	\% Coverage (to be calculated based on the total syllabus)	MODE
1	Introduction to disaster management, concepts and definition	1	LOT	4	Offline / Black Board Teaching
2	Disaster, vulnerability, risk severity, frequency and details	1	LOT	4	Offline / Black Board Teaching
3	Capacity impact, prevention, mitigation	1	LOT	4	Offline / Black Board Teaching
4	Disasters classification, demographic aspects (gender, age, special needs)	2	HOT	4	Offline / Black Board Teaching
5	Hazard locations, global and national disaster trends	2	LOT	3	Offline / Black Board Teaching
6	Hazard and vulnerability profile of India	2	LOT	3	Offline / Black Board Teaching
7	Disaster impact (environmental, physical, social, ecological, economic, potential, etc)	3	HOT	4	Group Based Learning
8	Disaster impact (environmental, physical, social, ecological, economic, potential, etc)	3	LOT	4	Offline / Black Board Teaching
9	Health, psycho-social issues	3	LOT	3	Offline / Black

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

					Board Teaching
10	Impact of natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, etc)	3	LOT	4	Group Based Learning
11	Impact of natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, etc)	3	LOT	4	Offline / Black Board Teaching
12	Impact of manmade disasters (industrial pollution, artificial flooding in urban areas, urban disasters, transportation accidents, etc)	3	HOT	3	Group Based Learning
13	Impact of manmade disasters (industrial pollution, artificial flooding in urban areas, urban disasters, transportation accidents, etc)	3	HOT	4	Offline / Black Board Teaching
14	Disaster management cycle: its phases	4	HOT	4	Offline / Black Board Teaching
15	Prevention, mitigation, preparedness, relief and recovery	4	HOT	4	Offline / Black Board Teaching
16	Structural and non-structural measures	4	HOT	4	Offline / Black Board Teaching
17	Risk analysis, vulnerability and capacity assessment	4	LOT	4	Offline / Black Board Teaching
18	Early warning systems	4	LOT	3	Offline / Black Board Teaching
19	Post disaster environmental response	4	HOT	3	Offline / Black Board Teaching
20	Roles and responsibilities of government, community, local	4	LOT	4	Offline / Black

Madhav Institute of Technology \& Science, Gwalior
(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)
\(\left.\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { institutions, NGOs and other } \\
\text { stakeholders }\end{array} & & & \begin{array}{l}\text { Board } \\
\text { Teaching }\end{array} \\
\hline \mathbf{2 1} & \begin{array}{l}\text { Policies and legislation for disaster } \\
\text { management }\end{array} & 4 & \text { LOT } & \mathbf{4} & \begin{array}{l}\text { Offline / } \\
\text { Black } \\
\text { Board } \\
\text { Teaching }\end{array} \\
\hline \mathbf{2 2} & \text { DDR programmes in India } & 4 & \text { LOT } & \mathbf{3} & \begin{array}{l}\text { Offline / } \\
\text { Black } \\
\text { Board } \\
\text { Teaching }\end{array} \\
\hline \mathbf{2 3} & \begin{array}{l}\text { Activities of National Disaster } \\
\text { Management Authority }\end{array} & \mathbf{4} & \text { LOT } & \mathbf{4} & \begin{array}{l}\text { Offline / } \\
\text { Black } \\
\text { Board } \\
\text { Teaching }\end{array} \\
\hline \mathbf{2 4} & \begin{array}{l}\text { Factors affecting vulnerability such } \\
\text { as impact of development projects }\end{array} & 5 & \text { HOT } & \mathbf{4} & \begin{array}{l}\text { Offline / } \\
\text { Black } \\
\text { Board } \\
\text { Teaching }\end{array} \\
\hline \mathbf{2 5} & \begin{array}{l}\text { Environmental modifications } \\
\text { (including of dams, land use } \\
\text { changes, urbanization, etc) }\end{array} & 5 & \text { HOT } & \mathbf{4} & \begin{array}{l}\text { Group } \\
\text { Based } \\
\text { Learning }\end{array} \\
\hline \mathbf{2 6} & \begin{array}{l}\text { Sustainable and environmental } \\
\text { friendly recovery }\end{array} & 5 & \text { HOT } & \mathbf{4} & \begin{array}{l}\text { Offline / } \\
\text { Black }\end{array} \\
\text { Board } \\
\text { Teaching }\end{array}
$$ \right\rvert\,-\begin{array}{l}Offline /

Black\end{array}\right]\)| Board |
| :--- |
| Teaching |,

Black Board Teaching	Group Based Learning	Learning Through Projects	Learning Through demonstration	Learning Through experimentation	Activity based learning	Onsite/field based learning
85%	15%					

Kratika Sharma

(Assistant Professor)

MADHAVINSTITUTE OFTECHNOLOGYANDSCIENCE, GWALIOR- 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of CSE
 Computer Science and Engineering Modes of Teaching Subject: Distributed System (150716)
 Session: Session: June2023-Dec 2023

UNITs		CONTENTs	COs	Bloom's Level	\% Coverage (to be calculated based on total syllabus)	MODEs

MADHAVINSTITUTE OFTECHNOLOGYANDSCIENCE, GWALIOR- 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

						Teaching
	19	Synchronization: - Clock Synchronization,	3,4	HOTS	3.5	Offline / Black Board Teaching
	20	Mutual Exclusion,	3,4	HOTS	3.5	Offline / Black Board Teaching
	21	Election Algorithms - Bully \& Ring Algorithms.	3,4	HOTS	3.5	Learning through projects
	22	Election Algorithms - Bully \& Ring Algorithms.	3,4	HOTS	3.5	Learning through projects
Unit IV - Distributed Scheduling and Deadlock:	23	Distributed Scheduling- Issues in Load Distributing,	1,3,4,5	LOTS	2	Offline / Black Board Teaching
	24	Components for Load Distributing Algorithms, Different Types of Load	1,3,4,5	HOTS	2.5	Offline / Black Board Teaching
	25	Distributing Algorithms, Task Migration and its issues	1,3,4,5	HOTS	3.5	Learning through demonstration
	26	Deadlock- Issues in deadlock detection \& Resolutions,	1,3,4,5	HOTS	3.5	Learning through demonstration
	27	Deadlock Handling Strategy,	1,3,4,5	HOTS	3.5	Offline / Black Board Teaching
	28	Distributed Deadlock Algorithms.	1,3,4,5	HOTS	3.5	Offline / Black Board Teaching
Unit V Distributed Databases and Multimedia Management Systems:	29	Distributed Data Base Management System (DDBMS),	1,6	LOTS	2	Offline / Black Board Teaching
	30	Types of Distributed Database, and Distributed Multimedia:	1,6	HOTS	2	Offline / Black Board Teaching
	31	Characteristics of multimedia	1,6	HOTS	2.5	Learning through projects
	32	Data, Quality of Service Managements.	1,6	HOTS	3	Activity based Learning
	33	Case Study of Distributed System: Amoeba	-1,6	HOTS	2	Learning through experimentation
	34	Case Study of Distributed System: , Mach, Chorus	1,6	LOTS	2.5	Learning through projects
	35	Case Study of Distributed System: Chorus	1,6	LOTS	2.5	Learning through projects

Online	Offline							
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentation	Activity based Learning	Onsite / field based learning	
-	54.5	-	18	7	2	18.5	-	
-								

Madhav Institute of Technology \& Science, Gwalior
(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science And Engineering 680312 Management Support Systems
 LECTURE PLAN

Teaching Session	Date / Day	Content to be covered	Cos	Blooms Level (BM)	\% Coverage (to be calculated based on the total syllabus)
1.	Tuesday	Organizations, Management and the Networked Enterprise - Information Systems in Global Business Today, Emerging digital firm	CO1	LOTS	1.5\%
2.	Wednesday	Organizations, Management and the Networked Enterprise -Strategy, perspectives and dimensions of Information systems,	CO5	LOTS	1.5\%
3	Thursday	Network based strategies	CO2/CO5	LOTS	1.5\%
4	Tuesday	Global E-business and Collaboration Business processes	CO1	LOTS	2\%
5	Wednesday	Global E-business and Collaboration Systems for different management groups and Enterprise	CO1	LOTS	2\%
6	Thursday	Global E-business and Collaboration -E-Business, E-commerce, E-Government	CO1/CO2	LOTS	3\%
7	Tuesday	Global E-business and Collaboration Tools and technologies for Collaboration and Social Business	C04/ CO5	HOTS	3\%
8	Wednesday	Global E-business and Collaboration Porter's competitive forces model, The Business value chain Model	CO4/ $\mathrm{CO5}$	LOTS	3\%
9	Thursday	Ethical and Social issues in information systems - A model for Thinking about Ethical, Social, Political issues	CO1	LOTS	3\%
10	Tuesday	Ethical and Social issues in information systems - Five moral dimensions of the Information Age	C01/ $\mathrm{CO5}$	LOTS	1.5\%
11	Wednesday	Ethical and Social issues in information systems - Ethical analysis, Candidate Ethical Principles	CO1	LOTS	2.5\%
12	Thursday	IT Infrastructure \& Emerging Technologies - Evolution, Components, management issues	CO1	LOTS	3\%
13	Tuesday	IT Infrastructure \& Emerging Technologies - Contemporary hardware platform trends	C05/CO6	LOTS	3\%
14	Wednesday	IT Infrastructure \& Emerging Technologies -Contemporary software platform trends	C05/CO6	LOTS	2.5\%
15	Thursday	IT Infrastructure \& Emerging Technologies - Web services and serviceoriented architecture	CO5/CO6	LOTS	2\%
16	Tuesday	Foundations of Business Intelligence File organization terms and concepts	C05/CO6	LOTS	4\%
17	Wednesday	Foundations of Business Intelligence Capabilities of Database management Systems, Analytical tools	C05/CO6	LOTS	2\%

Madhav Institute of Technology \& Science, Gwalior

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

18	Thursday	Foundations of Business Intelligence Databases design, managing data resources	C05/CO6	HOTS	4\%
19	Tuesday	Telecommunications, Internet and Wireless Technology - Networking and communication trends, signals	CO1/CO2	HOTS	1.5\%
20	Wednesday	$\begin{array}{llll}\text { Telecommunications, } & \text { Internet } & \text { and } \\ \text { Wireless } & \text { Technology } & -\quad \text { Types } & \text { of }\end{array}$ networks, internet services and communications tools	CO2/CO4	HOTS	5.5\%
21	Thursday	Telecommunications, Internet and Wireless Technology - Wireless computer networks and internet access	CO2/CO4	LOTS	3\%
22	Tuesday	Securing Information Systems Malicious Software: Viruses, worms, Trojan horses, spyware, Hackers and computer crime	CO2/CO3	LOTS	5\%
23	Wednesday	Securing Information Systems - Internal threats, Business value of security and control: Legal and Regulatory requirements for Electronic records management	CO2/CO3	HOTS	5\%
24	Thursday	Securing Information Systems Establishing a framework for security and control: Risk assessment, Security policy	CO2/CO3	HOTS	5\%
25	Tuesday	Securing Information Systems Technologies and tools for protecting information resources.	CO2/CO4	HOTS	3\%
26	Wednesday	Enterprise Information System - Achieving Operational Excellence and Customer Intimacy: Enterprise system	CO	LOTS	2\%
27	Thursday	Enterprise Information System - Applications, Business values of Enterprise systems, Supply chain management system: Supply chain, Global supply chain	CO1/CO3	LOTS	2\%
28	Tuesday	$\begin{array}{lcc}\text { Enterprise } & \begin{array}{c}\text { Information } \\ \text { relationship }\end{array} & \begin{array}{c}\text { System } \\ \text { management: }\end{array} \\ \text { Customer }\end{array}$ Operational and Analytical CRM, Business value of Customer relationship management systems	CO3/CO4	LOTS	2.5\%
29	Wednesday	Enterprise Information System Enterprise applications: New opportunities and challenges	CO3/CO4	LOTS	1.5\%
30	Thursday	Managing Knowledge - Important dimensions of knowledge, types of knowledge management systems	CO4	LOTS	2\%
31	Tuesday	Managing Knowledge - Requirements of knowledge work systems, expert systems.	CO4	LOTS	1.5\%
32	Wednesday	Enhancing Decision Making - Business value of improved decision making, types of decisions, decision-making process	C03/	LOTS	2\%
33	Thursday	Enhancing Decision Making - Business intelligence, decision support for operational and middle management, decision support for senior management	C03/	LOTS	1.5\%
34	Tuesday	Enhancing Decision Making -Group decision support systems, modeling and designing systems: structured and object oriented methodologies	CO3/CO4	LOTS	2\%

Madhav Institute of Technology \& Science, Gwalior
(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)

35	Wednesday	Enhancing Decision Making - Alternative systems building approaches, Application development for the digital firm.	CO3/CO6	LOTS	3\%
36	Thursday	Project management - Runaway projects and system failure	CO	HOTS	1.5\%
37	Tuesday	Project management - Project management objectives, importance of project management.	CO	LOTS	1\%
38	Wednesday	Project management - Linking systems projects to the Business plan, Information system costs and benefits.	CO	HOTS	1.5\%
39	Thursday	Project management - Dimensions of project risk, change management and the concept of implementation	C05/CO6	LOTS	1.5\%
40	Tuesday	Project management - Controlling risk factors, project management software tools.	C05/CO6	HOTS	2.5\%

Dr. Parul Saxena

MADHAV INSTITUTE OF TECHNOLOGY \& SCIENCE GWALIOR
(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal)
Department of Computer Science and Engineering Name of Course with Code: NETWORK SECURITY (900209)

Academic Lecture Plan for Session:- July-Dec 2023

Teaching Session	Date/Day	Content to be Covered	COs	Blooms Level (BM)	Mode of Teaching	\% Coverage (to be calculated based on the total syllabus)
1	Monday	Introduction to the Course	1	LOTS	Offline / Black Board Teaching	2
2	Wednesday	Fundamentals of Cryptography	1,2	LOTS	Offline / Black Board Teaching	2
3	Friday	Fundamentals of Steganography,cryptanalysis,	1,2	HOTS	Learning through demonstration	3
4	Monday	Code Breaking	1,2	HOTS	Offline / Black Board Teaching	2
5	Wednesday	Security: Principles and Attacks,	1,2	LOTS	Offline / Black Board Teaching	2
6	Friday	Block Ciphers and Steam Ciphers	1,2,3	HOTS	Offline / Black Board Teaching	2
7	Monday	Substitution Ciphers, Transposition Ciphers,	1,2	HOTS	Group based Learning	2
8	Wednesday	Caesar Cipher, Play-Fair Cipher, Hill Cipher	1,2	LOTS	Learning through demonstration	2
9	Friday	Cipher Modes of Operation	1,2	HOTS	Learning through demonstration	2
10	Monday	Cryptography: Symmetric Key Cryptography, Public Key Cryptography	1,2	HOTS	Learning through demonstration	2
11	Wednesday	Principles of Public Key Cryptosystem,	1,5	HOTS	Activity based Learning	3
12	Friday	Classical Cryptographic Algorithms: DES,	1,5	LOTS	Activity based Learning	3
13	Monday	RC4, Blowfish	1,5	LOTS	Offline / Black Board Teaching	2
14	Wednesday	RSA	1,2, 5	HOTS	Offline / Black Board Teaching	3
15	Friday	Distribution of Public Keys and Key Management,	1,2, 5	LOTS	Group based Learning	3
16	Monday	Diffie-Hellman Key Exchange	1,5	HOTS	Learning through demonstration	2
17	Wednesday	Hash Functions, One Way Hash Function,	1,2, 5	HOTS	Offline / Black Board Teaching	2
18	Friday	SHA (Secure Hash Algorithm).	1,2, 5	HOTS	Activity based Learning	3

19	Monday	Authentication: Requirements, Functions,	1,2, 5	HOTS.	Offline / Black Board Teaching	3
20	Wednesday	Kerberos	1,2,5	HOTS	Activity based Learning	3
21	Friday	Message Authentication Codes,	1,5	HOTS	Offline / Black Board Teaching	3
22	Monday	Message Digest: MD5,	1,3, 6	HOTS	Learning through demonstration	2
23	Wednesday	SSH (Secure Shell),	1,3, 6	HOTS	Learning through experimentation	3
24	Friday	Digital Signatures, Digital Certificates	1,3, 6	LOTS	Learning through experimentation	3
25	Monday	IP \& Web Security Overview:	1,3, 6	HOTS	Offline / Black Board Teaching	3
26	Wednesday	SSL (Secure Socket Layer),	1,3, 6	LOTS	Learning through experimentation	2
27	Friday	TLS (Transport Layer Security),	1,3, 6	LOTS	Offline / Black Board Teaching	3
28	Monday	SET (Secure Electronic Transaction).	1,3, 6	HOTS	Learning through demonstration	2
29	Wednesday	IDS (Intrusion Detection System):	1,4	LOTS	Learning through demonstration	3
30	Friday	Statistical Anomaly Detection	1,4	LOTS	Offline / Black Board Teaching	3
31	Monday	Rule-Based Intrusion Detection,	1,4	HOTS	Offline / Black Board Teaching	2
32	Wednesday	Penetration Testing,	1,4	LOTS	Learning through demonstration	2
33	Friday	Risk Management	2	LOTS	Offline / Black Board Teaching	2
34	Monday	Firewalls: Types, Firewalls: Functionality. Firewalls: Polices	2,1	LOTS	Learning through experimentation	2
35	Wednesday	Phishing: Attacks and Its Types,	2	HOTS	Offline / Black Board Teaching	2
36	Friday	Buffer Overflow Attack, Cross Site Scripting	2	HOTS	Offline / Black Board Teaching	2
37	Monday	SQL Injection Attacks,	2	HOTS	Learning through demonstration	1
38	Wednesday	Session Hijacking.	2	HOTS	Learning through experimentation	3
39	Friday	Denial of Service Attacks: Smurf Attack	1,2	HOTS	Learning through experimentation	2
40	Monday	SYN ,Flooding, Distributed Denial of Service.	1,2	HOTS	Offline / Black Board Teaching	2
41	Wednesday	Hacker: Hacking and Types of Hackers, Foot printing	1,4	LOTS	Offline / Black Board Teaching	2
42	Friday	Scanning: Types: Port, Network, Vulnerability	1,4	LOTS	Offline / Black Board Teaching	2
43	Monday	Sniffing in Shared and Switched Networks	2	HOTS	Offline / Black Board Teaching	2
44	Wednesday	Sniffing Detection \& Prevention, Spoofing.	2	HOTS	Offline / Black Board Teaching	2

Online	Offline					
	Offline / Black Board Teaching	Learning through demonstration	Learning through experimentation	Group based Learning	Activity based Learning	
$\mathbf{0}$	$\mathbf{4 7 \%}$	$\mathbf{2 1 \%}$	$\mathbf{1 5 \%}$	$\mathbf{5 \%}$	$\mathbf{1 2 \%}$	Learning through projects

Jitendra Kumar Tyagi
Assistant Professor

MADHAV INSTITUTE OF TECHNOLOGY \& SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous \& NAAC Accredited Institute Affiliated to RGPV, Bhopal) Department of CSE

Lecture Plan

DATA MINING \& WAREHOUSING
150715
Session - July December 2023

Lecture No.	CONTENT	COs	Bloom's Level	\% Coverage (to be calculated based on total syllabus)	MODE
1.	Data type for Data Mining: Relational Databases Data Ware- Houses	1	LOTS	3%	Offline / Black Board Teaching
2,3	Transactional Databases, Advanced Database System and Its Applications,	1	LOTS	3%	Offline / Black Board Teaching
4,5	Data Mining Functionalities Concept/Class Description	1	LOTS	3%	Offline / Black Board Teaching
112	Association Analysis Prediction	1	1	LOta Warehouse and	
OLTP Technology for					
Data Mining:					

	Differences between Operational Database Systems \& Data Warehouse				
13	Multidimensional Data Model	1,2	LOTS, HOTS	3\%	Group Based Learning
14,15	Data Warehouse Architecture	1, 2	LOTS	3\%	Offline / Black Board Teaching
16,17	Data Warehouse Implementation	1, 2	HOTS	3\%	Offline / Black Board Teaching
18,19	Data Cube Technology	1, 2	HOTS	2\%	Offline / Black Board Teaching
20	Emerging Scenario of Pattern Warehousing System	1, 2	HOTS	3\%	Offline / Black Board Teaching
21,22	Data Pre-processing: Data Cleaning	1, 4, 6	HOTS	3\%	Learning Through Projects
23	Data Integration and Transformation	1, 2, 6	HOTS	2\%	Learning Through Projects
24,25	Data Reduction Discretization and Concept Hierarchy Generation	1,3,6	HOTS	2\%	Learning Through experimentation
26	Data Mining Primitives Languages and System Architectures	1,3,6	HOTS	3\%	Learning Through experimentation
27	Concept Description	1,5,6	HOTS	3\%	Activity based learning
28	Characterization and Comparison Analytical Characterization	1,3,6	HOTS	2\%	Offline / Black Board Teaching
29,30	Mining Association Rules in Large Databases: Association Rule Mining Market	1,3,6	HOTS	3\%	Offline / Black Board Teaching

	Basket Analysis				
31,32	Mining Single Dimensional Boolean Association Rules from Transactional Databases: The Apriori Algorithm	1,3,6	HOTS	5\%	Offline / Black Board Teaching
33	Generating Association Rules from Frequent Items	1,3,6	HOTS	5\%	Offline / Black Board Teaching
34	Improving the Efficiency of Aprior	1, 5	HOTS	3\%	Learning through demonstration
35	Algorithms \& their Comparison	1, 2, 5	HOTS	3\%	Offline / Black Board Teaching
36	Mining Multilevel Association Rules	1, 2, 5	HOTS	3\%	Offline / Black Board Teaching
37	Multidimensional Association Rules	1, 2, 5	HOTS	3\%	Offline / Black Board Teaching
38	Constraint Based Association Rule Mining	1, 2, 5	HOTS	3\%	Offline / Black Board Teaching
39,40	 Predication and Cluster Analysis: Issues Regarding Classification \& Predication	1, 5	LOTS	2\%	Offline / Black Board Teaching
41	Different Classification Methods	5	LOTS	4\%	Offline / Black Board Teaching
42	Predication	4, 6	HOTS	3\%	Offline / Black Board Teaching
43	Cluster Analysis	4, 5, 6	HOTS	3\%	Learning Through experimentation
44,45	Major Clustering Methods	5,6	HOTS	3\%	Group Based Learning
46	Currently Available	6	HOTS	3\%	Group Based

	Tools				Learning
47,48	Case Study	6	HOTS	3%	Group Based Learning

Black Board Teaching	Group Based Learning	Learning Through Projects	Learning Through demonstration	Learning Through experimentation	Activity based learning	Onsite/field based learning
69%	12%	5%	3%	8%	3%	

(Dr. R. K. Gupta)
Professor
Department of CSE

