(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

#### **LECTURE PLAN**

Subject: Database Management System (2150304)

Branch: CSE 3<sup>rd</sup> Semester Session: July-Dec 2023

| Teaching<br>Session | Content to be covered                                                                                | COs     | Blooms<br>Level<br>(BM) | % Coverage<br>(to be<br>calculated<br>based on the<br>total syllabus) | MODE                              |
|---------------------|------------------------------------------------------------------------------------------------------|---------|-------------------------|-----------------------------------------------------------------------|-----------------------------------|
| 1                   | Introduction: DBMS Concepts & Architecture                                                           | CO1/CO2 | LOTS                    | 1.5%                                                                  | Offline / Black Board<br>Teaching |
| 2                   | File processing system,<br>limitation of file processing<br>system, Advantages of<br>Database System | CO1/CO2 | LOTS                    | 1.5%                                                                  | Offline / Black Board<br>Teaching |
| 2                   | Data independence,<br>schema, Instances, Data<br>dictionary                                          | CO1/CO2 | LOTS                    | 1.5%                                                                  | Learning through demonstration    |
| 3                   | Functions of DBA,<br>Database languages                                                              | CO1/CO5 | LOTS                    | 1.5%                                                                  | Learning through demonstration    |
| 4                   | Data Models: Hierarchical<br>Data Model, Network Data<br>Model & Relational Data<br>Model            | CO3/CO6 | LOTS                    | 2%                                                                    | Learning through demonstration    |
| 5                   | E-R Model, Comparison between Models                                                                 | CO3/CO6 | LOTS                    | 2%                                                                    | Offline / Black Board<br>Teaching |
| 6                   | Introduction of File organization Techniques                                                         | CO3/CO6 | HOTS                    | 3%                                                                    | Activity based<br>Learning        |
| 7                   | Relational Data Models:<br>Entities & Attributes, Entity<br>types, Key Attributes                    | CO3/CO6 | HOTS                    | 3%                                                                    | Learning through projects         |
| 8                   | Relationships, Domains,<br>Tuples, types of Attributes                                               | CO2/CO3 | HOTS                    | 3%                                                                    | Learning through demonstration    |
| 9                   | Relations, Characteristics<br>of Relations, Keys,<br>Attributes of Relation                          | CO2/CO3 | HOTS                    | 3%                                                                    | Learning through projects         |
| 10                  | Relational Database,<br>Integrity Constraints                                                        | CO1/CO2 | LOTS                    | 1.5%                                                                  | Offline / Black Board<br>Teaching |

## OS TO

## Madhav Institute of Technology & Science, Gwalior

|    | A Govt. Aided UGC Autonomous                                             |         | ,    |      |                                   |
|----|--------------------------------------------------------------------------|---------|------|------|-----------------------------------|
| 11 | Relational Algebra:<br>Concept                                           | CO1/CO2 | HOTS | 2.5% | Offline / Black Board<br>Teaching |
| 12 | Relational Algebra operations like Select, Project, Division, Union etc. | CO1/CO2 | HOTS | 3%   | Activity based<br>Learning        |
| 13 | Join Operations                                                          | CO1/CO2 | HOTS | 3%   | Offline / Black Board<br>Teaching |
| 14 | Relational algebra extended operations                                   | CO4/CO6 | HOTS | 2.5% | Offline / Black Board<br>Teaching |
| 15 | <b>SQL:</b> Introduction of SQL, features of SQL                         | CO4     | HOTS | 2%   | Learning through experimentation  |
| 16 | Data Definition commands in SQL                                          | CO4     | HOTS | 4%   | Learning through experimentation  |
| 17 | Data Manipulation commands in SQL                                        | CO4     | LOTS | 2%   | Learning through experimentation  |
| 18 | SQL operators                                                            | CO4     | HOTS | 4%   | Group based Learning              |
| 19 | Update Statements                                                        | CO2/CO3 | HOTS | 1.5% | Offline / Black Board<br>Teaching |
| 20 | Views in SQL                                                             | CO2/CO3 | HOTS | 5.5% | Learning through demonstration    |
| 21 | Query & Sub query                                                        | CO2/CO3 | LOTS | 3%   | Learning through demonstration    |
| 22 | Extended SQL Queries                                                     | CO2/CO3 | HOTS | 5%   | Group based Learning              |
| 23 | Data Retrieval Queries                                                   | CO2/CO3 | HOTS | 5%   | Learning through experimentation  |
| 24 | Data Manipulation Statements examples                                    | CO2/CO3 | HOTS | 5%   | Learning through experimentation  |
| 25 | Overview of Tuple<br>Oriented Calculus                                   | CO2/CO3 | HOTS | 3%   | Learning through experimentation  |
| 26 | Domain Oriented Relational Calculus                                      | CO2/CO3 | LOTS | 2%   | Learning through experimentation  |
| 27 | Normalization: Introduction to Normalization                             | CO2/CO3 | LOTS | 2%   | Offline / Black Board<br>Teaching |
| 28 | Concepts of anomalies and its types                                      | CO1/CO5 | LOTS | 2.5% | Offline / Black Board<br>Teaching |
| 29 | Closure set of dependencies and of attributes                            | CO1/CO5 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 30 | Various Normal Forms:<br>1NF, 2NF                                        | CO1/CO5 | HOTS | 2%   | Offline / Black Board<br>Teaching |

# Town is worship

## Madhav Institute of Technology & Science, Gwalior

| •  |                                                                               |         |      |      |                                   |
|----|-------------------------------------------------------------------------------|---------|------|------|-----------------------------------|
| 31 | 3NF, BCNF, Multivalued dependencies and fourth normal form                    | CO1/CO5 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 32 | Transaction Processing & Concurrency Control: Transaction Processing Concepts | CO1/CO5 | LOTS | 2%   | Learning through demonstration    |
| 33 | ACID properties, State<br>Diagram                                             | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 34 | Types of Transaction                                                          | CO4/CO6 | LOTS | 2%   | Offline / Black Board<br>Teaching |
| 35 | Basic idea of serializability                                                 | CO4/CO6 | LOTS | 3%   | Activity based<br>Learning        |
| 36 | Basic idea of concurrency control                                             | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 37 | Concurrent operation of Databases                                             | CO4/CO6 | LOTS | 1%   | Offline / Black Board<br>Teaching |
| 38 | Recovery, Types of<br>Recovery                                                | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 39 | Basic overview of<br>Distributed Databases<br>System                          | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 40 | Concepts of Object-<br>Oriented Database System<br>and its tools.             | CO4/CO6 | HOTS | 2.5% | Activity based<br>Learning        |

| Online |                                        | Offline  |          |               |                 |          |          |  |
|--------|----------------------------------------|----------|----------|---------------|-----------------|----------|----------|--|
|        | Black Group Learning Learning Learning |          |          |               |                 | Activity | Onsite / |  |
|        | Board                                  | based    | through  | through       | through         | based    | field    |  |
|        | Teaching                               | Learning | projects | demonstration | experimentation | Learning | based    |  |
|        |                                        |          |          |               |                 |          | learning |  |
| -      | 34.5%                                  | 09%      | 6%       | 16%           | 23%             | 11.5%    | -        |  |



(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Lecture Plan**

**Subject: Design & Analysis of Algorithms (2150303)** 

| Teachin<br>g<br>Session | Content to be covered                                           | COs    | Blooms<br>Level<br>(BL) | % Coverage (to be calculated based on the total syllabus) | Mode of<br>Teaching                        |
|-------------------------|-----------------------------------------------------------------|--------|-------------------------|-----------------------------------------------------------|--------------------------------------------|
| 1                       | RAM model, Algorithms, and its importance                       | CO-1   | LOTS                    | 2                                                         | Offline / Black<br>Board<br>Teaching       |
| 2                       | Recurrences and Asymptotic Notations,                           | CO-2   | LOTS                    | 3                                                         | Offline / Black<br>Board<br>Teaching       |
| 3                       | Mathematical Analysis of Non-Recursive and Recursive Algorithm, | CO-2   | LOTS                    | 4                                                         | Offline / Black<br>Board<br>Teaching       |
| 4                       | Review of Sorting & Searching Algorithms                        | CO-4   | LOTS                    | 3                                                         | Group based<br>Learning                    |
| 5                       | Basic Tree and Graph Concept                                    | CO-3   | HOTS                    | 4                                                         | Learning<br>through<br>experimentatio      |
| 6                       | Binary Search Trees,                                            | CO-2   | LOTS                    | 2                                                         | Activity based<br>Learning                 |
| 7                       | Height Balanced Tree,                                           | CO-3   | HOTS                    | 2                                                         | Offline / Black<br>Board<br>Teaching       |
| 8                       | B-Tree.                                                         | CO-5   | HOTS                    | 3                                                         | Learning<br>through<br>experimentatio      |
| 9                       | Traversal Techniques and applications.                          | CO-1   | LOTS                    | 2                                                         | Offline / Black<br>Board<br>Teaching       |
| 10                      | Pre-order, In-order, and Post-order.                            | CO-4   | LOTS                    | 3                                                         | Learning<br>through<br>demonstration       |
| 11                      | Divide and Conquer Method:<br>Introduction and Applications.    | CO-3   | LOTS                    | 4                                                         | Learning<br>through<br>experimentatio<br>n |
| 12                      | Finding the maximum and minimum,                                | CO-3   | LOTS                    | 2                                                         | Offline / Black Board Teaching             |
| 13                      | Binary Search                                                   | CO-4,5 | LOTS                    | 2                                                         | Offline / Black<br>Board<br>Teaching       |
| 14                      | Merge Sort                                                      | CO-1   | LOTS                    | 2                                                         | Learning                                   |



|    |                                                                  |      |      |   | through demonstration                      |
|----|------------------------------------------------------------------|------|------|---|--------------------------------------------|
| 15 | Quick Sort                                                       | CO-1 | LOTS | 3 | Learning through demonstration             |
| 16 | Strassen's Matrix Multiplication                                 | CO-2 | HOTS | 3 | Offline / Black<br>Board<br>Teaching       |
| 17 | Greedy Method: Introduction,<br>Characteristics                  | CO-3 | LOTS | 2 | Offline / Black<br>Board<br>Teaching       |
| 18 | Minimum Cost Spanning Trees                                      | CO-3 | HOTS | 4 | Offline / Black<br>Board<br>Teaching       |
| 19 | Prim's and Kruskal's Algorithms,                                 | CO-2 | HOTS | 2 | Activity based Learning                    |
| 20 | knapsack Problem,                                                | CO-1 | LOTS | 3 | Offline / Black<br>Board<br>Teaching       |
| 21 | Dijkstra's single source shortest path algorithm, Huffman Coding | CO-5 | LOTS | 4 | Learning<br>through<br>experimentatio<br>n |
| 22 | Dynamic Programming: Introduction,                               | CO-2 | LOTS | 2 | Offline / Black<br>Board<br>Teaching       |
| 23 | The principle of Optimality                                      | CO-4 | LOTS | 2 | Offline / Black<br>Board<br>Teaching       |
| 24 | Examples of Dynamic Programming<br>Methods: 0/1 Knapsack         | CO-1 | LOTS | 4 | Group based<br>Learning                    |
| 25 | Traveling salesman problem,                                      | CO-4 | LOTS | 3 | Learning<br>through<br>experimentatio<br>n |
| 26 | Floyds All Pairs Shortest Path,                                  | CO-3 | LOTS | 3 | Offline / Black<br>Board<br>Teaching       |
| 27 | Longest Common Subsequence                                       | CO-5 | LOTS | 3 | Offline / Black<br>Board<br>Teaching       |
| 28 | Reliability Design.                                              | CO-3 | LOTS | 3 | Learning<br>through<br>experimentatio      |
| 29 | Backtracking: Concept and its Examples                           | CO-1 | HOTS | 2 | Offline / Black<br>Board<br>Teaching       |
| 30 | 4-Queen's Problem,                                               | CO-6 | LOTS | 2 | Offline / Black Board Teaching             |
| 31 | Knapsack problem Hamiltonian Circuit Problem,                    | CO-2 | LOTS | 4 | Learning<br>through<br>demonstration       |



|    |                                        |      |      |   | Offline / Black |
|----|----------------------------------------|------|------|---|-----------------|
| 32 | Graph Coloring Problem                 | CO-6 | LOTS | 2 | Board           |
|    |                                        |      |      |   | Teaching        |
|    | Branch and Bound: Introduction and its |      |      |   | Offline / Black |
| 33 | Applications.                          | CO-2 | HOTS | 3 | Board           |
|    | Applications.                          |      |      |   | Teaching        |
|    |                                        | CO-6 | LOTS | 2 | Learning        |
| 34 | Travelling Salesperson Problem         |      |      |   | through         |
| 34 | Travening Salesperson Froblem          |      |      |   | experimentatio  |
|    |                                        |      |      |   | n               |
|    |                                        |      |      |   | Offline / Black |
| 35 | NP Completeness: Introduction.         | CO-5 | LOTS | 2 | Board           |
|    |                                        |      |      |   | Teaching        |
|    |                                        | CO-4 | HOTS | 4 | Offline / Black |
| 36 | Class P and NP, Polynomial Reduction,  |      |      |   | Board           |
|    |                                        |      |      |   | Teaching        |

| Black Board<br>Teaching | Group Based<br>Learning | Learning<br>Through<br>Projects | Learning<br>Through<br>demonstration | Learning<br>Through<br>experimentation | Activity based learning | Onsite/field<br>based<br>learning |
|-------------------------|-------------------------|---------------------------------|--------------------------------------|----------------------------------------|-------------------------|-----------------------------------|
| 54%                     | 7%                      | 0%                              | 12%                                  | 23%                                    | 4%                      | 0%                                |



#### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Computer Science and Engineering**

Name of Course with Code: Project Planning & Financing (1000005)

**Academic Lecture Plan for Session: July-Dec 2023** 

| Unit | Day     | Content to be Covered                                                                                                                             | COs     | Blooms<br>Level<br>(BM) | Mode of Teaching               | % Coverage (to be calculated based onthe total syllabus) |
|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|--------------------------------|----------------------------------------------------------|
| I    | Tuesday | Project Planning: Introduction to Project Management                                                                                              | 1       | LOTS                    | Blended                        | 4                                                        |
|      | Friday  | Difference between Project and Production                                                                                                         | 1,2     | LOTS                    | Blended                        | 4                                                        |
|      | Tuesday | Attributes of a Project: Time, Cost, Quality and Safety.                                                                                          | 1,2     | HOTS                    | Blended                        | 4                                                        |
|      | Friday  | Stakeholders of a Project, Project life cycle.                                                                                                    | 1,2     | HOTS                    | Blended                        | 4                                                        |
|      | Tuesday | Project Planning: Types of Project Plans and feasibility.                                                                                         | 1,2     | LOTS                    | learning through demonstration | 4                                                        |
| II   | Friday  | Project Planning: Project Network logic: Project                                                                                                  | 1,2,3   | HOTS                    | Blended                        | 3                                                        |
|      | Tuesday | Activity duration and methods of estimating                                                                                                       | 1,2     | HOTS                    | Activity based learning        | 3                                                        |
|      | Friday  | Activity duration – One time estimate three-time estimates, Duration estimation procedure.                                                        | 1,2     | LOTS                    | Group based learning           | 3                                                        |
|      | Tuesday | Use of Bar Charts, Mile stone charts and networks Network representation schemes: Activity on Arrow and Activity on Node Networks (A-o-A & A-o-N) | 1,2     | HOTS                    | learning through projects      | 4                                                        |
|      | Friday  | Networking and work flows, Logic behind developing project network                                                                                | 1,2     | HOTS                    | learning through experiments   | 4                                                        |
|      | Tuesday | and simple network calculations, Critical paths and floats. Introduction to Project Management,                                                   | 1, 5    | HOTS                    | Blended                        | 4                                                        |
| III  | Friday  | Use of network in Decision Making: Importance of critical path,                                                                                   | 1, 5    | LOTS                    | Blended                        | 4                                                        |
|      | Tuesday | Monitoring the progress and updating the project plan.                                                                                            | 1, 5    | LOTS                    | Activity based learning        | 4                                                        |
|      | Friday  | Use of floats in Resource smoothening, Introduction to Precedence Diagramming Method (PDM),                                                       | 1, 2, 5 | HOTS                    | Group based learning           | 4                                                        |
|      | Tuesday | Different lag and lead relations in terms of SS (Start to Start), SF (Start to Finish),                                                           | 1,2, 5  | LOTS                    | learning through projects      | 4                                                        |
|      | Friday  | Finish to Start (FS), and Finish to Finish (FF) and composite relations                                                                           | 1, 5    | HOTS                    | learning through experiments   | 4                                                        |
| IV   | Tuesday | Project Cost Control: Breakeven analysis in planning stage.                                                                                       | 1, 2, 5 | HOTS                    | learning through demonstration | 4                                                        |

|               | Friday                                                                                                  | Direct and                | indirect cost, slope of di                                      | rect cost curve                  | 1, 2, 5                | HOTS  | Blended                   |                           | 4               |
|---------------|---------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|----------------------------------|------------------------|-------|---------------------------|---------------------------|-----------------|
|               | Tuesday                                                                                                 | Total proje               | ect cost and optimum dur                                        | ation                            | 1, 2, 5                | HOTS. | Activity based lear       | rning                     | 4               |
|               | Friday                                                                                                  | Contractin<br>cost optimi | g the network for ization                                       |                                  | 1, 2, 5                | HOTS  | Group based learn         | ning                      | 4               |
|               | Tuesday                                                                                                 | Escalation                | & Variation in prices                                           |                                  | 1, 5                   | HOTS  | Blended                   |                           | 4               |
| V             | Friday                                                                                                  | Introduction financing p  | on to project financing; R projects                             | ole of governments in            | 1, 3, 6                | HOTS  | Blended                   |                           | 3               |
|               | Tuesday                                                                                                 | Funder and Projects;      | nder and Concessionaire: Economic multiplier effects of ojects; |                                  | 1,3, 6                 | HOTS  | learning through d        | lemonstration             | 3               |
|               | Friday                                                                                                  | Means of f                | s of financing-public finance and private finance,              |                                  | 1, 3, 6                | LOTS  | onsite/field learnin      | ıg                        | 3               |
|               | Tuesday                                                                                                 |                           | uthority: World Bank Gro<br>Small Enterprises Fundii            |                                  | 1, 3, 6                | HOTS  | Activity based lear       | rning                     | 3               |
|               | Friday                                                                                                  |                           | y understanding of Procuure projects through Puble,             |                                  | 1, 3, 6                | LOTS  | Group based learn         | ning                      | 4               |
|               | Tuesday  Build Operate Transfer (BOT), Build Operate Own & Transfer (BOOT); Stakeholders' perspectives, |                           | 1,3, 6                                                          | LOTS                             | Blended                |       | 4                         |                           |                 |
| <b>Online</b> |                                                                                                         |                           |                                                                 |                                  | Offlin                 | e     |                           | ·                         |                 |
|               | Offline / Bla<br>Tea                                                                                    | ck Board<br>ching         | Learning through demonstration                                  | Learning through experimentation | Group base<br>Learning |       | Activity<br>basedLearning | Learning through projects | gh Onsite/Field |
| 3%            | 35%                                                                                                     |                           | 11%                                                             | 11%                              | 15%                    |       | 14%                       | 8%                        | 3%              |

J. K. 1.

Jitendra Kumar Tyagi Assistant Professor

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science and Engineering

**DATA SCIENCE (150511)** 

#### **COURSE OBJECTIVES:**

- To provide the fundamental knowledge of Data Sciences.
- To analyse the working of various techniques used in Data Sciences.
- To understand the basic representation and exploratory data analysis used in Data Sciences

#### **LECTURE PLAN**

| Teaching<br>Session | Content to be covered                                                                                                                                        | COs | Blooms<br>Level<br>(BM) | % Coverage<br>(to be<br>calculated<br>based on the<br>total syllabus) | MODE                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|-----------------------------------------------------------------------|-----------------------------------|
| 1                   | Introduction to Data Science - Introduction - Definition                                                                                                     | CO1 | LOTS                    | 2.50%                                                                 | Offline / Black Board<br>Teaching |
| 2                   | <ul> <li>Applications of Data</li> <li>Science</li> <li>Impact of Data Science</li> <li>Data Analytics Life Cycle</li> <li>Role of Data Scientist</li> </ul> | CO1 | LOTS                    | 3.5%                                                                  | Offline / Black Board<br>Teaching |
| 3                   | Basics of Python - Essential Python libraries - Python Introduction: Features, Identifiers, Reserved words - Indentation, Comments                           | CO2 | LOTS                    | 3.5%                                                                  | Offline / Black Board<br>Teaching |
| 4                   | <ul><li>Built-in Data types and their Methods:</li><li>Strings</li><li>List</li><li>Tuples</li></ul>                                                         | CO2 | LOTS                    | 3.0%                                                                  | Offline / Black Board<br>Teaching |
| 5                   | <ul><li>Dictionary</li><li>Set</li><li>Type Conversion</li><li>Operators</li></ul>                                                                           | CO2 | LOTS                    | 3.50%                                                                 | Offline / Black Board<br>Teaching |
| 6                   | Decision Making - Looping-Loop Control statement - Math and Random number functions - User-defined functions, function arguments & its types                 | CO2 | LOTS                    | 4.0%                                                                  | Activity based<br>Learning        |

# Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

| 7  | Quiz-1 and Discussion          |         |       |        | , .,.,                  |
|----|--------------------------------|---------|-------|--------|-------------------------|
| 8  | Vectorized Computation         | CO2/CO3 | LOTS  | 3.50%  | Activity based          |
| 0  |                                | CO2/CO3 | LUIS  | 3.50%  |                         |
|    | - The NumPy ndarray            |         |       |        | Learning                |
| 0  | - Creating ndarrays            | G02/G02 | HOTE  | 2.500/ | Y : 41 1                |
| 9  | - Data Types for ndarrays      | CO2/CO3 | HOTS  | 3.50%  | Learning through        |
|    | - Arithmetic with NumPy        |         |       |        | projects                |
|    | Arrays                         |         |       |        |                         |
| 10 | - Basic Indexing and           | CO2/CO3 | HOTS  | 3%     | Activity based          |
|    | Slicing                        |         |       |        | Learning                |
|    | - Boolean Indexing             |         |       |        |                         |
| 11 | - Transposing Arrays           | CO2/CO3 | HOTS  | 3.5%   | Activity based          |
|    | - Universal Functions          |         |       |        | Learning/ Board         |
|    | - Oniversal I unctions         |         |       |        | Teaching                |
| 12 | - Fast Element Wise Array      | CO2/CO3 | HOTS  | 3.5%   | Learning through        |
|    | Functions                      |         |       |        | demonstration           |
|    | - Mathematical and             |         |       |        |                         |
|    | Statistical Methods            |         |       |        |                         |
| 13 | Carriera Hairman and Other     | CO2/CO3 | LOTS  | 3.00%  | Activity based          |
|    | - Sorting Unique and Other     |         |       |        | Learning                |
|    | Set Logic                      |         |       |        |                         |
| 14 | Quiz-2 and Discussion          |         |       |        |                         |
| 15 | Data Analysis                  | CO4     | LOTS  | 2.50%  | Offline / Black Board   |
|    | - Series                       |         |       |        | Teaching                |
|    | - DataFrame                    |         |       |        | 6                       |
| 16 | - Essential Functionality      | CO4     | HOTS  | 3.5%   | Offline / Black Board   |
|    | - Dropping Entries,            |         | 11010 | 0.070  | Teaching                |
|    | Indexing, Selection, and       |         |       |        | Teaching                |
|    | Filtering                      |         |       |        |                         |
| 17 | - Function Application and     | CO4     | HOTS  | 3.0%   | Group based Learning    |
| 17 | Mapping                        | CO4     | 11015 | 3.0 /0 | Group bused Learning    |
| 18 | 1                              | CO4     | HOTS  | 1.5%   | Learning through        |
| 10 | - Sorting and Ranking          | CO4     | 11015 | 1.5 /0 | experimentation         |
| 19 | - Summarizing and              | CO4     | HOTS  | 3.5%   | Learning through        |
| 19 | <u> </u>                       | CO4     | 1013  | 3.5 70 | 0                       |
|    | Computing Descriptive          |         |       |        | experimentation         |
| 20 | Statistics Standard            | CO4     | HOTE  | 40/    | Offling / Dlast- Dass 1 |
| 20 | - Mean, Standard               | CO4     | HOTS  | 4%     | Offline / Black Board   |
|    | Deviation, Skewness and        |         |       |        | Teaching                |
|    | Kurtosis                       |         |       |        |                         |
|    | - Unique Values, Value         |         |       |        |                         |
|    | Counts, and Membership         | GC 4    | ***   | 100/   | Ocal (E)                |
| 21 | - Reading and Writing Data     | CO4     | HOTS  | 2%     | Offline / Black Board   |
|    | in Text Format                 |         |       |        | Teaching                |
|    |                                |         |       |        |                         |
| 22 | Quiz-3 and Discussion          |         |       |        |                         |
| 23 | Inferential Statistics in Data | CO6     | HOTS  | 3%     | Learning through        |
|    | Science                        |         |       |        | demonstration           |
|    | - Types of Learning            |         |       |        |                         |
| 24 | - Linear Regression            | CO6     | LOTS  | 3%     | Learning through        |
|    | Linear Regression              |         |       |        | demonstration           |

# Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

| 25 | - Simple Linear Regression                                                                                     | CO6     | HOTS | 3%   | Activity based Learning           |
|----|----------------------------------------------------------------------------------------------------------------|---------|------|------|-----------------------------------|
| 26 | - Implementation, plotting, and fitting regression line                                                        | CO6     | HOTS | 3%   | Group based Learning              |
|    | - Multiple Linear Regression - Introduction, implementation, comparison with simple linear                     | CO6     | HOTS | 2%   | Group based Learning              |
| 27 | regression, Correlation<br>Matrix, F-Statistic, -<br>Identification of significant<br>features                 | CO6     | HOTS | 3%   | Learning through experimentation  |
| 28 | - Polynomial Regression                                                                                        | CO6     | LOTS | 3.0% | Learning through experimentation  |
| 29 | Quiz-4 and Discussion                                                                                          |         |      |      |                                   |
| 30 | Exploratory Data Analysis and Visualization - Handling Missing Data - Data Transformation: Removing Duplicates | CO5/CO6 | LOTS | 3.5% | Learning through experimentation  |
| 31 | - Transforming Data Using<br>a Function or Mapping                                                             | CO5/CO6 | HOTS | 3.5% | Offline / Black Board<br>Teaching |
| 32 | <ul><li>Replacing Values</li><li>Detecting and Filtering</li><li>Outliers</li></ul>                            | CO5/CO6 | HOTS | 3.5% | Offline / Black Board<br>Teaching |
| 33 | - Functions in pandas                                                                                          | CO5/CO6 | HOTS | 3.5% | Activity based<br>Learning        |
| 34 | - Plotting with pandas: Line<br>Plots<br>- Bar Plots                                                           | CO5/CO6 | HOTS | 3%   | Learning through demonstration    |
| 35 | <ul><li>Histograms and Density</li><li>Plots</li><li>Scatter or Point Plots</li></ul>                          | CO5/CO6 | HOTS | 3%   | Learning through demonstration    |
| 36 | Quiz-5 and Discussion                                                                                          |         |      |      |                                   |

| Onlin |         | Offline |          |              |                |                |         |  |  |
|-------|---------|---------|----------|--------------|----------------|----------------|---------|--|--|
| е     | Black   | Group   | Learnin  | Learning     | Learning       | Learning       | Onsite  |  |  |
|       | Board   | based   | g        | through      | through        | through        | / field |  |  |
|       | Teachin | Learnin | through  | demonstratio | experimentatio | experimentatio | based   |  |  |
|       | g       | g       | projects | n            | n              | n              | learnin |  |  |
|       |         |         |          |              |                |                | g       |  |  |
| -     | 35%     | 8.0%    | 3.5%     | 12.5%        | 14.5%          | 26.5%          | -       |  |  |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

**COURSE OUTCOMES:** After completing the course, the student will be able to:

CO1: Define basic concepts of Data Sciences.

CO2: Illustrate various concepts of python that are used in data sciences.

CO3: Identify various methods for the representation and manipulation of vectors.

CO4: Analysis the data for applying various statistical modelling approaches.

CO5: Identify hidden patterns in data and transform it using data science techniques.

CO6: Apply regression techniques to solve real world problems.

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

#### **Syllabus**

**Unit – I:** Introduction to Data Science: Introduction, Definition, applications of Data Science, Impact of Data Science, Data Analytics Life Cycle, role of Data Scientist. Basics of Python: Essential Python libraries, Python Introduction- Features, Identifiers, Reserved words, Indentation, Comments, Built-in Data types and their Methods: Strings, List, Tuples, Dictionary, Set, Type Conversion- Operators. Decision Making: Looping-Loop Control statement, Math and Random number functions. User defined functions, function arguments & its types.

**Unit – II:** Vectorized Computation: The NumPy ndarray- Creating ndarrays- Data Types for ndarrays- Arithmetic with NumPy Arrays- Basic Indexing and Slicing, Boolean Indexing, Transposing Arrays. Universal Functions: Fast Element, Wise Array Functions, Mathematical and Statistical Methods – Sorting Unique and Other Set Logic.

**Unit** – **III:** Data Analysis: Series, DataFrame, Essential Functionality: Dropping Entries, Indexing, Selection, and Filtering- Function Application and Mapping- Sorting and Ranking. Summarizing and Computing Descriptive Statistics – Mean, Standard Deviation, Skewness and Kurtosis. Unique Values, Value Counts, and Membership. Reading and Writing Data in Text Format.

**Unit – IV:** Inferential Statistics in Data Science: Types of Learning, Linear Regression- Simple Linear Regression, Implementation, plotting and fitting regression line. Multiple Linear Regression, Introduction, implementation, comparison with simple linear regression, Correlation Matrix, F-Statistic, Identification of significant features. Polynomial regression.

**Unit** – **V:** Exploratory Data Analysis and Visualisation: Handling Missing Data, Data Transformation: Removing Duplicates, Transforming Data Using a Function or Mapping, Replacing Values, Detecting and Filtering Outliers, Functions in pandas. Plotting with pandas: Line Plots, Bar Plots, Histograms and Density Plots, Scatter or Point Plots

### MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science & Engineering

# INFORMATION SECURITY 150513

| Teaching | Date      | Content to be covered                            | COs      | Bloom     | % Coverage(                                   |
|----------|-----------|--------------------------------------------------|----------|-----------|-----------------------------------------------|
| Session  |           |                                                  |          | Level(BM) | To be calculated based on the total syllabus) |
| 1.       | Monday    | Security, Principles and Attacks                 | CO1      | L1        | 2.5                                           |
| 2.       | Tuesday   | Basic Number<br>Theory                           | CO2      | L1,L2     | 2.5                                           |
| 3.       | Wednesday | Fundamental of<br>Cryptography,<br>steganography | CO3      | L1        | 2.5                                           |
| 4.       | Thursday  | Crypt analysis,<br>Code Breaking                 | CO1,CO3  | L1,L2     | 2.5                                           |
| 5.       | Monday    | Block Ciphers,<br>Stream Cipher                  | CO3      | L2        | 2.5                                           |
| 6.       | Tuesday   | Substitution ciphers                             | CO3      | L2        | 2.5                                           |
| 7.       | Wednesday | Transposition ciphers                            | CO1,CO3  | L2        | 2.5                                           |
| 8.       | Thursday  | Caesar Cipher                                    | CO1      | L1        | 2.5                                           |
| 9.       | Monday    | Play fair cipher & hill cipher                   | CO1      | L1        | 2.5                                           |
| 10.      | Tuesday   | Cryptography ,<br>Symmetric Key<br>Cryptography  | CO1      | L1,L3     | 2.5                                           |
| 11.      | Wednesday | Public Key cryptography                          | CO1, CO3 | L3        | 2.5                                           |
| 12.      | Thursday  | Principle of public key cryptography             | CO3      | L3        | 2.5                                           |
| 13.      | Monday    | Classical cryptographic                          | CO3      | L1, L3    | 2.5                                           |

|     |           | algorithms                                           |     |       |     |
|-----|-----------|------------------------------------------------------|-----|-------|-----|
| 14. | Tuesday   | RC4, RSA                                             | CO3 | L3    | 2.5 |
| 15. | Wednesday | Distribution of public key & key management          | CO3 | L3    | 2.5 |
| 16. | Thursday  | Diffie-Hellman Key exchange algorithm                | CO5 | L2,L3 | 2.5 |
| 17. | Monday    | HASH Function ,<br>One way hash<br>function          | CO5 | L3    | 2.5 |
| 18. | Tuesday   | SHA                                                  | CO5 | L3,L5 | 2.5 |
| 19. | Wednesday | Authentication requirements & functions              | CO5 | L3,L5 | 2.5 |
| 20. | Thursday  | KERBEROS                                             | CO5 | L5    | 2.5 |
| 21. | Monday    | MESSAGE<br>AUTHENTICATION<br>CODE                    | CO5 | L1,L2 | 2.5 |
| 22. | Tuesday   | SET (Secure<br>Electronic<br>Transaction)            | CO5 | L1,L2 | 2.5 |
| 23. | Wednesday | DIGITAL<br>SIGNATURE &<br>CERTIFICATES               | CO5 | L1,L2 | 2.5 |
| 24. | Thursday  | IP & WEB<br>SECURITY                                 | CO5 | L1,L2 | 2.5 |
| 25. | Monday    | SSL,TLS                                              | CO5 | L4    | 2.5 |
| 26. | Tuesday   | SET                                                  | CO5 | L2,L3 | 2.5 |
| 27. | Wednesday | IDS                                                  | CO5 | L3    | 2.5 |
| 28. | Thursday  | FIREWALLS TYPES & FUNCTIONALITIES                    | CO4 | L3    | 2.5 |
| 29. | Monday    | PHISING ATTACKS & ITS TYPES                          | CO4 | L4    | 2.5 |
| 30. | Tuesday   | BUFFER OVERFLOW<br>ATACK                             | CO4 | L4    | 2.5 |
| 31. | Wednesday | Session Hijacking                                    | CO4 | L5    | 2.5 |
| 32. | Thursday  | HACKING & TYPES<br>OF HACKERS                        | CO4 | L6    | 2.5 |
| 33. | Thursday  | Hacker:Hacking<br>and Types of<br>Hackers            | CO6 | L5    | 2.5 |
| 34. | Monday    | Foot printing,<br>Scanning (Types:<br>Port, Network, | CO6 | L6    | 2.5 |

|     |           | Vulnerability),                                |     |    |     |
|-----|-----------|------------------------------------------------|-----|----|-----|
| 35. | Tuesday   | Sniffing in Shared<br>and Switched<br>Networks | CO6 | L6 | 2.5 |
| 36. | Wednesday | Sniffing Detection & Prevention                | CO6 | L6 | 2.5 |
| 37. |           | Spoofing                                       | CO6 | L6 | 2.5 |
|     | Thursday  |                                                |     |    |     |

AMIT KUMAR MANJHVAR
(ASSISTANT PROFESSOR)

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

#### **Department of CSE**

Disaster Management 100007

Semester: V

#### **LECTURE PLAN**

| Name of C | ourse (Code): Disaster Management   | (100007) | Class: B.T | ech.V <sup>th</sup> Sem Session: Ju | ıl-Dec 2023 |
|-----------|-------------------------------------|----------|------------|-------------------------------------|-------------|
| Teaching  | Content to be covered               | COs      | Blooms     | % Coverage (to be                   | MODE        |
| Session   |                                     |          | Level      | calculated based on                 |             |
|           |                                     |          | (BM)       | the total syllabus)                 |             |
| 1         | Introduction to disaster            | 1        | LOT        | 4                                   | Offline /   |
|           | management, concepts and            |          |            |                                     | Black       |
|           | definition                          |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 2         | Disaster, vulnerability, risk       | 1        | LOT        | 4                                   | Offline /   |
|           | severity, frequency and details     |          |            |                                     | Black       |
|           |                                     |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 3         | Capacity impact, prevention,        | 1        | LOT        | 4                                   | Offline /   |
|           | mitigation                          |          |            |                                     | Black       |
|           |                                     |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 4         | Disasters classification,           | 2        | HOT        | 4                                   | Offline /   |
|           | demographic aspects (gender,        |          |            |                                     | Black       |
|           | age, special needs)                 |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 5         | Hazard locations, global and        | 2        | LOT        | 3                                   | Offline /   |
|           | national disaster trends            |          |            |                                     | Black       |
|           |                                     |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 6         | Hazard and vulnerability profile of | 2        | LOT        | 3                                   | Offline /   |
|           | India                               |          |            |                                     | Black       |
|           |                                     |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 7         | Disaster impact (environmental,     | 3        | HOT        | 4                                   | Group       |
|           | physical, social, ecological,       |          |            |                                     | Based       |
|           | economic, potential, etc)           |          |            |                                     | Learning    |
| 8         | Disaster impact (environmental,     | 3        | LOT        | 4                                   | Offline /   |
|           | physical, social, ecological,       |          |            |                                     | Black       |
|           | economic, potential, etc)           |          |            |                                     | Board       |
|           |                                     |          |            |                                     | Teaching    |
| 9         | Health, psycho-social issues        | 3        | LOT        | 3                                   | Offline /   |
|           |                                     |          |            |                                     | Black       |

|    | (A GOVE AIGEG OGE AUTOHOLIS & NA                                                                                                       |   |     |   | Board<br>Teaching                       |
|----|----------------------------------------------------------------------------------------------------------------------------------------|---|-----|---|-----------------------------------------|
| 10 | Impact of natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, etc)                              | 3 | LOT | 4 | Group<br>Based<br>Learning              |
| 11 | Impact of natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, etc)                              | 3 | LOT | 4 | Offline /<br>Black<br>Board<br>Teaching |
| 12 | Impact of manmade disasters (industrial pollution, artificial flooding in urban areas, urban disasters, transportation accidents, etc) | 3 | НОТ | 3 | Group<br>Based<br>Learning              |
| 13 | Impact of manmade disasters (industrial pollution, artificial flooding in urban areas, urban disasters, transportation accidents, etc) | 3 | НОТ | 4 | Offline /<br>Black<br>Board<br>Teaching |
| 14 | Disaster management cycle: its phases                                                                                                  | 4 | НОТ | 4 | Offline /<br>Black<br>Board<br>Teaching |
| 15 | Prevention, mitigation, preparedness, relief and recovery                                                                              | 4 | НОТ | 4 | Offline /<br>Black<br>Board<br>Teaching |
| 16 | Structural and non-structural measures                                                                                                 | 4 | НОТ | 4 | Offline /<br>Black<br>Board<br>Teaching |
| 17 | Risk analysis, vulnerability and capacity assessment                                                                                   | 4 | LOT | 4 | Offline /<br>Black<br>Board<br>Teaching |
| 18 | Early warning systems                                                                                                                  | 4 | LOT | 3 | Offline /<br>Black<br>Board<br>Teaching |
| 19 | Post disaster environmental response                                                                                                   | 4 | НОТ | 3 | Offline /<br>Black<br>Board<br>Teaching |
| 20 | Roles and responsibilities of government, community, local                                                                             | 4 | LOT | 4 | Offline /<br>Black                      |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

|    | institutions, NGOs and other          |   |     |   | Board     |
|----|---------------------------------------|---|-----|---|-----------|
|    | stakeholders                          | _ |     | _ | Teaching  |
| 21 | Policies and legislation for disaster | 4 | LOT | 4 | Offline / |
|    | management                            |   |     |   | Black     |
|    |                                       |   |     |   | Board     |
|    |                                       |   |     |   | Teaching  |
| 22 | DDR programmes in India               | 4 | LOT | 3 | Offline / |
|    |                                       |   |     |   | Black     |
|    |                                       |   |     |   | Board     |
|    |                                       |   |     |   | Teaching  |
| 23 | Activities of National Disaster       | 4 | LOT | 4 | Offline / |
|    | Management Authority                  |   |     |   | Black     |
|    |                                       |   |     |   | Board     |
|    |                                       |   |     |   | Teaching  |
| 24 | Factors affecting vulnerability such  | 5 | HOT | 4 | Offline / |
|    | as impact of development projects     |   |     |   | Black     |
|    |                                       |   |     |   | Board     |
|    |                                       |   |     |   | Teaching  |
| 25 | Environmental modifications           | 5 | HOT | 4 | Group     |
|    | (including of dams, land use          |   |     |   | Based     |
|    | changes, urbanization, etc)           |   |     |   | Learning  |
| 26 | Sustainable and environmental         | 5 | НОТ | 4 | Offline / |
|    | friendly recovery                     |   |     |   | Black     |
|    |                                       |   |     |   | Board     |
|    |                                       |   |     |   | Teaching  |
| 27 | Reconstruction and development        | 5 | HOT | 3 | Offline / |
|    | methods                               |   |     |   | Black     |
|    |                                       |   |     |   | Board     |
|    |                                       |   |     |   | Teaching  |

| Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite/field   |
|----------|----------|----------|---------------|-----------------|----------|----------------|
| Board    | Based    | Through  | Through       | Through         | based    | based learning |
| Teaching | Learning | Projects | demonstration | experimentation | learning |                |
| 85%      | 15%      |          |               |                 |          |                |

**Kratika Sharma** 

(Assistant Professor)



# MADHAVINSTITUTE OFTECHNOLOGYANDSCIENCE, GWALIOR- 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

### Department of CSE Computer Science and Engineering Modes of Teaching

Subject: Distributed System (150716) Session: Session: June2023-Dec 2023

| UNITs                        | 1  | CONTENTS                                                                                                              | COs  | Bloom's<br>Level | % Coverage (to<br>be calculated<br>based on total<br>syllabus) | MODEs                             |
|------------------------------|----|-----------------------------------------------------------------------------------------------------------------------|------|------------------|----------------------------------------------------------------|-----------------------------------|
|                              | 1  | Architecture for Distributed System                                                                                   | 1, 2 | LOTS             | 2.5                                                            | Offline / Black Board<br>Teaching |
|                              | 2  | Goals of Distributed System                                                                                           | 1, 2 | LOTS             | 2.5                                                            | Offline / Black Board Teaching    |
| Unit I - Introduction to     | 3  | Hardware and Software Concepts                                                                                        | 1, 2 | LOTS             | 2.5                                                            | Offline / Black Board Teaching    |
| Distributed Systems:         | 4  | Distributed Computing Model                                                                                           | 1, 2 | LOTS             | 3.5                                                            | Offline / Black Board Teaching    |
|                              | 5  | Advantages & Disadvantage Distributed System,                                                                         | 1, 2 | HOTS             | 3.5                                                            | Activity based Learning           |
|                              | 6  | Issues in Designing Distributed System.                                                                               |      | HOTS             | 3.5                                                            | Activity based Learning           |
|                              | 7  | Basic Concept of Distributed Share Memory (DSM),                                                                      | 3,4  | HOTS             | 2.5                                                            | Offline / Black Board<br>Teaching |
| Unit II –<br>Distributed     | 8  | DSM Architecture & Its Types                                                                                          | 3,4  | HOTS             | 2.5                                                            | Offline / Black Board<br>Teaching |
| Share<br>Memory,             | 9  | Virtual machine basics, types of virtual machines,                                                                    | 3,4  | LOTS             | 2.5                                                            | Activity based Learning           |
| Distributed<br>File System:: | 10 | Design & Implementations Issues in DSM<br>System, Structure of Share Memory Space,<br>Consistency Model and Thrashing |      | HOTS             | 2                                                              | Offline / Black Board<br>Teaching |
|                              | 11 | Desirable Features of Good Distributed File System, File Model                                                        | 3,4  | LOTS             | 2.5                                                            | Offline / Black Board<br>Teaching |
|                              | 12 | File Service Architecture, File Accessing<br>Model                                                                    | 3,4  | HOTS             | 2.5                                                            | Activity based Learning           |
|                              | 13 | File Sharing Semantics, File Catching Scheme,.                                                                        | - ,  | HOTS             | 3.5                                                            | Activity based Learning           |
|                              | 14 | File Application & Fault Tolerance                                                                                    | 3,4  | LOTS             | 2                                                              | Offline / Black Board<br>Teaching |
|                              | 15 | Data Representation & Marshaling, Group Communication,                                                                |      | HOTS             | 3.5                                                            | Offline / Black Board<br>Teaching |
| Unit III –<br>Inter Process  | 16 | Client Server Communication,                                                                                          | 3,4  | HOTS             | 3.5                                                            | Offline / Black Board<br>Teaching |
| Communicati<br>on and        | 17 | RPC- Implementing RPC Mechanism, Stub<br>Generation, RPC Messages.                                                    | 3,4  | HOTS             | 3.5                                                            | Learning through projects         |
| Synchronizati<br>on:         | 18 | Stub Generation, RPC Messages.                                                                                        | 3,4  | LOTS             | 2.5                                                            | Offline / Black Board             |



# MADHAVINSTITUTE OFTECHNOLOGYANDSCIENCE, GWALIOR- 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

|                                        |    |                                                                      |         |      |     | Teaching                          |
|----------------------------------------|----|----------------------------------------------------------------------|---------|------|-----|-----------------------------------|
|                                        | 19 | Synchronization: - Clock Synchronization,                            | 3,4     | HOTS | 3.5 | Offline / Black Board<br>Teaching |
|                                        | 20 | Mutual Exclusion,                                                    | 3,4     | HOTS | 3.5 | Offline / Black Board<br>Teaching |
|                                        | 21 | Algorithms.                                                          | 3,4     | HOTS | 3.5 | Learning through projects         |
|                                        | 22 | Algorithms.                                                          | 3,4     | HOTS | 3.5 | Learning through projects         |
|                                        | 23 | Distributed Scheduling- Issues in Load Distributing,                 | 1,3,4,5 | LOTS | 2   | Offline / Black Board<br>Teaching |
|                                        | 24 | Components for Load Distributing Algorithms, Different Types of Load | 1,3,4,5 | HOTS | 2.5 | Offline / Black Board<br>Teaching |
| Unit IV –<br>Distributed<br>Scheduling | 25 | Distributing Algorithms, Task<br>Migration and its issues            | 1,3,4,5 | HOTS | 3.5 | Learning through demonstration    |
| and Deadlock:                          | 26 | Deadlock- Issues in deadlock detection & Resolutions,                | 1,3,4,5 | HOTS | 3.5 | Learning through demonstration    |
| Zeudioent                              | 27 | Deadlock Handling Strategy,                                          | 1,3,4,5 | HOTS | 3.5 | Offline / Black Board<br>Teaching |
|                                        | 28 | Distributed Deadlock Algorithms.                                     | 1,3,4,5 | HOTS | 3.5 | Offline / Black Board<br>Teaching |
|                                        | 29 | Distributed Data Base Management System (DDBMS),                     | 1,6     | LOTS | 2   | Offline / Black Board<br>Teaching |
| Unit V –<br>Distributed                | 30 | Types of Distributed Database, and Distributed Multimedia:           | 1,6     | HOTS | 2   | Offline / Black Board<br>Teaching |
| Databases and                          | 31 | Characteristics of multimedia                                        | 1,6     | HOTS | 2.5 | Learning through projects         |
| Multimedia<br>Management               | 32 | Data, Quality of Service Managements.                                | 1,6     | HOTS | 3   | Activity based Learning           |
| Systems:                               | 33 | Case Study of Distributed System: -<br>Amoeba                        | 1,6     | HOTS | 2   | Learning through experimentation  |
|                                        | 34 | Case Study of Distributed System: , Mach, Chorus                     | 1,6     | LOTS | 2.5 | Learning through projects         |
|                                        | 35 | Case Study of Distributed System: Chorus                             | 1,6     | LOTS | 2.5 | Learning through projects         |

| Online | Offline                    |                            |                                 |                                |                                  |                               |                                     |  |
|--------|----------------------------|----------------------------|---------------------------------|--------------------------------|----------------------------------|-------------------------------|-------------------------------------|--|
|        |                            |                            |                                 |                                |                                  |                               |                                     |  |
|        | Black<br>Board<br>Teaching | Group<br>based<br>Learning | Learning<br>through<br>projects | Learning through demonstration | Learning through experimentation | Activity<br>based<br>Learning | Onsite / field<br>based<br>learning |  |
| -      | 54.5                       | -                          | 18                              | 7                              | 2                                | 18.5                          | -                                   |  |

Prof Smita Parte Assistant Professor Department of CSE

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

#### Department of Computer Science And Engineering 680312 Management Support Systems <u>LECTURE PLAN</u>

| Teaching<br>Session |           |                                                                                                                                       | Cos      | Blooms<br>Level<br>(BM) | % Coverage (to<br>be calculated<br>based on the<br>total syllabus) |
|---------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|--------------------------------------------------------------------|
| 1.                  | Tuesday   | Organizations, Management and the<br>Networked Enterprise – Information<br>Systems in Global Business Today,<br>Emerging digital firm | CO1      | LOTS                    | 1.5%                                                               |
| 2.                  | Wednesday | Organizations, Management and the Networked Enterprise —Strategy, perspectives and dimensions of Information systems,                 | CO5      | LOTS                    | 1.5%                                                               |
| 3                   | Thursday  | Network based strategies                                                                                                              | CO2/CO5  | LOTS                    | 1.5%                                                               |
| 4                   | Tuesday   | Global E-business and Collaboration –<br>Business processes                                                                           | CO1      | LOTS                    | 2%                                                                 |
| 5                   | Wednesday | Global E-business and Collaboration – Systems for different management groups and Enterprise                                          | CO1      | LOTS                    | 2%                                                                 |
| 6                   | Thursday  | Global E-business and Collaboration –<br>E-Business, E-commerce, E-Government                                                         | CO1/CO2  | LOTS                    | 3%                                                                 |
| 7                   | Tuesday   | Global E-business and Collaboration –<br>Tools and technologies for Collaboration<br>and Social Business                              | CO4/ CO5 | HOTS                    | 3%                                                                 |
| 8                   | Wednesday | Global E-business and Collaboration – Porter's competitive forces model, The Business value chain Model                               | CO4/ CO5 | LOTS                    | 3%                                                                 |
| 9                   | Thursday  | Ethical and Social issues in information<br>systems – A model for Thinking about<br>Ethical, Social, Political issues                 | CO1      | LOTS                    | 3%                                                                 |
| 10                  | Tuesday   | Ethical and Social issues in information<br>systems – Five moral dimensions of the<br>Information Age                                 | CO1/ CO5 | LOTS                    | 1.5%                                                               |
| 11                  | Wednesday | Ethical and Social issues in information systems — Ethical analysis, Candidate Ethical Principles                                     | CO1      | LOTS                    | 2.5%                                                               |
| 12                  | Thursday  | IT Infrastructure & Emerging Technologies – Evolution, Components, management issues                                                  | CO1      | LOTS                    | 3%                                                                 |
| 13                  | Tuesday   | IT Infrastructure & Emerging Technologies – Contemporary hardware platform trends                                                     | CO5/CO6  | LOTS                    | 3%                                                                 |
| 14                  | Wednesday | IT Infrastructure & Emerging Technologies –Contemporary software platform trends                                                      | CO5/CO6  | LOTS                    | 2.5%                                                               |
| 15                  | Thursday  | IT Infrastructure & Emerging Technologies – Web services and service- oriented architecture                                           | CO5/CO6  | LOTS                    | 2%                                                                 |
| 16                  | Tuesday   | Foundations of Business Intelligence – File organization terms and concepts                                                           | CO5/CO6  | LOTS                    | 4%                                                                 |
| 17                  | Wednesday | Foundations of Business Intelligence –<br>Capabilities of Database management<br>Systems, Analytical tools                            | CO5/CO6  | LOTS                    | 2%                                                                 |

| 18 | Thursday  | Foundations of Business Intelligence – Databases design, managing data resources                                                                             | CO5/CO6 | HOTS | 4%   |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|
| 19 | Tuesday   | Telecommunications, Internet and Wireless Technology – Networking and communication trends, signals                                                          | CO1/CO2 | нотѕ | 1.5% |
| 20 | Wednesday | Telecommunications, Internet and Wireless Technology – Types of networks, internet services and communications tools                                         | CO2/CO4 | HOTS | 5.5% |
| 21 | Thursday  | Telecommunications, Internet and Wireless Technology – Wireless computer networks and internet access                                                        | CO2/CO4 | LOTS | 3%   |
| 22 | Tuesday   | Securing Information Systems –<br>Malicious Software: Viruses, worms,<br>Trojan horses, spyware, Hackers and<br>computer crime                               | CO2/CO3 | LOTS | 5%   |
| 23 | Wednesday | Securing Information Systems – Internal threats, Business value of security and control: Legal and Regulatory requirements for Electronic records management | CO2/CO3 | нотѕ | 5%   |
| 24 | Thursday  | Securing Information Systems – Establishing a framework for security and control: Risk assessment, Security policy                                           | CO2/CO3 | HOTS | 5%   |
| 25 | Tuesday   | Securing Information Systems – Technologies and tools for protecting information resources.                                                                  | CO2/CO4 | HOTS | 3%   |
| 26 | Wednesday | Enterprise Information System -<br>Achieving Operational Excellence and<br>Customer Intimacy: Enterprise system                                              | СО      | LOTS | 2%   |
| 27 | Thursday  | Enterprise Information System - Applications, Business values of Enterprise systems, Supply chain management system: Supply chain, Global supply chain       | CO1/CO3 | LOTS | 2%   |
| 28 | Tuesday   | Enterprise Information System - Customer relationship management: Operational and Analytical CRM, Business value of Customer relationship management systems | CO3/CO4 | LOTS | 2.5% |
| 29 | Wednesday | Enterprise Information System - Enterprise applications: New opportunities and challenges                                                                    | CO3/CO4 | LOTS | 1.5% |
| 30 | Thursday  | Managing Knowledge – Important<br>dimensions of knowledge, types of<br>knowledge management systems                                                          | CO4     | LOTS | 2%   |
| 31 | Tuesday   | Managing Knowledge – Requirements of knowledge work systems, expert systems.                                                                                 | CO4     | LOTS | 1.5% |
| 32 | Wednesday | Enhancing Decision Making – Business value of improved decision making, types of decisions, decision-making process                                          | CO3/    | LOTS | 2%   |
| 33 | Thursday  | Enhancing Decision Making – Business intelligence, decision support for operational and middle management, decision support for senior management            | CO3/    | LOTS | 1.5% |
| 34 | Tuesday   | Enhancing Decision Making —Group decision support systems, modeling and designing systems: structured and object oriented methodologies                      | CO3/CO4 | LOTS | 2%   |

# 0

# Madhav Institute of Technology & Science, Gwalior

### (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

| 35 | Wednesday                                                                                                      | Enhancing Decision Making — Alternative systems building approaches, Application development for the digital firm. | CO3/CO6 | LOTS | 3%   |
|----|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------|------|------|
| 36 | Thursday                                                                                                       | <b>Project management</b> – Runaway projects and system failure                                                    | СО      | HOTS | 1.5% |
| 37 | Tuesday Project management – Project management objectives, importance of project management.                  |                                                                                                                    | СО      | LOTS | 1%   |
| 38 | Wednesday                                                                                                      | <b>Project management</b> – Linking systems projects to the Business plan, Information system costs and benefits.  | СО      | HOTS | 1.5% |
| 39 | Thursday  Project management – Dimensions of project risk, change management and the concept of implementation |                                                                                                                    | CO5/CO6 | LOTS | 1.5% |
| 40 | Tuesday                                                                                                        | <b>Project management</b> – Controlling risk factors, project management software tools.                           | CO5/CO6 | HOTS | 2.5% |

Bours

Dr. Parul Saxena



#### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

# **Department of Computer Science and Engineering Name of Course with Code: NETWORK SECURITY (900209)**

Academic Lecture Plan for Session:- July-Dec 2023

#### **Total Lecture=44**

| Teaching<br>Session | Date/Day  | Content to be Covered                                             | COs     | Blooms<br>Level<br>(BM) | Mode of Teaching               | % Coverage (to be calculated based on the total syllabus) |
|---------------------|-----------|-------------------------------------------------------------------|---------|-------------------------|--------------------------------|-----------------------------------------------------------|
| 1                   | Monday    | Introduction to the Course                                        | 1       | LOTS                    | Offline / Black Board Teaching | 2                                                         |
| 2                   | Wednesday | Fundamentals of Cryptography                                      | 1,2     | LOTS                    | Offline / Black Board Teaching | 2                                                         |
| 3                   | Friday    | Fundamentals of Steganography, cryptanalysis,                     | 1,2     | HOTS                    | Learning through demonstration | 3                                                         |
| 4                   | Monday    | Code Breaking                                                     | 1,2     | HOTS                    | Offline / Black Board Teaching | 2                                                         |
| 5                   | Wednesday | Security: Principles and Attacks,                                 | 1,2     | LOTS                    | Offline / Black Board Teaching | 2                                                         |
| 6                   | Friday    | Block Ciphers and Steam Ciphers                                   | 1,2,3   | HOTS                    | Offline / Black Board Teaching | 2                                                         |
| 7                   | Monday    | Substitution Ciphers, Transposition Ciphers,                      | 1,2     | HOTS                    | Group based Learning           | 2                                                         |
| 8                   | Wednesday | Caesar Cipher, Play-Fair Cipher, Hill Cipher                      | 1,2     | LOTS                    | Learning through demonstration | 2                                                         |
| 9                   | Friday    | Cipher Modes of Operation                                         | 1,2     | HOTS                    | Learning through demonstration | 2                                                         |
| 10                  | Monday    | Cryptography: Symmetric Key Cryptography, Public Key Cryptography | 1,2     | HOTS                    | Learning through demonstration | 2                                                         |
| 11                  | Wednesday | Principles of Public Key Cryptosystem,                            | 1, 5    | HOTS                    | Activity based Learning        | 3                                                         |
| 12                  | Friday    | Classical Cryptographic Algorithms: DES,                          | 1, 5    | LOTS                    | Activity based Learning        | 3                                                         |
| 13                  | Monday    | RC4, Blowfish                                                     | 1, 5    | LOTS                    | Offline / Black Board Teaching | 2                                                         |
| 14                  | Wednesday | RSA                                                               | 1, 2, 5 | HOTS                    | Offline / Black Board Teaching | 3                                                         |
| 15                  | Friday    | Distribution of Public Keys and Key Management,                   | 1,2, 5  | LOTS                    | Group based Learning           | 3                                                         |
| 16                  | Monday    | Diffie-Hellman Key Exchange                                       | 1, 5    | HOTS                    | Learning through demonstration | 2                                                         |
| 17                  | Wednesday | Hash Functions, One Way Hash Function,                            | 1, 2, 5 | HOTS                    | Offline / Black Board Teaching | 2                                                         |
| 18                  | Friday    | SHA (Secure Hash Algorithm).                                      | 1, 2, 5 | HOTS                    | Activity based Learning        | 3                                                         |

| 19 | Monday    | Authentication: Requirements, Functions,                       | 1, 2, 5 | HOTS. | Offline / Black Board Teaching   | 3 |
|----|-----------|----------------------------------------------------------------|---------|-------|----------------------------------|---|
| 20 | Wednesday | Kerberos                                                       | 1, 2, 5 | HOTS  | Activity based Learning          | 3 |
| 21 | Friday    | Message Authentication Codes,                                  | 1, 5    | HOTS  | Offline / Black Board Teaching   | 3 |
| 22 | Monday    | Message Digest: MD5,                                           | 1, 3, 6 | HOTS  | Learning through demonstration   | 2 |
| 23 | Wednesday | SSH (Secure Shell),                                            | 1,3, 6  | HOTS  | Learning through experimentation | 3 |
| 24 | Friday    | Digital Signatures, Digital Certificates                       | 1, 3, 6 | LOTS  | Learning through experimentation | 3 |
| 25 | Monday    | IP & Web Security Overview:                                    | 1, 3, 6 | HOTS  | Offline / Black Board Teaching   | 3 |
| 26 | Wednesday | SSL (Secure Socket Layer),                                     | 1, 3, 6 | LOTS  | Learning through experimentation | 2 |
| 27 | Friday    | TLS (Transport Layer Security),                                | 1,3,6   | LOTS  | Offline / Black Board Teaching   | 3 |
| 28 | Monday    | SET (Secure Electronic Transaction).                           | 1,3,6   | HOTS  | Learning through demonstration   | 2 |
| 29 | Wednesday | IDS (Intrusion Detection System):                              | 1,4     | LOTS  | Learning through demonstration   | 3 |
| 30 | Friday    | Statistical Anomaly Detection                                  | 1,4     | LOTS  | Offline / Black Board Teaching   | 3 |
| 31 | Monday    | Rule-Based Intrusion Detection,                                | 1,4     | HOTS  | Offline / Black Board Teaching   | 2 |
| 32 | Wednesday | Penetration Testing,                                           | 1,4     | LOTS  | Learning through demonstration   | 2 |
| 33 | Friday    | Risk Management                                                | 2       | LOTS  | Offline / Black Board Teaching   | 2 |
| 34 | Monday    | Firewalls: Types, Firewalls: Functionality. Firewalls: Polices | 2,1     | LOTS  | Learning through experimentation | 2 |
| 35 | Wednesday | Phishing: Attacks and Its Types,                               | 2       | HOTS  | Offline / Black Board Teaching   | 2 |
| 36 | Friday    | Buffer Overflow Attack, Cross Site Scripting                   | 2       | HOTS  | Offline / Black Board Teaching   | 2 |
| 37 | Monday    | SQL Injection Attacks,                                         | 2       | HOTS  | Learning through demonstration   | 1 |
| 38 | Wednesday | Session Hijacking.                                             | 2       | HOTS  | Learning through experimentation | 3 |
| 39 | Friday    | Denial of Service Attacks: Smurf Attack                        | 1,2     | HOTS  | Learning through experimentation | 2 |
| 40 | Monday    | SYN ,Flooding, Distributed Denial of Service.                  | 1,2     | HOTS  | Offline / Black Board Teaching   | 2 |
| 41 | Wednesday | Hacker: Hacking and Types of Hackers, Foot printing            | 1,4     | LOTS  | Offline / Black Board Teaching   | 2 |
| 42 | Friday    | Scanning: Types: Port, Network, Vulnerability                  | 1,4     | LOTS  | Offline / Black Board Teaching   | 2 |
| 43 | Monday    | Sniffing in Shared and Switched Networks                       | 2       | HOTS  | Offline / Black Board Teaching   | 2 |
| 44 | Wednesday | Sniffing Detection & Prevention, Spoofing.                     | 2       | HOTS  | Offline / Black Board Teaching   | 2 |

| <b>Online</b> | <b>Offline</b>                    |                                |                                  |                         |                            |                           |  |
|---------------|-----------------------------------|--------------------------------|----------------------------------|-------------------------|----------------------------|---------------------------|--|
|               | Offline / Black Board<br>Teaching | Learning through demonstration | Learning through experimentation | Group based<br>Learning | Activity based<br>Learning | Learning through projects |  |
| 0             | <mark>47%</mark>                  | 21%                            | <mark>15%</mark>                 | <mark>5%</mark>         | 12%                        | 0                         |  |

Jitendra Kumar Tyagi

**Assistant Professor** 

### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

#### **Department of CSE**

#### **Lecture Plan**

#### **DATA MINING & WAREHOUSING**

150715

Session – July December 2023

| Lecture<br>No. | CONTENT                                                                    | COs  | Bloom's<br>Level | % Coverage (to<br>be calculated<br>based on total<br>syllabus) | MODE                              |
|----------------|----------------------------------------------------------------------------|------|------------------|----------------------------------------------------------------|-----------------------------------|
| 1.             | Data type for Data<br>Mining: Relational<br>Databases Data Ware-<br>Houses | 1    | LOTS             | 3%                                                             | Offline / Black<br>Board Teaching |
| 2,3            | Transactional Databases, Advanced Database System and Its Applications,    | 1    | LOTS             | 3%                                                             | Offline / Black<br>Board Teaching |
| 4,5            | Data Mining Functionalities Concept/Class Description                      | 1    | LOTS             | 3%                                                             | Offline / Black<br>Board Teaching |
| 6              | Association Analysis Classification & Prediction                           | 1    | LOTS             | 2%                                                             | Offline / Black<br>Board Teaching |
| 7              | Cluster Analysis                                                           | 1, 6 | LOTS             | 2%                                                             | Offline / Black<br>Board Teaching |
| 8,9            | Outliner Analysis<br>Classification of Data<br>Mining Systems              | 1    | LOTS             | 3%                                                             | Offline / Black<br>Board Teaching |
| 10             | Major Issues in Data<br>Mining                                             | 1    | HOTS             | 3%                                                             | Offline / Black<br>Board Teaching |
| 11,12          | Data Warehouse and OLTP Technology for Data Mining:                        | 1    | нотѕ             | 3%                                                             | Offline / Black<br>Board Teaching |

|       | Operational Database Systems & Data Warehouse                               |         |               |    |                                        |
|-------|-----------------------------------------------------------------------------|---------|---------------|----|----------------------------------------|
| 13    | Multidimensional Data<br>Model                                              | 1,2     | LOTS,<br>HOTS | 3% | Group Based<br>Learning                |
| 14,15 | Data Warehouse<br>Architecture                                              | 1, 2    | LOTS          | 3% | Offline / Black<br>Board Teaching      |
| 16,17 | Data Warehouse<br>Implementation                                            | 1, 2    | HOTS          | 3% | Offline / Black<br>Board Teaching      |
| 18,19 | Data Cube Technology                                                        | 1, 2    | HOTS          | 2% | Offline / Black<br>Board Teaching      |
| 20    | Emerging Scenario of<br>Pattern Warehousing<br>System                       | 1, 2    | нотѕ          | 3% | Offline / Black<br>Board Teaching      |
| 21,22 | Data Pre-processing:<br>Data Cleaning                                       | 1, 4, 6 | HOTS          | 3% | Learning Through Projects              |
| 23    | Data Integration and<br>Transformation                                      | 1, 2, 6 | HOTS          | 2% | Learning Through Projects              |
| 24,25 | Data Reduction Discretization and Concept Hierarchy Generation              | 1, 3, 6 | нотѕ          | 2% | Learning<br>Through<br>experimentation |
| 26    | Data Mining Primitives Languages and System Architectures                   | 1, 3, 6 | нотѕ          | 3% | Learning<br>Through<br>experimentation |
| 27    | Concept Description                                                         | 1, 5, 6 | HOTS          | 3% | Activity based learning                |
| 28    | Characterization and<br>Comparison Analytical<br>Characterization           | 1, 3, 6 | нотѕ          | 2% | Offline / Black<br>Board Teaching      |
| 29,30 | Mining Association Rules in Large Databases: Association Rule Mining Market | 1, 3, 6 | нотѕ          | 3% | Offline / Black<br>Board Teaching      |

|       | Basket Analysis                                                                                         |         |      |    |                                        |
|-------|---------------------------------------------------------------------------------------------------------|---------|------|----|----------------------------------------|
|       |                                                                                                         |         |      |    |                                        |
| 31,32 | Mining Single Dimensional Boolean Association Rules from Transactional Databases: The Apriori Algorithm | 1, 3, 6 | нотѕ | 5% | Offline / Black<br>Board Teaching      |
| 33    | Generating Association<br>Rules from Frequent<br>Items                                                  | 1, 3, 6 | HOTS | 5% | Offline / Black<br>Board Teaching      |
| 34    | Improving the Efficiency of Aprior                                                                      | 1, 5    | HOTS | 3% | Learning through demonstration         |
| 35    | Algorithms & their<br>Comparison                                                                        | 1, 2, 5 | HOTS | 3% | Offline / Black Board Teaching         |
| 36    | Mining Multilevel Association Rules                                                                     | 1, 2, 5 | HOTS | 3% | Offline / Black Board Teaching         |
| 37    | Multidimensional Association Rules                                                                      | 1, 2, 5 | HOTS | 3% | Offline / Black Board Teaching         |
| 38    | Constraint Based Association Rule Mining                                                                | 1, 2, 5 | HOTS | 3% | Offline / Black Board Teaching         |
| 39,40 | Classification & Predication and Cluster Analysis: Issues Regarding Classification & Predication        | 1, 5    | LOTS | 2% | Offline / Black<br>Board Teaching      |
| 41    | Different Classification<br>Methods                                                                     | 5       | LOTS | 4% | Offline / Black Board Teaching         |
| 42    | Predication                                                                                             | 4, 6    | HOTS | 3% | Offline / Black Board Teaching         |
| 43    | Cluster Analysis                                                                                        | 4, 5, 6 | HOTS | 3% | Learning<br>Through<br>experimentation |
| 44,45 | Major Clustering<br>Methods                                                                             | 5, 6    | HOTS | 3% | Group Based<br>Learning                |
| 46    | Currently Available                                                                                     | 6       | HOTS | 3% | Group Based                            |

|       | Tools      |   |      |    | Learning                |
|-------|------------|---|------|----|-------------------------|
| 47,48 | Case Study | 6 | HOTS | 3% | Group Based<br>Learning |

| Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite/field   |
|----------|----------|----------|---------------|-----------------|----------|----------------|
| Board    | Based    | Through  | Through       | Through         | based    | based learning |
| Teaching | Learning | Projects | demonstration | experimentation | learning |                |
|          |          |          |               |                 |          |                |
| 69%      | 12%      | 5%       | 3%            | 8%              | 3%       |                |
|          |          |          |               |                 |          |                |

(Dr. R. K. Gupta)

Professor Department of CSE