#### **MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR**

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

# Department of Computer Science & Engineering Lecture Plan

#### **Computer Programming**

| Lecture<br>No. | CONTENT                                                                          | COs     | Bloom's<br>Level | % Coverage (to be calculated based on total syllabus) | MODE                                 |
|----------------|----------------------------------------------------------------------------------|---------|------------------|-------------------------------------------------------|--------------------------------------|
| 1.             | Introduction to Programming, types of computer programming languages             | 1       | LOT              | 3%                                                    | Offline / Black<br>Board Teaching    |
| 2.             | Program Execution and Translation Process                                        | 1       | LOT              | 3%                                                    | Offline / Black<br>Board Teaching    |
| 3.             | Problem solving using Algorithms and Flowcharts                                  | 2       | LOT              | 3%                                                    | Learning<br>through<br>demonstration |
| 4.             | Introduction to C++ Programming: Data Types, Constants, Keywords, variables      | 4       | LOT              | 3%                                                    | Offline / Black<br>Board Teaching    |
| 5.             | Input/output, Operators & Expressions                                            | 4       | LOT              | 2%                                                    | Learning Through experimentation     |
| 6.             | Operators & Expressions, Precedence of operators                                 | 4       | НОТ              | 3%                                                    | Learning<br>through<br>demonstration |
| 7.             | Control Statements<br>and Decision<br>Making: goto<br>statement, if<br>statement | 2, 4, 5 | LOT              | 3%                                                    | Learning<br>through<br>demonstration |
| 8.             | If-else statement,<br>nesting of if<br>statements                                | 6       | LOT              | 2%                                                    | Learning<br>through<br>demonstration |
| 9.             | Nesting of if statements                                                         | 6       | НОТ              | 2%                                                    | Activity Based<br>Learning           |
| 10.            | The switch statement, break and continue statement                               | 6       | НОТ              | 3%                                                    | Offline / Black<br>Board Teaching    |
| 11.            | For loop                                                                         | 5, 6    | LOT              | 2%                                                    | Learning<br>through<br>demonstration |

|     | T                                                                                            | 1       | 1   |    |                                        |
|-----|----------------------------------------------------------------------------------------------|---------|-----|----|----------------------------------------|
| 12. | Nesting of for loops                                                                         | 5, 6    | НОТ | 2% | Activity Based<br>Learning             |
| 13. | While loop                                                                                   | 6       | LOT | 2% | Learning<br>through<br>demonstration   |
| 14. | Dowhile loop                                                                                 | 6       | LOT | 2% | Learning<br>through<br>demonstration   |
| 15. | Function Basics,<br>Function Prototypes                                                      | 3, 4    | LOT | 3% | Offline / Black<br>Board Teaching      |
| 16. | Passing Parameter<br>by value and by<br>reference, Default<br>Arguments                      | 3, 4    | нот | 2% | Learning<br>through<br>demonstration   |
| 17. | Default Arguments,<br>Recursion                                                              | 3, 4    | НОТ | 2% | Learning Through experimentation       |
| 18. | Arrays: One dimensional Arrays                                                               | 6       | LOT | 2% | Offline / Black<br>Board Teaching      |
| 19. | Arrays: One dimensional Arrays, Multidimensional Arrays                                      | 6       | LOT | 2% | Learning<br>Through<br>experimentation |
| 20. | Multidimensional Arrays, Passing Arrays to Functions                                         | 3, 4, 6 | LOT | 3% | Offline / Black<br>Board Teaching      |
| 21. | Strings, Pointers: operations on Strings, Basics of Pointers & Addresses, reference variable | 3, 4    | НОТ | 3% | Offline / Black<br>Board Teaching      |
| 22. | Pointer to Pointer, Pointer to Array, Array of Pointers, Pointer to Strings                  | 6       | НОТ | 3% | Learning<br>through<br>demonstration   |
| 23. | Dynamic memory allocation using new and delete operators                                     | 3, 4    | LOT | 3% | Offline / Black<br>Board Teaching      |
| 24. | Structures, Pointer<br>to Structure                                                          | 4, 6    | LOT | 2% | Learning<br>through<br>demonstration   |
| 25. | Self-Referential<br>Structures, Union                                                        | 4       | НОТ | 2% | Learning through demonstration         |
| 26. | File Concepts, Study<br>of Various Files and<br>Streams, operations<br>on files              | 4, 5    | LOT | 3% | Offline / Black<br>Board Teaching      |

|     | T                                                                                                   | Γ.      | T   | T  | 1                                      |
|-----|-----------------------------------------------------------------------------------------------------|---------|-----|----|----------------------------------------|
| 27. | Object Oriented Paradigm, Features of OOPS                                                          | 4       | LOT | 3% | Offline / Black<br>Board Teaching      |
| 28. | Procedural Oriented Programming with Object Oriented Programming                                    | 3, 4    | LOT | 3% | Offline / Black<br>Board Teaching      |
| 29. | Abstract Data Types, Specification of Class, Visibility Modes                                       | 4       | LOT | 3% | Offline / Black<br>Board Teaching      |
| 30. | Defining Member<br>Functions, Scope<br>Resolution Operator                                          | 4       | LOT | 3% | Learning through demonstration         |
| 31. | Constructors, its types and Destructors                                                             | 4       | НОТ | 2% | Offline / Black<br>Board Teaching      |
| 32. | Constructors types and Destructors                                                                  | 4       | НОТ | 2% | Learning<br>Through<br>experimentation |
| 33. | Creating of Objects, Static Data Member, Static Member Function                                     | 4, 5, 6 | LOT | 3% | Learning<br>through<br>demonstration   |
| 34. | Array of Objects, Object as Arguments                                                               | 4, 6    | НОТ | 3% | Offline / Black<br>Board Teaching      |
| 35. | Inline Function,<br>Friend Function                                                                 | 4       | НОТ | 2% | Learning through demonstration         |
| 36. | Polymorphism: Introduction, Type of Polymorphism: Compile Time Polymorphism & Run Time Polymorphism | 4, 6    | нот | 3% | Offline / Black<br>Board Teaching      |
| 37. | Function Overloading, Operator Overloading                                                          | 4, 6    | нот | 3% | Learning<br>through<br>demonstration   |
| 38. | Inheritance:<br>Introduction,<br>Visibility Modes                                                   | 4, 6    | LOT | 2% | Offline / Black<br>Board Teaching      |
| 39. | Types of Inheritance: Single Level, Multilevel, Multiple, Hybrid, Multipath                         | 4, 6    | нот | 3% | Offline / Black<br>Board Teaching      |

| Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite/field   |
|----------|----------|----------|---------------|-----------------|----------|----------------|
| Board    | Based    | Through  | Through       | Through         | based    | based learning |
| Teaching | Learning | Projects | demonstration | experimentation | learning |                |
| 46.15%   |          |          | 38.46%        | 10.26%          | 5.13%    |                |

### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous & NAAC Accredited Institute affiliated to RGPV, Bhopal)

#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

#### **Modes of Teaching**

#### **Computer Programming (160122)**

Course: Branch: CSE Session: November'2022 - March' 2023

| Unit No<br>& Topic | Contents                                                                           | Mode                                               |  |  |
|--------------------|------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
|                    | Introduction to Course Content, Course Objective, Course Out-Comes, Pre Requisites | Offline & Open discussions                         |  |  |
|                    | Fundamental Programming concepts:                                                  | Offline learning                                   |  |  |
|                    | Introduction to Programming, types of computer                                     |                                                    |  |  |
|                    | programming languages, Program Execution and Translation Process,                  |                                                    |  |  |
| TT 1. 1            | Puchlam colving using Algorithms and Elevishorts                                   | Offline & problem solving based                    |  |  |
| Unit-1             | Problem solving using Algorithms and Flowcharts.                                   | learning. (Understanding basic methodology &       |  |  |
|                    |                                                                                    | Numerical problem practice).                       |  |  |
|                    | Introduction to C++ Programming: Data Types, Constants, Keywords, variables.       | Offline learning                                   |  |  |
|                    | Introduction to input/output, Operators & Expressions,                             | (Conducting experiment in Computer lab, solving    |  |  |
|                    | Precedence of operators.                                                           | them in programming problem).                      |  |  |
|                    | Control Statements:                                                                |                                                    |  |  |
| UNIT-2             | Control Statements and Decision Making: goto                                       | Offline & problem solving in group based learning  |  |  |
|                    | statement, if statement, if-else statement, nesting of if                          | (Conducting experiment in Computer lab, solving    |  |  |
|                    | statements.                                                                        | them in programming problem).                      |  |  |
|                    | Arrays:                                                                            | Offline & problem solving in group based learning. |  |  |
|                    | One dimensional Arrays, Multidimensional Arrays,                                   | (Conducting experiment in Computer lab, solving    |  |  |
|                    | Passing Arrays to Functions.                                                       | them in programming problem).                      |  |  |
|                    | Strings, Pointers, Structures and File handling, operations                        | Conducting experiment in Computer lab, solving     |  |  |
|                    | on Strings.                                                                        | them in programming problem                        |  |  |

| UNIT-3 |                                                                                                                                                        |                                                           |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|        |                                                                                                                                                        |                                                           |
|        | Basics of Pointers & Addresses, reference variable,                                                                                                    |                                                           |
|        | Pointer to Pointer, Pointer to Array, Array of Pointers, Pointer to Strings.                                                                           | them in programming problem                               |
|        | Dynamic memory allocation using new and delete                                                                                                         | Conducting experiment in Computer lab, solving            |
|        | operators.                                                                                                                                             | them in programming problem                               |
|        | Structures & Union, Pointer to Structure, Self-Referential                                                                                             | Conducting experiment in Computer lab, solving            |
|        | Structures.                                                                                                                                            | them in programming problem                               |
|        | File Concepts, Study of Various Files and Streams,                                                                                                     | Conducting experiment in Computer lab, solving            |
|        | operations on files.Strings, Pointers, Structures and File handling:, operations on Strings.                                                           | them in programming problem.                              |
| UNIT 4 | Object Oriented Paradigm, Features of OOPS,<br>Comparison of Procedural Oriented Programming with<br>Object Oriented Programming, Abstract Data Types. | Offline learning & Open discussions.                      |
|        | Specification of Class, Visibility Modes, Defining Member Functions.                                                                                   | Offline & problem solving in group based learning.        |
|        | Scope Resolution Operator, Constructors, its types, and                                                                                                | Conducting experiment in Computer lab, solving            |
|        | Destructors.                                                                                                                                           | them in programming problem.                              |
|        | Creating of Objects, Static Data Member, Static Member                                                                                                 | Conducting experiment in Computer lab, solving            |
|        | Function,                                                                                                                                              | them in programming problem.                              |
|        | Array of Objects, Object as Arguments, Inline Function,                                                                                                | Conducting experiment in Computer lab, solving            |
|        | Friend Function.                                                                                                                                       | them in programming problem.                              |
| UNIT-5 | Polymorphism: Introduction, Type of Polymorphism:                                                                                                      | Offline & Experiment with problem                         |
|        | Compile Time Polymorphism & Run Time                                                                                                                   | solving based learning.                                   |
|        | Polymorphism,  Experien Overloading Operator Overloading                                                                                               | Offling & Evneyiment with much law                        |
|        | Function Overloading, Operator Overloading.                                                                                                            | Offline & Experiment with problem solving based learning. |
|        | Inheritance: Introduction, Visibility Modes, Types of                                                                                                  | Offline & Experiment with problem                         |
|        | Inheritance: Single Level, Multilevel, Multiple, Hybrid,                                                                                               | solving based learning.                                   |
|        | Multipath.                                                                                                                                             | out in ground tourning.                                   |
|        | 1                                                                                                                                                      |                                                           |

| OFFLINE Mode |                                 |                      |                                   |  |  |  |  |  |
|--------------|---------------------------------|----------------------|-----------------------------------|--|--|--|--|--|
| Black Board  | Learning through in             | Learning through lab | Group based                       |  |  |  |  |  |
| Teaching     | open discussion<br>(class room) | experimentation      | Learning & Project based Learning |  |  |  |  |  |
| 100%         | 10%                             | 78%                  | 15%                               |  |  |  |  |  |

Ms. Jaimala Jha Asst. Prof. CSE



(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

#### **Department of CSE**

Emerging Technologies in Computer Science/150123

### Semester: I<sup>st</sup> LECTURE PLAN

| LECTURE PLAN   |                                                                                |     |                      |                                                                    |                                   |  |  |  |
|----------------|--------------------------------------------------------------------------------|-----|----------------------|--------------------------------------------------------------------|-----------------------------------|--|--|--|
| Lecture<br>No. | Content to be covered                                                          | COs | Blooms<br>Level (BM) | % Coverage (to<br>be calculated<br>based on the<br>total syllabus) | Mode                              |  |  |  |
| 1              | Artificial Intelligence: Introduction                                          | 1   | LOT                  | 3                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 2              | Need and Scope of Al, History,<br>Definition of Al                             | 1   | LOT                  | 4                                                                  | Offline / Black Board Teaching    |  |  |  |
| 3              | Techniques of AI, Characteristics of AI applications                           | 1   | LOT                  | 4                                                                  | Offline / Black Board Teaching    |  |  |  |
| 4              | Basic Search Techniques                                                        | 1,6 | НОТ                  | 3                                                                  | Learning through demonstration    |  |  |  |
| 5              | General problem solving                                                        | 1,6 | НОТ                  | 4                                                                  | Learning through demonstration    |  |  |  |
| 6              | Speech Recognition, Natural Language processing                                | 1,6 | НОТ                  | 3                                                                  | Learning through demonstration    |  |  |  |
| 7              | Computer Vision, Introduction of expert systems                                | 1,6 | НОТ                  | 4                                                                  | Learning through demonstration    |  |  |  |
| 8              | Introduction to cloud computing                                                | 2   | LOT                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 9              | Software as a service, platform as a service, and Infrastructure as a service. | 2   | LOT                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 10             | Cloud deployment model: Public, Private, Community and Hybrid clouds.          | 2   | LOT                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 11             | Virtualization                                                                 | 2   | НОТ                  | 4                                                                  | Learning through demonstration    |  |  |  |
| 12             | Cloud based Service: provider                                                  | 2   | НОТ                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 13             | Overview of Cyber Security                                                     | 3   | LOT                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 14             | Cyber-crime, Cyber warfare, cyber Terrorism, Cyber espionage,                  | 3   | LOT                  | 3                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 15             | Cyber Vandalism, Cyber Stalking                                                | 3,4 | LOT                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 16             | Internet Frauds and Software piracy,<br>Cyber Security Threats.                | 3,4 | LOT                  | 4                                                                  | Offline / Black<br>Board Teaching |  |  |  |
| 17             | Vulnerabilities: Hacker, Types of Hacker- white, Gray and black.               | 3,4 | НОТ                  | 3                                                                  | Offline / Black                   |  |  |  |



# Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Board Teacl

|    |                                                                                                                                  |     |     |   | Board Teaching                    |
|----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|-----------------------------------|
| 18 | Malicious Software: Virus, Worm,<br>Trojan Horse, Backdoors and<br>Spywares, Sniffers, Denial of Service<br>attack and Phishing. | 3,4 | НОТ | 4 | Learning through demonstration    |
| 19 | IoT definition, Characteristics, IoT conceptual and architectural framework.                                                     | 5   | LOT | 3 | Offline / Black<br>Board Teaching |
| 20 | Components of IoT ecosystems,<br>Review of Basic Microcontrollers and<br>interfacing                                             | 5   | НОТ | 4 | Learning through experimentation  |
| 21 | Sensor, Sensor features, RFID: Features & working principle.                                                                     | 5   | НОТ | 4 | Learning through experimentation  |
| 22 | Introduction to Big data, Big data characteristics, Traditional data versus Big data                                             | 6   | НОТ | 4 | Offline / Black<br>Board Teaching |
| 23 | Evolution of Big data, challenges with Big Data,                                                                                 | 6   | НОТ | 3 | Offline / Black Board Teaching    |
| 24 | Technologies available for Big Data,<br>Use of Data Analytics                                                                    | 1,6 | НОТ | 4 | Offline / Black<br>Board Teaching |
| 25 | Hadoop Eco system,                                                                                                               | 1,6 | НОТ | 3 | Learning through demonstration    |
| 26 | Core Hadoop components                                                                                                           | 1,6 | НОТ | 4 | Learning through demonstration    |
| 27 | ETL Processing                                                                                                                   | 1,6 | НОТ | 4 | Activity based learning           |



# MADHAVINSTITUTE OFTECHNOLOGYANDSCIENCE, GWALIOR- 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

### Department of CSE Computer Science and Design Modes of Teaching

Subject: Introduction to CSD (290121) Session: November'2022 - March' 2023

| UNITs                        | CONTENTS                                                                                                                                                                                | MODEs                          |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
|                              | Introduction, Generation of computers, Classification of Computers,                                                                                                                     | Offline / Black Board Teaching |  |
|                              | Hardware components, system bus.                                                                                                                                                        |                                |  |
|                              | Computer memory and its types - RAM, ROM, Cache memory,                                                                                                                                 | Learning through demonstration |  |
|                              | Registers, secondary memory, memory hierarchy.                                                                                                                                          | Group based Learning           |  |
| T 4 1 4 1                    | Computer software - System software, application software                                                                                                                               | Offline / Black Board Teaching |  |
| to Computer:                 | Operating system, its types and services. Booting                                                                                                                                       | Offline / Black Board Teaching |  |
|                              | Von-Neumann Model, Various Subsystems                                                                                                                                                   | Offline / Black Board Teaching |  |
|                              | Binary numbers, Number Base Conversions, Complements, Signed                                                                                                                            | Offline / Black Board Teaching |  |
| Unit II -                    | Binary numbers, Binary Codes                                                                                                                                                            |                                |  |
| Digital Logic<br>Design:     | Digital Logic Gates, Representation of sign (sign magnitude, two's complement).                                                                                                         | Learning through demonstration |  |
| _                            | Boolean algebraic axioms                                                                                                                                                                | Offline / Black Board Teaching |  |
|                              | Boolean functions, truth tables.                                                                                                                                                        | Offline / Black Board Teaching |  |
|                              | Adders and subtractors.                                                                                                                                                                 | Activity based Learning        |  |
|                              | Fundamentals of Algorithmic Problem Solving                                                                                                                                             | Offline / Black Board Teaching |  |
|                              | Characteristics, need for algorithms,                                                                                                                                                   | Learning through demonstration |  |
| Unit III –                   | Important Problem Types, Flowcharts for different problems                                                                                                                              | Offline / Black Board Teaching |  |
| Introduction<br>to Algorithm | Procedural, Object oriented                                                                                                                                                             | Learning through projects      |  |
|                              | Introduction, Types- LAN, MAN & WAN                                                                                                                                                     | Offline / Black Board Teaching |  |
|                              | Data transmission modes- Serial & Parallel, Simplex, Half duplex & full duplex,                                                                                                         | Offline / Black Board Teaching |  |
|                              | Synchronous & Asynchronous transmission                                                                                                                                                 | Group based Learning           |  |
| Computer                     | Transmission medium- Guided &<br>Unguided, Cables- Twisted pair, Coaxial cable & Optical<br>Fiber,                                                                                      | Learning through demonstration |  |
|                              | Networking Devices-Repeaters, Hub, Switch, Bridge,                                                                                                                                      | Learning through demonstration |  |
|                              | Router, Gateway and Modem                                                                                                                                                               | Offline / Black Board Teaching |  |
|                              | The evolving role of software, changing nature of software,                                                                                                                             | Offline / Black Board Teaching |  |
|                              | Software myths. Software engineering – a layered technology, a                                                                                                                          | Learning through projects      |  |
| UIIIL V -                    | process framework.                                                                                                                                                                      |                                |  |
|                              | Software Development Models - The waterfall model, incremental models, evolutionary models.                                                                                             | Offline / Black Board Teaching |  |
|                              | Web Designing Technologies: The World Wide Web, Web Browsers, Web Servers, Uniform Resource Locators, Domain name system (DNS),                                                         | Offline / Black Board Teaching |  |
|                              | Multipurpose Internet Mail Extensions, The Hypertext Transfer Protocol, FTP, HTML, Basic Text Markup, Lists, Tables, Forms, Frames, Hyperlinks, Images, Multimedia, Forms and Controls. | Learning through projects      |  |



# MADHAVINSTITUTE OFTECHNOLOGYANDSCIENCE, GWALIOR- 474005 (A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

| ( | Online | Offline                                                                                                                                         |      |       |       |   |      |   |  |  |
|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|---|------|---|--|--|
|   |        | Black Group Learning through based through Teaching Learning projects demonstration Learning through experimentation Learning learning learning |      |       |       |   |      |   |  |  |
|   | -      | 57.69                                                                                                                                           | 7.69 | 11.53 | 19.23 | - | 3.84 | - |  |  |

Prof Smita Parte Assistant Professor Department of CSE

### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute affiliated to RGPV, Bhopal)

#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

#### **Modes of Teaching**

**Course: Theory of Computation** 

Branch: CSE Session: Jan 2023 - June 2023

| Unit No. &<br>Title                   | Session | Contents                                                                                                        | COs     | Blooms<br>Level(BL) | % Coverage(to<br>be calculated<br>based on total<br>syllabus) | Mode                                                                                     |
|---------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|---------|---------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                       | 1       | Introduction – Basic Mathematical<br>Notation and Techniques (Symbols,<br>Alphabets, String, Language ans Sets) | CO1/CO2 | LOTS                | 1.50%                                                         | Offline & Black Board Teaching ( Understanding Mathematical concepts)                    |
| Unit-I                                | on to   | Automata Theory ( Basic definition and Examples of automata machines )                                          | CO1/CO2 | LOTS                | 1.50%                                                         | Offline & problem solving based learning ( Design Automata and solve real time problems) |
| Introduction to<br>Automata<br>theory |         | Finite Automata as a language<br>acceptor and translator ( Differences<br>between Acceptor and Translator)      | CO1/CO5 | LOTS                | 1.50%                                                         | Offline & Black Board Teaching (<br>Understanding concept of Acceptor<br>and Translator) |

|                         | 4  | Moore Machines and Mealy Machines ( Define machine with output with example)            | CO3/CO6 | LOTS | 2%    | Offline & Group based Learning ( Analysing and Design machine for sequential circuit)       |
|-------------------------|----|-----------------------------------------------------------------------------------------|---------|------|-------|---------------------------------------------------------------------------------------------|
|                         | 5  | Conversion from Mealy to Moore and vice versa                                           | CO3/CO6 | LOTS | 2%    | Offline & Group based Learning (<br>Analysing and Design machine for<br>sequential circuit) |
|                         | 6  | Types of Finite Automata (Basic concept of FA, Finite automata with and without output) | CO3/CO6 | HOTS | 3%    | Offline & Black Board Teaching (<br>Understanding Basic concepts)                           |
|                         | 7  | Deterministic Finite Automata (DFA) ( Automata tuples, working and examples)            | CO3/CO6 | HOTS | 3%    | Offline & Group based Learning (<br>Analysing and Design machine for<br>real time problem)  |
|                         | 8  | Non Deterministic Finite Automata (NDFA) (Automata tuples, working and examples)        | CO2/CO3 | HOTS | 3%    | Offline & Group based Learning ( Analysing and Design machine for real time problem)        |
| Unit-II  Type of Finite | 9  | Equivalence of NDFA and DFA (<br>Conversion NFA to DFA)                                 | CO2/CO3 | HOTS | 3%    | Offline & problem solving based learning ( Design Automata and solve real time problems)    |
| Automata                | 10 | Minimization of DFA ( Partition Method)                                                 | CO1/CO2 | LOTS | 1.50% | Offline & problem solving based learning ( Design Automata and solve real time problems)    |

|                                    | 11 | Regular Expression , Arden's theorem (Regular set, Regular expression, RE to FA, FA to RE)                            | CO1/CO2 | HOTS | 2.50% | Offline & Group based Learning<br>(Construct regular expression for<br>languase and FA)                    |
|------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------|---------|------|-------|------------------------------------------------------------------------------------------------------------|
|                                    | 12 | Meaning of union, intersection,<br>concatenation and closure ( Clouser<br>Proparties of Regular Expression)           | CO1/CO2 | HOTS | 3%    | Offline & Black Board Teaching (<br>Learning and understanding clouser<br>proparties of regular expession) |
|                                    | 13 | Pumping Lemma for Regular Set ( Proof Laguages is not Regular)                                                        | CO1/CO2 | HOTS | 3%    | Offline & Activity based Learning ( Analysing languages that is regular or not)                            |
|                                    | 14 | Grammars Introduction, Types of grammar (Chomeskey Normal form, Type 0, Type 1, Tye2, Type 3 Grammer)                 | CO4/CO6 | HOTS | 2.50% | Offline & Learning through demonstration ( Design Machine for different laguages)                          |
|                                    | 15 | Context Free Grammar ( Example, CFG to CFL and CFL to CFG Conversion)                                                 | CO4     | HOTS | 2%    | Offline & Black Board Teaching (<br>Learn and understand the CFL)                                          |
|                                    | 16 | Context Sensitive Grammar ( Defination, Example and Applications)                                                     | CO4     | HOTS | 4%    | Offline & Black Board Teaching (<br>Learn and understand the CFL)                                          |
| Unit-III  Introduction to Grammers | 17 | Relation between Derivation and<br>Derivation Tree ( Derivation tree, Left<br>most derivation, Right most derivation) | CO4     | LOTS | 2%    | Offline & problem solving based learning ( Derive derivation tree for CFG)                                 |
|                                    | 18 | Ambiguity in grammar ( Defination, Ambiguous Grammar, Example)                                                        | CO4     | HOTS | 4%    | Offline & Activity based Learning (Check given gerammer is ambigious or not)                               |

| 19 | Simplification of Context Free<br>Grammar (Remove useless symboles)                          | CO2/CO3 | HOTS | 1.50% | Offline & Group based Learning ( Analysing and Simplify grammer and remove useless symboles)            |
|----|----------------------------------------------------------------------------------------------|---------|------|-------|---------------------------------------------------------------------------------------------------------|
| 20 | Conversion of grammar to automata machine and vice versa (Examples)                          | CO2/CO3 | HOTS | 5.50% | Offline & problem solving based learning ( Convert CFG into Machine )                                   |
| 21 | Chomsky hierarchy of grammar (<br>Defination)                                                | CO2/CO3 | LOTS | 3%    | Offline & Black Board Teaching (<br>Understand concept of Gerammer)                                     |
| 22 | killing null and unit productions ( Remove unit production and null production from grammer) | CO2/CO3 | HOTS | 5%    | Offline & problem solving based learning ( Learn how to eliminate null poroduction and unit production) |
| 23 | Chomsky Normal Form (CNF) ( Defination, Conver CFG into CNF)                                 | CO2/CO3 | HOTS | 5%    | Offline & Learning through demonstration (understand methods for converting CFG into CNF)               |
| 24 | Greibach Normal Form (GNF) ( Defination, Conver CFG into GNF)                                | CO2/CO3 | HOTS | 5%    | Offline & Learning through demonstration (understand methods for converting CFG into GNF)               |
| 25 | Push Down Automata (PDA), example of PDA ( Defination, Design, Examples)                     | CO2/CO3 | HOTS | 3%    | Offline & Black Board Teaching (<br>Understanding Basic concepts)                                       |
| 26 | Deterministic and Non-deterministic PDA ( Defination, Design, Examples)                      | CO2/CO3 | LOTS | 2%    | Offline & Black Board Teaching (<br>Understanding Basic concepts)                                       |

| Unit-IV Push Down Automata | 27                                                                     | Conversion of PDA into Context free grammar and vice versa (Examples)                    | CO2/CO3 | LOTS | 2%    | Offline & problem solving based learning ( Understanding concept for converting PDA to Grammer)        |
|----------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|------|-------|--------------------------------------------------------------------------------------------------------|
|                            | 28                                                                     | CFG equivalent to PDA ( Examples)                                                        | CO1/CO5 | LOTS | 2.50% | Offline & problem solving based learning ( Understanding concept for converting CFG to PDA)            |
|                            | 29                                                                     | Petrinet model. ( Define and Explain)                                                    | CO1/CO5 | LOTS | 1.50% | Offline & Learning through projects (Implement Petrinet model)                                         |
|                            | 30                                                                     | Turing machine, Techniques for Construction. ( Defination, Example and Applications)     | CO1/CO5 | HOTS | 2%    | Offline & Black Board Teaching (<br>Understanding Basic concepts)                                      |
|                            | Universal Turing Machine (UTM) ( Defination, Example and Applications) |                                                                                          | CO1/CO5 | LOTS | 1.50% | Offline & Black Board Teaching (<br>Understanding Basic concepts)                                      |
| Unit-V                     | 32                                                                     | Types of Turing Machine (Multitape,<br>Multihead and Multidimensional Turing<br>Machine) | CO1/CO5 | LOTS | 2%    | Offline & Black Board Teaching (<br>Understanding Basic concepts)                                      |
| Turing Machine             | 33                                                                     | Decidability and Undecidability Language ( Define, Example)                              | CO4/CO6 | LOTS | 1.50% | Offline & problem solving based learning ( Learn and understand real problem that is decidable or not) |

|  | 34 | Recursively and Recursively Enumerable Language ( Define, Example) |         | LOTS | 2%    | Offline & Learning through demonstration                                     |
|--|----|--------------------------------------------------------------------|---------|------|-------|------------------------------------------------------------------------------|
|  | 35 | P and N-P complete problems. ( Define, Example)                    | CO4/CO6 | LOTS | 3%    | Offline & Black Board Teaching ( Understand the concept of P and NP Problem) |
|  | 36 | The Post Correspondence Problem (Define, Example)                  | CO4/CO6 | LOTS | 1.50% | Offline & Learning through projects (understand and implement PCP Problem)   |

|                                | Offline |                                  |       |                                   |      |     |  |
|--------------------------------|---------|----------------------------------|-------|-----------------------------------|------|-----|--|
| Black Board<br>Teaching        | 46.11   | Group based Learning             | 17.6  | Learning<br>through<br>projects   | 5.55 | NU  |  |
| Learning through demonstration | 4.44    | Learning through experimentation | 27.12 | Onsite/field<br>based<br>learning | -    | Nil |  |

Mr. Mahesh Parmar Assistant Professor

# MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

#### Department of Computer Science & Engineering Lecture Plan

#### **Machine Learning Using Python**

| Lecture<br>No. | CONTENT                                                                   | COs             | Bloom's<br>Level | % Coverage (to be calculated based on total syllabus) | MODE                                   |
|----------------|---------------------------------------------------------------------------|-----------------|------------------|-------------------------------------------------------|----------------------------------------|
| 1.             | Introduction to Python programming, setting up of Programming Environment | 1, 2            | LOTS             | 3%                                                    | Offline / Black<br>Board Teaching      |
| 2.             | Running Python Programs from a terminal                                   | from a 1, 2 LOT |                  | 3%                                                    | Learning<br>through<br>demonstration   |
| 3.             | Variables and Data Types (Numeric, String, List, Tuple ,Dictionary)       | 1, 5            | HOTS             | 3%                                                    | Learning<br>Through<br>experimentation |
| 4.             | Conditional Statements and Loops                                          | 1               | HOTS             | 2.5%                                                  | Learning<br>through<br>demonstration   |
| 5.             | Lambda Functions, Read Write Operations in Files                          | 1               | HOTS             | 2.5%                                                  | Learning<br>Through<br>experimentation |
| 6.             | Various Inbuilt Functions, Read Write Operations in Python                | 1               | HOTS             | 3%                                                    | Learning<br>Through<br>experimentation |

| 7.  | Druth on Doolsooo |       |      |      | Laguring        |
|-----|-------------------|-------|------|------|-----------------|
| /.  | Python Packages   | 1     | ПОТС | 20/  | Learning        |
|     | and Modules       | 1     | HOTS | 2%   | through         |
|     |                   |       |      |      | demonstration   |
| 8.  | Pandas            |       |      |      | Learning        |
|     |                   | 1, 2  | HOTS | 3%   | through         |
|     |                   | Ź     |      |      | demonstration   |
|     |                   |       |      |      |                 |
| 9.  | Numpy             |       |      |      | Learning        |
|     |                   | 1, 2  | HOTS | 2%   | Through         |
|     |                   |       |      |      | experimentation |
| 10. | Matplotlib and    |       |      |      | Learning        |
|     | plotly            | 1, 2  | HOTS | 1.5% | through         |
|     | 1 3 3             | ,     |      |      | demonstration   |
|     |                   |       |      |      | 00111011011011  |
| 11. | Slicing, Merging, |       |      |      | Learning        |
|     | Concatenation on  | 1, 2, | HOTS | 2.5% | through         |
|     | various datasets  |       |      |      | demonstration   |
| 12. | Data              |       |      |      |                 |
|     | Visualization     |       |      |      | Learning        |
|     | Visualization     | 1, 2, | HOTS | 2%   | through         |
|     | Line, bar-graph,  |       |      |      | demonstration   |
|     | scatter plot      |       |      |      |                 |
| 13. | Histogram,        |       |      |      | Offline / Black |
|     | piecharts         | 2,    | HOTS | 2.5% | Board Teaching  |
|     | -                 |       |      |      |                 |
| 14. | Introduction to   |       |      |      | Learning        |
|     | Machine           | 2,    | LOTS | 3.5% | through         |
|     | Learning          |       |      |      | demonstration   |
| 15. | Applications and  |       |      |      |                 |
|     | Challenges of     | _     |      | _    | Learning        |
|     | Machine           | 2,    | LOTS | 2%   | through         |
|     | Learning          |       |      |      | demonstration   |
| 1.5 |                   |       |      |      |                 |
| 16. | Supervised and    |       |      |      | Occi. / Di i    |
|     | unsupervised and  | 1, 2, | LOTS | 2%   | Offline / Black |
|     | Reinforcement     |       |      |      | Board Teaching  |
|     | Learning          |       |      |      |                 |
| 17. | Basic steps of    |       |      |      |                 |
|     | Machine           | 2     | LOTS | 3%   | Offline / Black |
|     | Learning,         | 2,    | LOIS | 3%   | Board Teaching  |
|     | Lifecycle of ML   |       |      |      |                 |
|     |                   |       |      |      |                 |

|     | T =                                           |     | I    |      |                                      |
|-----|-----------------------------------------------|-----|------|------|--------------------------------------|
| 18. | Data Collection                               | 2   | HOTS | 2.5% | Learning<br>through<br>demonstration |
| 19. | Data Preparation                              | 2   | HOTS | 2%   | Learning<br>through<br>demonstration |
| 20. | Choosing a<br>Learning Model                  | 2   | HOTS | 4%   | Learning Through experimentation     |
| 21. | Training a Model                              | 2   | HOTS | 2.5% | Offline / Black<br>Board Teaching    |
| 22. | Evaluation of a<br>Model                      | 2   | HOTS | 3%   | Learning<br>through<br>demonstration |
| 23. | Parameter Tuning and Prediction               | 2   | HOTS | 3%   | Offline / Black<br>Board Teaching    |
| 24. | Supervised Learning Introduction, its types   | 3   | LOTS | 2%   | Learning<br>through<br>demonstration |
| 25. | Linear regression                             | 3,4 | HOTS | 2.5% | Offline / Black<br>Board Teaching    |
| 26. | Gradient Descent                              | 3,4 | HOTS | 2%   | Offline / Black<br>Board Teaching    |
| 27. | Overfitting and Underfitting                  | 3,4 | HOTS | 3%   | Activity based learning              |
| 28. | Regularization                                | 3,4 | HOTS | 2%   | Learning Through experimentation     |
| 29. | Complexity, Training, Testing and Validation  | 3,4 | HOTS | 2%   | Learning<br>through<br>demonstration |
| 30. | Performance<br>matrix, Mean<br>Squared Error, | 3,4 | HOTS | 2.5% | Learning<br>through<br>demonstration |

|     | Root Mean<br>Squared Error,<br>Mean Absolute<br>Error                                       |      |               |      |                                      |
|-----|---------------------------------------------------------------------------------------------|------|---------------|------|--------------------------------------|
| 31. | R^2 and<br>Coefficient of<br>Determination                                                  | 3,4  | HOTS          | 2%   | Offline / Black<br>Board Teaching    |
| 32. | Multivariate Regression, Applications of Regression                                         | 3,4  | HOTS          | 2%   | Activity based learning              |
| 33. | Classification, Binary Classification, Multiclass Classification, Multilabel Classification | 3, 4 | HOTS          | 2%   | Learning<br>through<br>demonstration |
| 34. | Logistic Regression, Support Vector Machines                                                | 3, 4 | HOTS+LOTS     | 4%   | Learning<br>through<br>demonstration |
| 35. | K- nearest Neighbour, Decision Trees, Random Forests                                        | 3, 4 | HOTS+LOTS     | 2.5% | Offline / Black<br>Board Teaching    |
| 36. | Neural Networks<br>and Comparison<br>Matrix                                                 | 3,4  | LOTS+<br>HOTS | 2%   | Offline / Black<br>Board Teaching    |
| 37. | Introduction to Unsupervised Learning, Clustering and Association Rules Mining              | 5, 4 | HOTS+LOTS     | 2.5% | Offline / Black<br>Board Teaching    |

| 38. | DBSCAN, Principal Component Analysis                      | 4, 5 | HOTS+LOTS | 2% | Learning<br>Through<br>experimentation |
|-----|-----------------------------------------------------------|------|-----------|----|----------------------------------------|
| 39. | Apriori Algorithm, Association Rules Learning Problems    | 4, 5 | HOTS+LOTS | 3% | Activity based learning                |
| 40. | Machine learning Model Building, ML Library, Scikit Learn | 4, 5 | HOTS+LOTS | 2% | Learning<br>through<br>demonstration   |

| Black    | Group    | Learning | Learning      | Learning        | Activity  | Onsite/field |
|----------|----------|----------|---------------|-----------------|-----------|--------------|
| Board    | Based    | Through  | Through       | Through         | based     | based        |
| Teaching | Learning | Projects | demonstration | experimentation | learning  | learning     |
|          |          |          |               |                 |           |              |
| 30%      |          | 10%      | 50%           | 5%              | <b>5%</b> |              |
|          |          |          |               |                 |           |              |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Computer Science And Engineering

#### **LECTURE PLAN**

| Teaching<br>Session | Content to be covered                                                            | COs     | Blooms<br>Level<br>(BM) | % Coverage (to be calculated based on the total syllabus) | MODE                              |
|---------------------|----------------------------------------------------------------------------------|---------|-------------------------|-----------------------------------------------------------|-----------------------------------|
| 1                   | Introduction: Advantage of DBMS approach, various view of data                   | CO1/CO2 | LOTS                    | 1.5%                                                      | Offline / Black Board<br>Teaching |
| 2                   | Data independence, schema and sub-schema, primary concepts of data models        | CO1/CO2 | LOTS                    | 1.5%                                                      | Learning through demonstration    |
| 3                   | Database languages, transaction management                                       | CO1/CO5 | LOTS                    | 1.5%                                                      | Learning through demonstration    |
| 4                   | Database administrator and users, data dictionary                                | CO3/CO6 | LOTS                    | 2%                                                        | Learning through demonstration    |
| 5                   | Overall system architecture                                                      | CO3/CO6 | LOTS                    | 2%                                                        | Offline / Black Board<br>Teaching |
| 6                   | ER model: basic concepts, design issues                                          | CO3/CO6 | HOTS                    | 3%                                                        | Activity based<br>Learning        |
| 7                   | Mapping constraint, keys, ER diagram                                             | CO3/CO6 | HOTS                    | 3%                                                        | Learning through projects         |
| 8                   | Weak and strong entity<br>sets, specialization and<br>generalization             | CO2/CO3 | HOTS                    | 3%                                                        | Learning through projects         |
| 9                   | Aggregation, inheritance, design of ER schema, reduction of ER schema to tables. | CO2/CO3 | HOTS                    | 3%                                                        | Learning through projects         |
| 10                  | Domains, relations, kind of relations                                            | CO1/CO2 | LOTS                    | 1.5%                                                      | Offline / Black Board<br>Teaching |
| 11                  | Relational database, various types of keys                                       | CO1/CO2 | HOTS                    | 2.5%                                                      | Learning through demonstration    |
| 12                  | Candidate, primary, alternate and foreign keys.                                  | CO1/CO2 | HOTS                    | 3%                                                        | Activity based<br>Learning        |
| 13                  | Relational algebra with extended with extended operations                        | CO1/CO2 | HOTS                    | 3%                                                        | Offline / Black Board<br>Teaching |
| 14                  | Modifications of Database,                                                       | CO4/CO6 | HOTS                    | 2.5%                                                      | Offline / Black Board             |

Dr. Parul Saxena Assistant Professor

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

|    | idea of relational calculus                                                         | <u> </u> |      | Trace / trimate | Teaching                          |
|----|-------------------------------------------------------------------------------------|----------|------|-----------------|-----------------------------------|
|    |                                                                                     |          |      |                 |                                   |
| 15 | Basic structure of SQL, set operations                                              |          | HOTS | 2%              | Group based Learning              |
| 16 | Set operations, aggregate functions, null values, nested sub queries                | CO4      | HOTS | 4%              | Learning through experimentation  |
| 17 | Derived relations, views, modification of Database                                  | CO4      | LOTS | 2%              | Learning through experimentation  |
| 18 | Join relations, DDL in SQL.                                                         |          | HOTS | 4%              | Group based Learning              |
| 19 | Functional Dependencies and Normalization: basic definitions                        | CO2/CO3  | HOTS | 1.5%            | Offline / Black Board<br>Teaching |
| 20 | Trivial and non trivial dependencies, closure set of dependencies and of attributes | CO2/CO3  | HOTS | 5.5%            | Learning through demonstration    |
| 21 | Irreducible set of dependencies                                                     | CO2/CO3  | LOTS | 3%              | Learning through demonstration    |
| 22 | Non loss decomposition,<br>FD diagram                                               | CO2/CO3  | HOTS | 5%              | Activity based<br>Learning        |
| 23 | First, second Normal forms                                                          | CO2/CO3  | HOTS | 5%              | Group based Learning              |
| 24 | Third, BCNF Normal forms                                                            | CO2/CO3  | HOTS | 5%              | Group based Learning              |
| 25 | Dependency preservation                                                             | CO2/CO3  | HOTS | 3%              | Learning through experimentation  |
| 26 | Multivalued dependencies and fourth normal form                                     | CO2/CO3  | LOTS | 2%              | Learning through experimentation  |
| 27 | Join dependency and fifth normal form                                               | CO2/CO3  | LOTS | 2%              | Learning through experimentation  |
| 28 | <b>Transaction:</b> basic concepts, ACID properties                                 | CO1/CO5  | LOTS | 2.5%            | Offline / Black Board<br>Teaching |
| 29 | Transaction states, implementation of atomicity and durability                      | CO1/CO5  | LOTS | 1.5%            | Offline / Black Board<br>Teaching |
| 30 | Concurrent executions, basic idea of serializability                                | CO1/CO5  | HOTS | 2%              | Activity based<br>Learning        |
| 31 | Basic idea of concurrency control                                                   | CO1/CO5  | LOTS | 1.5%            | Learning through demonstration    |
| 32 | Basic idea of deadlock                                                              | CO1/CO5  | LOTS | 2%              | Learning through demonstration    |
| 33 | Failure classification, storage structure types                                     | CO4/CO6  | LOTS | 1.5%            | Offline / Black Board<br>Teaching |
| 34 | Stable storage                                                                      | CO4/CO6  | LOTS | 2%              | Offline / Black Board             |

Dr. Parul Saxena **Assistant Professor** 

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

| •  |                                                                                                                                               |         |      |      |                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|-----------------------------------|
|    | implementation, data access, Recovery and atomicity- log based recovery                                                                       |         |      |      | Teaching                          |
| 35 | Deferred Database modification, immediate Database modification, checkpoints.                                                                 | CO4/CO6 | LOTS | 3%   | Activity based<br>Learning        |
| 36 | Distributed Database: basic idea, distributed data storage, Data replication, data fragmentation- horizontal vertical and mixed fragmentation | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 37 | Overview of physical storage media, magnetic disks-performance and optimizations                                                              | CO4/CO6 | LOTS | 1%   | Offline / Black Board<br>Teaching |
| 38 | Basic idea of RAID, File organizations, organization of records in files                                                                      | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 39 | Basic concepts of indexing, ordered indices                                                                                                   | CO4/CO6 | LOTS | 1.5% | Offline / Black Board<br>Teaching |
| 40 | B-tree organization, B+-tree organization                                                                                                     | CO4/CO6 | HOTS | 2.5% | Activity based<br>Learning        |

| Online |          | Offline  |          |               |                 |          |          |  |
|--------|----------|----------|----------|---------------|-----------------|----------|----------|--|
|        | Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite / |  |
|        | Board    | based    | through  | through       | through         | based    | field    |  |
|        | Teaching | Learning | projects | demonstration | experimentation | Learning | based    |  |
|        |          |          |          |               |                 |          | learning |  |
| -      | 35%      | 10%      | 7.5%     | 20%           | 12.5%           | 15%      | -        |  |

Dr. Parul Saxena Assistant Professor

#### **MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR**

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

# Department of Computer Science & Engineering Lecture Plan

#### Database System(620111)

| Lecture<br>No. | CONTENT                                                                                            | COs    | Bloom's<br>Level | % Coverage (to be calculated based on total syllabus) | MODE                                   |
|----------------|----------------------------------------------------------------------------------------------------|--------|------------------|-------------------------------------------------------|----------------------------------------|
| 1.             | Characteristics & Implications of Database Approach.                                               | 1, 2   | LOTS             | 1%                                                    | Offline / Black<br>Board Teaching      |
| 2.             | High Level or conceptual, Low-<br>Level or Physical, Representation or implementation              | 1, 2   | LOTS             | 3%                                                    | Offline / Black<br>Board Teaching      |
| 3.             | Internal Schema,<br>Conceptual<br>Schema, External<br>Schema.                                      | 1, 2,4 | LOTS             | 3%                                                    | Offline / Black<br>Board Teaching      |
| 4.             | Data Definition Language (DDL), Storage Definition Language (SDL), View Definition Language (VDL), | 1, 2,4 | нотѕ             | 5%                                                    | Learning<br>Through<br>experimentation |
| 5.             | Data<br>Manipulation<br>Language(DML)                                                              | 1,2,4  | нотѕ             | 3%                                                    | Learning Through experimentation       |
| 6.             | Data Models, Relational data Models, Object Data Models, Hierarchical and Network Data Models .    | 1, 2,4 | нотѕ             | 2%                                                    | Learning<br>Through<br>experimentation |

| 7.  | Logical Data Independence, Physical Data Independence in three level scheme architecture. | 1, 2,4 | LOTS | 2%   | Offline / Black<br>Board Teaching    |
|-----|-------------------------------------------------------------------------------------------|--------|------|------|--------------------------------------|
| 8.  | Entity Types, Entity Sets, Attributes Types and Keys,,                                    | 1,2,5  | LOTS | 2.5% | Learning<br>Through<br>demonstration |
| 9.  | Relationships Types, Relationship sets, Roles                                             | 1,2,5  | LOTS | 2.5% | Offline / Black<br>Board Teaching    |
| 10. | ER-Diagrams,<br>Design Issues                                                             | 1,2,5  | HOTS | 5%   | Activity based learning              |
|     | Overview of object database Concept, Object Identity, and Objects versus Literals,        | 2,4    | LOTS | 3%   | Offline / Black<br>Board Teaching    |
|     | Complex Type Structures for Objects and Literals                                          | 2,4    | LOTS | 3%   | Offline / Black<br>Board Teaching    |
| 11. | Specifying Object Persistence via Naming and Reach ability                                | 2,4    | LOTS | 3%   | Offline / Black<br>Board Teaching    |
| 12. | Simplified Model for Inheritance, Constraints on Extents                                  | 2,4    | HOTS | 3%   | Offline / Black<br>Board Teaching    |

|     | Corresponding to a Type Hierarchy.                                                      |       |      |    |                                        |
|-----|-----------------------------------------------------------------------------------------|-------|------|----|----------------------------------------|
| 13. | Polymorphism of Operations (Operator Overloading),                                      | 2,4   | HOTS | 2% | Offline / Black<br>Board Teaching      |
| 14. | Multiple Inheritance and Selective Inheritance                                          | 2,4   | HOTS | 3% | Learning<br>Through<br>demonstration   |
| 15. | Object Database Conceptual Design, Differences between Conceptual Design of ODB and RDB | 2,4   | HOTS | 3% | Offline / Black<br>Board Teaching      |
| 16. | Simple OQL Queries, Database Entry Points, and Iterator Variables.                      | 2,4   | HOTS | 3% | Learning<br>Through<br>experimentation |
| 17. | Distributed Databases: Concepts. Fragmentation, Replication                             | 2, 4  | HOTS | 3% | Offline / Black<br>Board Teaching      |
| 18. | Allocation Techniques for Distributed Database Design,                                  | 2,4   | HOTS | 3% | Offline / Black<br>Board Teaching      |
| 19. | Types of Distributed  Database Systems                                                  | 2,4,5 | LOTS | 3% | Offline / Black<br>Board Teaching      |
| 20. | Query Processing, Concurrency Control and                                               | 2,4,5 | HOTS | 3% | Offline / Black<br>Board Teaching      |

|     | Recovery.                                                              |        |      |      |                                   |
|-----|------------------------------------------------------------------------|--------|------|------|-----------------------------------|
| 21. | Distributed Databases in Oracle.                                       | 2,4,5  | LOTS | 3%   | Offline / Black<br>Board Teaching |
| 22. | Transaction Processing: Introduction, Transaction and System Concepts, | 4, 6   | LOTS | 2.5% | Offline / Black<br>Board Teaching |
| 23. | Properties of Transactions, Schedules & Recoverability                 | 1,2,3  | LOTS | 3%   | Offline / Black<br>Board Teaching |
| 24. | Serializability of<br>Schedules                                        | 1,2,3  | HOTS | 3%   | Offline / Black<br>Board Teaching |
| 25. | Schedules & Recoverability                                             | 1,2,3  | HOTS | 3%   | Offline / Black<br>Board Teaching |
| 26. | Concurrency Control Techniques: Two-Phase Locking Techniques,          | 1,2,3  | HOTS | 3.5% | Offline / Black<br>Board Teaching |
| 27. | Binary Locks. Shared/Exclusive (or Read/Write) Locks,                  | 1,2,3  | LOTS | 3%   | Offline / Black<br>Board Teaching |
| 28. | Basic, Conservative<br>Strict, and Rigorou                             | 1,2,3  | HOTS | 3%   | Offline / Black<br>Board Teaching |
| 29. | Concurrency Contr<br>Based, on<br>Timestamp Orderir                    | 1,2,3  | нотѕ | 3%   | Offline / Black<br>Board Teaching |
| 30. | Modelling and<br>Storage of Image                                      | 2, 4,6 | LOTS | 3%   | Learning through                  |

|     | and Multimedia<br>Data:                                     |         |      |    | demonstration                        |
|-----|-------------------------------------------------------------|---------|------|----|--------------------------------------|
| 31. | Data Structures:  R-Trec. k-d Tree.  Quad Trees             | 2, 4,6  | нотѕ | 3% | Offline / Black<br>Board Teaching    |
| 32. | Content Based Retrieval: color Histograms, Textures, etc,   | 2,4,6   | LOTS | 3% | Offline / Black<br>Board Teaching    |
| 33. | Image Features, Spatial and Topological Relationships.      | 2,4,6   | LOTS | 3% | Offline / Black<br>Board Teaching    |
| 34. | WEB Database  Accessing Databases through WEB, WEB Servers. | 2,4,6   | HOTS | 3% | Activity based<br>learning           |
| 35. | XML Databases,<br>Commercial<br>Systems, ,                  | 2, 4, 6 | нотѕ | 3% | Offline / Black<br>Board Teaching    |
| 36. | Mobile Databases                                            | 2,4,6   | нотѕ | 3% | Learning Through experimentation     |
| 37. | Case Study: Oracle<br>Xi                                    | 2,4,6   | нотѕ | 3% | Learning<br>Through<br>demonstration |

| Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite/field   |
|----------|----------|----------|---------------|-----------------|----------|----------------|
| Board    | Based    | Through  | Through       | Through         | based    | based learning |
| Teaching | Learning | Projects | demonstration | experimentation | learning |                |
|          |          |          |               |                 |          |                |
| 49%      |          |          | 11.5%         | 11.5%           | 8%       |                |
|          |          |          |               |                 |          |                |

### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous & NAAC Accredited Institute affiliated to RGPV, Bhopal)

#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

#### Course: High Speed Networks (620113)

|                    | Course. High Speed Network                                                                           |                                                                              |
|--------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Branch: CSE        |                                                                                                      | Session: November'2022 - March' 2023                                         |
| Unit No<br>& Topic | Contents                                                                                             | Mode                                                                         |
|                    | Introduction to Course Content, Course Objective, Course Out-Comes, Pre Requisites                   | Offline & Open discussions                                                   |
|                    | Review of Networking Models: OSI and TCP                                                             | Offline learning                                                             |
| Unit-1             | Internet Protocols(IPV4 and IPV6)                                                                    | Offline & problem solving based learning. (Understanding basic methodology & |
|                    | Class full and Classless addressing, Subnetting and Supernetting                                     | Numerical problem practice).                                                 |
|                    | Routing techniques, unicasting, multicasting and                                                     | Offline learning                                                             |
|                    | broadcasting, Congestion Control at Network Layer                                                    | (Conducting experiment in Cisco Packet Tracer to understand the concepts).   |
|                    | Transport Layer: Design Issues, UDP: Header Format,                                                  |                                                                              |
| UNIT-2             | TCP: Connection Management, Reliability of Data                                                      | Offline & problem solving in group based learning                            |
|                    | Transfers, TCP Flow Control, TCP Congestion Control, TCP Header Format,                              |                                                                              |
|                    | Application Layer: WWW and HTTP, FTP, SSH, Email (SMTP, MIME, IMAP), DNS, Network Management (SNMP). | Offline learning.                                                            |
|                    | Overview of Optical Networks, Optical networking Devices                                             | Offline & Open discussions group based learning                              |
| UNIT-3             |                                                                                                      |                                                                              |
|                    | Wavelength Allocation in Networks, WDM Network Elements                                              | (Understanding basic methodology &                                           |
|                    |                                                                                                      | Numerical problem practice).                                                 |
|                    | WDM Network Elements: Optical Line terminals and amplifiers                                          | Offline learning                                                             |

| UNIT 4 | ATM Based Services and Applications                  |                                                                              |
|--------|------------------------------------------------------|------------------------------------------------------------------------------|
|        | ATM Switching and transmissions                      | Offline & problem solving based learning                                     |
|        | Wireless and Mobile ATM, Security in ATM Networks    | (Understanding basic methodology &                                           |
|        | VPN: Tunneling and Overlays Networks                 | Numerical problem practice).                                                 |
|        | Introduction to VoIP                                 |                                                                              |
| UNIT-5 | Overview of Wireless and Mobile AdHoc Networks       | Offline & problem solving based learning  (Understanding basic methodology & |
|        | Routing techniques and Protocols                     | Numerical problem practice).                                                 |
|        | Wireless Sensor Networks and its Protocol Structures |                                                                              |

Ms. Sapna Kushwah Assistant Professor