

of

Open Category (OC) Courses offered by Department of CSE in B.Tech VII Semester Under Flexible Curriculum

sDepartment of Computer Science and Engineering

NETWORK SECURITY

910201

COURSE OBJECTIVES

- To provide conceptual understanding of network security principles, issues, challenges and mechanisms.
- To understand how to apply encryption techniques to secure data in transit across data networks.
- To explore the requirements of real-time communication security and issues related to the security of web services.

Unit-I

Security: Principles and Attacks, Basic Number Theory: Prime Number, Congruence's, Modular Exponentiation, Fundamentals of Cryptography, Steganography, Cryptanalysis, Code Breaking, Block Ciphers and Steam Ciphers, Substitution Ciphers, Transposition Ciphers, Caesar Cipher, Play-Fair Cipher, Hill Cipher, Cipher Modes of Operation.

Unit-II

Cryptography: Symmetric Key Cryptography, Public Key Cryptography, Principles of Public Key Cryptosystem, Classical Cryptographic Algorithms: DES, RC4, Blowfish, RSA, Distribution of Public Keys and Key Management, Diffie-Hellman Key Exchange.

Unit-III

Hash Functions: Hash Functions, One Way Hash Function, SHA (Secure Hash Algorithm). Authentication: Requirements, Functions, Kerberos, Message Authentication Codes, Message Digest: MD5, SSH (Secure Shell), Digital Signatures, Digital Certificates.

Unit -IV

IP & Web Security Overview: SSL (Secure Socket Layer), TLS (Transport Layer Security), SET (Secure Electronic Transaction). **IDS (Intrusion Detection System):** Statistical Anomaly Detection and Rule-Based Intrusion Detection, Penetration Testing, Risk Management. **Firewalls:** Types, Functionality and Polices.

Unit -V

Phishing: Attacks and Its Types, Buffer Overflow Attack, Cross Site Scripting, SQL Injection Attacks, Session Hijacking. **Denial of Service Attacks:** Smurf Attack, SYN Flooding, Distributed Denial of Service. **Hacker:** Hacking and Types of Hackers, Footprinting, Scanning: Types: Port, Network, Vulnerability), Sniffing in Shared and Switched Networks, Sniffing Detection & Prevention, Spoofing.

RECOMMENDED BOOKS

- Cryptography and Network Security, William Stallings, Pearson Education.
- Cryptography and Network Security, Atul Kahate, McGraw Hill Education.
- Incident Response and Computer Forensics, Kevin Mandia, Chris Prosise, Tata McGraw Hill.

COURSE OUTCOMES

After completion of the course students would be able to:

- CO1: define various aspects of network security.
- CO2: illustrate fundamentals of number theory and cryptography.
- CO3: apply security mechanisms to achieve principles of network security.
- CO4: analyze the cause for various existing network attacks.
- CO5: examine the vulnerabilities in applications over internet.
- CO6: develop a secure protocol for achieving various network security services.

Department of Computer Science and Engineering

COMPUTER NETWORKS

910202

COURSE OBJECTIVES

- Familiarize the student with the basic taxonomy and terminology of the computer networking.
- Provide detail knowledge about various layers, protocols and devices that facilitate networking.
- Enable Students to deal with various networking problems such as flow control, error control and congestion control.

Unit-I

Introduction: Computer Network, Types- LAN,MAN & WAN, Data Transmission Modes- Serial & Parallel, Simplex, Half Duplex & Full Duplex, Synchronous & Asynchronous Transmission, Transmission Medium- Guided & Unguided, Cables-Twisted Pair, Coaxial Cable & Optical Fiber, Networking Devices-Repeaters, Hub, Switch, Bridge, Router, Gateway and Modem, Performance Criteria- Bandwidth, Throughput, Propagation Time & Transmission Time, Network Standardization- OSI Reference Model & TCP/IP Reference Mode.

Unit-II

Physical Layer: Network Topologies- Bus, Ring, Star & Mesh, Line Coding- Unipolar, Polar and Bipolar, Switching- Circuit Switching, Message Switching & Packet Switching, Multiplexing: FDM – Frequency Division Multiplexing, WDM – Wavelength Division Multiplexing & TDM – Time Division Multiplexing.

Unit-III

Data Link Layer: Introduction, Design Issues, Services, Framing, Error Control, Flow Control, ARQ Strategies, Error Detection and Correction, Parity Bits, Cyclic Redundant Code (CRC), Hamming Codes, MAC Sub Layer- The Channel Allocation Problem, Pure ALOHA ,Slotted ALOHA, CSMA ,CSMA/CD, IEEE 802.3, IEEE 802.4 and IEEE 802.5.

Unit-IV

Network Layer & Transport Layer: Introduction, Design Issues, Services, Routing- Distance Vector Routing, Hierarchical Routing & Link State Routing, Shortest Path Algorithm- Dijkstra's Algorithm & Floyd–Warshall's Algorithm, Flooding, Congestion Control- Open Loop & Closed Loop Congestion Control, Leaky Bucket & Token Bucket Algorithm. Connection Oriented & Connectionless Service, IP Addressing.

Unit-V

Presentation, Session& Application Layer: Introduction, Design Issues, Presentation Layer- Translation, Encryption- Substitutions and Transposition Ciphers, Compression- Lossy and Lossless. Session Layer – Dialog Control, Synchronization. Application Layer- Remote Login, File Transfer & Electronic Mail.

RECOMMENDED BOOKS

- Data Communication and Networking, Behrouz A. Forouzan, McGraw Hill.
- Computer Networks, Andrew S. Tanenbaum, Pearson Education India.
- Computer Networks and Internets, Douglas E. Comer, Pearson India.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Explain the fundamental concepts of computer network.
- CO2. Illustrate the basic taxonomy & terminologies of computer network.
- CO3. Identify various parameter for affecting the performance of computer network.
- CO4. Analyze the concepts of communication using various layer of OSI model.
- CO5. Evaluate the performance of computer network in congestion and Internet.
- CO6. Design the network environment and applications for implementation of computer networking concept.

Department of Computer Science and Engineering

DISTRIBUTED SYSTEMS

150716

COURSE OBJECTIVES

- To provide students contemporary knowledge of distributed systems.
- To equip students with skills to analyze and design distributed applications.
- To gain experience in the design and testing of a large software system, and to be able to communicate that design to others.

Unit - I

Introduction to Distributed Systems: Architecture for Distributed System, Goals of Distributed System, Hardware and Software Concepts, Distributed Computing Model, Advantages & Disadvantage Distributed System, Issues in Designing Distributed System.

Unit -II

Distributed Share Memory: Basic Concept of Distributed Share Memory (DSM), DSM Architecture & Its Types, Design & Implementations Issues in DSM System, Structure of Share Memory Space, Consistency Model and Thrashing.

Distributed File System: Desirable Features of Good Distributed File System, File Model, File Service Architecture, File Accessing Model, File Sharing Semantics, File Catching Scheme, File Application & Fault Tolerance.

Unit - III

Inter Process Communication and Synchronization: Data Representation & Marshaling, Group Communication, Client Server Communication, RPC-Implementing RPC Mechanism, Stub Generation, RPC Messages. Synchronization: -Clock Synchronization, Mutual Exclusion, Election Algorithms - Bully & Ring Algorithms.

Unit - IV

Distributed Scheduling and Deadlock Distributed Scheduling- Issues in Load Distributing, Components for Load Distributing Algorithms, Different Types of Load Distributing Algorithms, Task Migration and its issues. **Deadlock-** Issues in deadlock detection & Resolutions, Deadlock Handling Strategy, Distributed Deadlock Algorithms.

Unit – V

Distributed Databases and Multimedia Management System

Distributed Data Base Management System (DDBMS), Types of Distributed Database, and Distributed Multimedia: - Characteristics of multimedia Data, Quality of Service Managements. Case Study of Distributed System: - Amoeba, Mach, Chorus

RECOMMENDED BOOKS

- Distributed Operating System Concept & Design, Sinha, PHI.
- Distributed System Concepts and Design, Coulouris & Dollimore, Pearson Pub.
- Distributed Operating System, Andrew S. Tanenbaum, Pearson.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Tell the basic elements and concepts related to distributed system technologies
- CO2. Demonstrate knowledge of the core architectural aspects of distributed systems.
- CO3. Identify how the resources in a distributed system are managed by algorithm.
- CO4. Examine the concept of distributed file system and distributed shared memory.
- CO5. Compare various distributed system algorithms for solving real world problems.
- CO6. Develop application for achieving various services of distributed system

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR - 474005

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

DATA MINING & WAREHOUSING

150715

COURSE OBJECTIVES:

- To understand the value of data mining in solving real-world problems.
- To gain understanding of algorithms commonly used in data mining tools.
- To develop ability for applying data mining tools to real-world problems

Unit-1:

Unit - I Introduction: Motivation: Important, Data type for Data Mining: Relational Databases Data Ware-Houses. Transactional Databases, Advanced Database System and Its Applications, Data Mining Functionalities Concept/Class Description, Association Analysis Classification & Prediction, Cluster Analysis, Outliner Analysis Classification of Data Mining Systems, Major Issues in Data Mining

Unit-2:

Data Warehouse and OLTP Technology for Data Mining: Differences between Operational Database Systems & Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Data Warehouse Implementation, Data Cube Technology, Emerging Scenario of Pattern Warehousing System

UNIT -3:

Data Pre-processing: Data Cleaning, Data Integration and Transformation, Data Reduction Discretization and Concept Hierarchy Generation. Data Mining Primitives Languages and System Architectures, Concept Description, Characterization and Comparison Analytical Characterization.

UNIT-4:

Mining Association Rules in Large Databases: Association Rule Mining Market Basket Analysis, Basic Concepts, Mining Single Dimensional Boolean Association Rules from Transactional Databases: The Apriori Algorithm, Generating Association Rules from Frequent Items, Improving the Efficiency of Apriori, other Algorithms & their Comparison, Mining Multilevel Association Rules, Multidimensional Association Rules, Constraint Based Association Rule Mining.

UNIT -5:

Classification & Predication and Cluster Analysis: Issues Regarding Classification & Predication, Different Classification Methods, Predication, Cluster Analysis, Major Clustering Methods, Currently Available Tools, Case Study.

RECOMMENDED BOOKS

- Data Mining: Concepts and Techniques, Han and Kamber, Morgan Kaufmann Publications.
- Data Mining Techniques, A. K. Pujari, Universities Press Pvt. Ltd .

COURSE OUTCOMES:

After completion of this course, the students would be able to:

- CO 1. Classify various databases systems and data models of data warehouse .
- CO2. Compare various methods for storing & retrieving data from different data sources/repository.
- CO3. Apply pre-processing techniques for construction of data warehouse.
- CO4. analyze data mining for knowledge discovery & prediction.
- COS. explain data mining methods for identification of association for transactional databases.
- CO6. Develop various classification and clustering algorithms for data using data mining.

MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR - 474005

(A Govt. Aided UGC Autonomous Institute Affiliated to R.G.P.V. Bhopal, M.P.)

Department of Computer Science and Engineering

Ad Hoc Wireless Networks

150714

COURSE OBJECTIVES

- Recognize needs of different set of MAC, routing and transport protocols for wireless computer networks compared to wired networks.
- Understand and Compare different types of MAC, Routing and Transport protocols for Ad hoc Networks.
- Analyze performance of MANET Routing Protocols under different mobility patterns.
- Identify different methods for energy saving in a mobile device.
- Identify future research directions.

UNIT-I:

Introduction- Wireless Networks, Cellular Mobile Network, Wireless LAN, Ad Hoc Networks, Sensor Network, Differences between Cellular and Ad Hoc, Issues in Ad Hoc Wireless Networks, Applications of Ad Hoc Wireless Networks.

UNIT-II

MAC Layer–Introduction, Issues and Need for Medium Access Control. Problems in Ad Hoc Channel Access such as Hidden Terminal Problem and Exposed Node Problem. Classification of MAC Protocols – Contention Based MAC Protocols such as ALOHA and CSMA, Contention-Based MAC Protocols with Reservation Mechanisms such as MACA and MACA-BI.

UNIT-III

Routing Protocols- Introduction, Classification of Routing Protocols- Proactive routing protocols such as WRP and DSDV, Reactive routing protocol such as AODV, DSR, LAR, Hybrid Routing protocols such as ZRP.

UNIT-IV

Transport Protocols and Energy Management Systems – Introduction, Design Issues and Challenges, Power Management, Smart Batteries and Battery Characteristics.

UNIT-V

Security- Security in wireless Ad hoc wireless Networks, Network security requirements, Issues & challenges in security provisioning, Security attacks.

RECOMMENDED BOOKS

- Ad Hoc Wireless Networks: Architectures and Protocols, C. Siva Ram Murthy, B. S. Manoj, Pearson Education India
- Ad Hoc Mobile Wireless Networks: Protocols and Systems, C.-K. Toh Pearson Publication.
- Wireless Networks Principles, Protocols, and Applications: Subir Kumar Sarkar, T G Basavaraju, C Puttamadappa, Auerbach Publications, Taylor & Francis Group
- Security and Quality of Service in Ad Hoc Wireless Networks, Amitabh Mishra, John Wiley & Sons, Cambridge University Press

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1.	Outlines the basics of wireless networks
CO2.	Identify various issues/problems associated with Ad-hoc networks and their
	Solutions
CO3.	Examine the working of various Ad-hoc network protocols
CO4.	Analyze the performance of various Ad-hoc network protocols
CO5.	Examine the security challenges and issue of Ad-hoc wireless network
CO6.	Develop the solutions of various problems/Issues associated with ad-hoc networks

of

Open Category (OC) Courses offered by Department of CSE in B.Tech VII Semester Under Flexible Curriculum

sDepartment of Computer Science and Engineering

NETWORK SECURITY

910201

COURSE OBJECTIVES

- To provide conceptual understanding of network security principles, issues, challenges and mechanisms.
- To understand how to apply encryption techniques to secure data in transit across data networks.
- To explore the requirements of real-time communication security and issues related to the security of web services.

Unit-I

Security: Principles and Attacks, Basic Number Theory: Prime Number, Congruence's, Modular Exponentiation, Fundamentals of Cryptography, Steganography, Cryptanalysis, Code Breaking, Block Ciphers and Steam Ciphers, Substitution Ciphers, Transposition Ciphers, Caesar Cipher, Play-Fair Cipher, Hill Cipher, Cipher Modes of Operation.

Unit-II

Cryptography: Symmetric Key Cryptography, Public Key Cryptography, Principles of Public Key Cryptosystem, Classical Cryptographic Algorithms: DES, RC4, Blowfish, RSA, Distribution of Public Keys and Key Management, Diffie-Hellman Key Exchange.

Unit-III

Hash Functions: Hash Functions, One Way Hash Function, SHA (Secure Hash Algorithm). Authentication: Requirements, Functions, Kerberos, Message Authentication Codes, Message Digest: MD5, SSH (Secure Shell), Digital Signatures, Digital Certificates.

Unit -IV

IP & Web Security Overview: SSL (Secure Socket Layer), TLS (Transport Layer Security), SET (Secure Electronic Transaction). **IDS (Intrusion Detection System):** Statistical Anomaly Detection and Rule-Based Intrusion Detection, Penetration Testing, Risk Management. **Firewalls:** Types, Functionality and Polices.

Unit -V

Phishing: Attacks and Its Types, Buffer Overflow Attack, Cross Site Scripting, SQL Injection Attacks, Session Hijacking. **Denial of Service Attacks:** Smurf Attack, SYN Flooding, Distributed Denial of Service. **Hacker:** Hacking and Types of Hackers, Footprinting, Scanning: Types: Port, Network, Vulnerability), Sniffing in Shared and Switched Networks, Sniffing Detection & Prevention, Spoofing.

RECOMMENDED BOOKS

- Cryptography and Network Security, William Stallings, Pearson Education.
- Cryptography and Network Security, Atul Kahate, McGraw Hill Education.
- Incident Response and Computer Forensics, Kevin Mandia, Chris Prosise, Tata McGraw Hill.

COURSE OUTCOMES

After completion of the course students would be able to:

- CO1: define various aspects of network security.
- CO2: illustrate fundamentals of number theory and cryptography.
- CO3: apply security mechanisms to achieve principles of network security.
- CO4: analyze the cause for various existing network attacks.
- CO5: examine the vulnerabilities in applications over internet.
- CO6: develop a secure protocol for achieving various network security services.

Department of Computer Science and Engineering

COMPUTER NETWORKS

910202

COURSE OBJECTIVES

- Familiarize the student with the basic taxonomy and terminology of the computer networking.
- Provide detail knowledge about various layers, protocols and devices that facilitate networking.
- Enable Students to deal with various networking problems such as flow control, error control and congestion control.

Unit-I

Introduction: Computer Network, Types- LAN,MAN & WAN, Data Transmission Modes- Serial & Parallel, Simplex, Half Duplex & Full Duplex, Synchronous & Asynchronous Transmission, Transmission Medium- Guided & Unguided, Cables-Twisted Pair, Coaxial Cable & Optical Fiber, Networking Devices-Repeaters, Hub, Switch, Bridge, Router, Gateway and Modem, Performance Criteria- Bandwidth, Throughput, Propagation Time & Transmission Time, Network Standardization- OSI Reference Model & TCP/IP Reference Mode.

Unit-II

Physical Layer: Network Topologies- Bus, Ring, Star & Mesh, Line Coding- Unipolar, Polar and Bipolar, Switching- Circuit Switching, Message Switching & Packet Switching, Multiplexing: FDM – Frequency Division Multiplexing, WDM – Wavelength Division Multiplexing & TDM – Time Division Multiplexing.

Unit-III

Data Link Layer: Introduction, Design Issues, Services, Framing, Error Control, Flow Control, ARQ Strategies, Error Detection and Correction, Parity Bits, Cyclic Redundant Code (CRC), Hamming Codes, MAC Sub Layer- The Channel Allocation Problem, Pure ALOHA ,Slotted ALOHA, CSMA ,CSMA/CD, IEEE 802.3, IEEE 802.4 and IEEE 802.5.

Unit-IV

Network Layer & Transport Layer: Introduction, Design Issues, Services, Routing- Distance Vector Routing, Hierarchical Routing & Link State Routing, Shortest Path Algorithm- Dijkstra's Algorithm & Floyd–Warshall's Algorithm, Flooding, Congestion Control- Open Loop & Closed Loop Congestion Control, Leaky Bucket & Token Bucket Algorithm. Connection Oriented & Connectionless Service, IP Addressing.

Unit-V

Presentation, Session& Application Layer: Introduction, Design Issues, Presentation Layer- Translation, Encryption- Substitutions and Transposition Ciphers, Compression- Lossy and Lossless. Session Layer – Dialog Control, Synchronization. Application Layer- Remote Login, File Transfer & Electronic Mail.

RECOMMENDED BOOKS

- Data Communication and Networking, Behrouz A. Forouzan, McGraw Hill.
- Computer Networks, Andrew S. Tanenbaum, Pearson Education India.
- Computer Networks and Internets, Douglas E. Comer, Pearson India.

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1. Explain the fundamental concepts of computer network.
- CO2. Illustrate the basic taxonomy & terminologies of computer network.
- CO3. Identify various parameter for affecting the performance of computer network.
- CO4. Analyze the concepts of communication using various layer of OSI model.
- CO5. Evaluate the performance of computer network in congestion and Internet.
- CO6. Design the network environment and applications for implementation of computer networking concept.
