of

Departmental Core (DC) Courses

B. Tech V Semester

(Computer Science & Engineering)

SOFTWARE ENGINEERING 150502 (DC-9)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1: Explain the various fundamental concepts of software engineering.

CO2: Develop the concepts related to software design & analysis.

CO3: Compare the techniques for software project management & estimation.

CO4: Choose the appropriate models for real life software project.

CO5: Design the software using modern tools and technologies.

CO6: Test the software through different approaches.

THEORY OF COMPUTATION 150503 (DC-10)

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1: Explain the basic concepts of switching and finite automata theory & languages.
- CO2: Relate practical problems to languages, automata, computability and complexity.
- CO3: Construct abstract models of computing and check their power to recognize the languages.
- CO4: Analyse the grammar, its types, simplification and normal form.
- CO5: Interpret formal mathematical methods to prove properties of languages, grammars and automata.
- CO6: Develop an overview of applicability of automata theory, languages and computation to solve engineering problems.

MICROPROCESSOR & INTERFACING 150504(DC-11)

COURSE OUTCOMES

After completion of this course, the students would be able to:

- CO1: Compare the architecture and features of different 16-bit microprocessor interfacing chips & microcontrollers.
- CO2: Develop programming skills in assembly language of 8086 microprocessor and 8051 microcontroller.
- CO3: Illustrate the concept of interfacing with peripheral devices.
- CO4: Make use of different interrupts and addressing modes.
- CO5: Design an interfacing mechanism for I/O devices.
- CO6: Build a system based on 8086 microprocessor and 8051 microcontroller.

of

Departmental Core (DC) Courses

B. Tech VI Semester

(Computer Science & Engineering)

COMPILER DESIGN 150601 (DC-12)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1: Recall the concepts of finite automata and context free grammar.

CO2: Build the concept of working of compiler.

CO3: Examine various parsing techniques and their comparison.

CO4: Compare various code generation and code optimization techniques.

CO5: Analyze different tools and techniques for designing a compiler.

CO6: Design various phases of compiler.

COMPUTER NETWORKS 150602 (DC-13)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1: Explain the fundamental concepts of computer network.

CO2: Illustrate the basic taxonomy & terminologies of computer network protocols.

CO3: Develop a concept for understanding advanced computer networks.

CO4: Build the skill of IP addressing and routing mechanism.

CO5: Predict the performance of computer network in various situations.

CO6: Construct the network environment for implementation of computer networking concept.

of

Departmental Core (DC) Lab Courses

B. Tech V Semester

(Computer Science & Engineering)

SOFTWARE ENGINEERING (Lab) 150502 (DC-9)

COURSE OUTCOMES .

After completion of this course, the students would be able to:

CO1: Demonstrate the basic concept of UML.

CO2: Discuss the software development process using different tools.

CO3: Display the various ways for solving different common modelling problems using UML.

CO4: Use the knowledge of Software engineering and project management.

CO5: Identify the vocabulary, rules and idioms of the UML and learn how to model it effectively.

CO6: Design the software systems using software engineering concepts.

THEORY OF COMPUTATION (Lab) 150503 (DC-10)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1: Judge various computational models.

CO2: Construct abstract models of computing.

CO3: Justify the power of abstract models in computing to recognize the languages.

CO4: Demonstrate analytical thinking and intuition for problem solving in the related areas.

CO5: Discuss the limitations of computation in problem solving.

CO6: Follow set of rules for syntax verification.

MICROPROCESSOR & INTERFACING (Lab) 150504(DC-11)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1: Differentiate the various types of instructions and addressing modes.

CO2: Identify the Hex code/ Machine code of instructions in assembly language.

CO3: Perform interfacing of various peripheral devices and memory with microprocessor.

CO4: Demonstrate the arithmetic & Logical operation using instruction set of 8086/8051

microprocessor.

CO5: Use of 8086/8051 for interfacing with I/O devices.

CO6: Build the assembly language programs in 8086/8051 to solve real world problems.

of

Departmental Core (DC) Lab Courses

B. Tech VI Semester

(Computer Science & Engineering)

COMPILER DESIGN (Lab) 150601 (DC-12)

COURSE OUTCOMES

After completion of this course, the students would be able to:

CO1: Discuss the knowledge of patterns, tokens & regular expressions in programming for

problem solving.

CO2: Design and Implement various parsing techniques.

CO3: Operate different types of compiler tools.

CO4: Develop programs for implementing code optimization techniques.

CO5: Build symbol table and intermediate codes.

CO6: Demonstrate the functionalities of different phases of the compilation process.

