1. Architectural Design – V (Code – 210514)

Objectives -

The course aims to obtain knowledge Architecture as a design response to the culture of a place, artistic expressions with common building materials such as brick, concrete, steel & glass, building components using the same building material, designing various services and spaces required specifically for a particular use.

S. No.	Subject Cod	Subject Name	Categor y		Theory		um Mark		ed Practical S	lot	Total Mark s				Periods per veek	Total Credi ts		Teaching (Offline/
					l Term luation		nuous	End Sem.		nuous iation			L	Т	P			Online)
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
1.	210520	Architectural	DC- 12	100	10	20	20	40	20	20	250	8	2	3	2*(1.5)	8	AO	Offline**

PROJECT I: Cultural Center / Multiplex MATERIAL STUDIO

Studio project: Cultural Center / Multiplex with mall. The cultural center project exposes the student to the design issues such as effects by manipulating day light in the art gallery space, designing for clear sight lines and sound in the auditorium space & optimizing day light for reading in the library space. The additional challenge is to create spaces for fine arts & performing arts by creating artistic expressions with building materials such as brick, concrete etc. The multiplex project expects the student to the design issues involved in entertainment spaces such as cinema halls and the challenges in creating commercial spaces such as food courts, shops, gaming parlours etc. Moreover, it exposes the student to contemporary materials such as steel, aluminum & glass.

PROJECT II: HEALTHCARE BUILDINGS

Hospitals and Nursing homes are a special category of buildings where functional aspects such as planning, building services & the creation of a sterile environment become important design issues. This project aims to familiarize the student with the design of critical health care spaces such as operation theatres, diagnostic facilities, outpatient department and inpatient rooms. The modern trends in hospital design challenge the architect to create world class ambience.

PROJECT 3 (Prototype): Time bound Problems of 6 hours to 48 hours.

	COs & LOs	for Archite	ectural Design – V (210501)
	expressions with common building mate	rials such a	eledge Architecture as a design response to the culture of a place, as brick, concrete, steel & glass, building components using the stand spaces required specifically for a particular use.
	The course should enable the student to: • Familiarize with given topic	LO1	Analyze the culture of a place – building types such as the cultural center comprising of spaces such as the art gallery, auditorium for performing arts, library etc.
CO's	of design by choosing appropriate case studies	LO2	Identify the various common building materials such as brick, concrete, steel & glass.
COS	through visits and	LO3	Examine the same building material through Material studio.
	documentation. • Understand the resources available at National and international level through	LO4	Illustrate with materials to find suitable artistic & commercial expressions and the learning of design methods for healthcare buildings.

books, literatures and websites. • Develop design ideas and	LO5	Design commercial buildings integrating entertainment spaces, where the student is given exposure to the finer aspects of auditorium design.
create them.	LO6	Express the design with drawings and model to support the concept.

- 1. Richard Weston, Plan sections & elevations of key buildings of the 20th century, Lawrence king publishing, London, 2004.
- 2. Time saver standards for building types, De Chiara and Callender, McGraw hill company
- 3. Neufert Architect's data, Bousmaha Baiche& Nicholas Walliman, Blackwell science ltd.
- 4. National Building Code ISI
- 5. Time saver standards for landscape architecture Charles W Harris McGraw Hi

2. Building Construction –IV (Code – 210515)

Objectives -

The course aims to obtain knowledge of detail the various materials used in construction, various advanced structural components, modern masonry units, and its components, types of insulation and temporary structures.

S. No.	Subject Cod	Subject Name	Catego ry			Maxim	um Marl	ks Allott	ed		Total Mark		Con		Periods per week		Mode of Exam	Mode of Teaching
			''		Theory	Slot			Practical S	Slot	s	1110			veek	ts	Laum	(Offline/
					End Term Continuou Evaluation Evaluatio			End Sem.	ı	nuous aation			L	Т	P			Online)
				Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	based								
2.		Building Construction –IV	BSAE- 11	50	10	20	20	20	20	10	150	5	2	1	2*(1.5)	6		Blended** (3/3)

UNIT-1 BUILDING MATERIALS -IV

- Steel: Properties and uses of cast iron, wrought iron, pig iron, and steel.
- Market forms of steel: Structural steel, stainless steel, steel alloys properties and uses.

UNIT -2 STEEL

- Steel trusses Sawtooth roof truss with north light glazing, simple trusses in steel, and types of connections to foundations, steel stanchion, and beams.
- Space frames:-Single, double & triple-layered tubular space frames, Gates: collapsible gate, entrance gate, rolling shutter.
- Steel components: Steel doors, (hinged, fixed sliding, sliding &folding& Revolving door. steel windows (casement window & sliding window) Steel stairs (dog-legged, spiral stair) steel handrails and balustrade grill designs for windows, main gate design.

UNIT-3 WALL & FLOOR

- Wall: Modern masonry units Fly ash brick, Aerated concrete blocks, Hollow concrete blocks & Hollow clay blocks
- Floor finishes—Indian patent stone (IPS), Terrazzo flooring, Granolithic flooring stone flooring, Resilient flooring & Carpeting.

UNIT-4 PARTITIONS & FALSE CEILING:

- Simple paneled and glazed partitions: Timber, Glass, Aluminium & PVC.
- Falseceiling: False ceiling of interior spaces using wood panels, glass, Thermacol, gypsum board, plaster of Paris, aluminum strips & perforated metal sheets.
- Jam casing, skirting, molding, architrave & pelmet

UNIT-5 THERMAL INSULATION AND ACOUSTICS INSULATION

- Thermal insulation: vapor barriers and rigid insulations, blanket, poured and reflective insulation—properties and uses of spun glass foamed glass, cork, vegetable fibers Gypsum plaster of Paris, hydride gypsum properties and their uses.
- Acoustics insulation: porous, baffle and perforated materials such as Acoustic plastic, Acoustic tiles, wood, partition board, fiberboard, cook, quilts and mats their properties and uses current developments. Applications of the above insulations in seminar hall, theatre, and cold storage.

COs & LOs for Building Construction – IV (210502)

Overall Course Outcome: The course aims to obtain knowledge of detail the various materials used in construction, various advanced structural components, modern masonry units, and its components, types of insulation and temporary structures.

		1 1 7 1 1	Learn Properties and used of cast iron, wrought iron, pig iron and steel.
	As a result of studying properties and uses of cast iron, wrought iron, pig	LO2	Understand the material and construction techniques through site visit and market surveys
	iron and steel, student will be able to understand market forms of steel in		Develop a fundamental understanding of the relationship of materiality to construction systems and techniques
	depth.	LO4	Analyze The detail of materials with different combinations in buildings.
		LO5	Produce construction detail of Steel sections and connections.
		LO1	Learn the terminology of trusses, frames and other steel components in building.
	As a result of studying about steel, student will be able to understand the		Understand the need of various types of trusses and frames in building.
CO2	components of steel used in building in various forms with respect to the	LO3	Develop a fundamental understanding of types of trusses and frames in steel in a building.
	design.	LO4	Analyze the details of various trusses and frames in building.
		LO5	Produce details of various trusses, frames, doors and windows.
		LO1	Learn types modern masonry units and floor finishes.
	As a result of studying about modern	LO2	Understand the difference between the materials used for modern masonry units and floor finishes.
CO3	masonry units and floor finishes, student will be able to make use of		Analyze types of masonry units and floor finishes.
	these details in building construction.		Understand the details of the above.
			Produce construction details of walls with modern masonry units and floor finishes.
		LO1	Understand simple panelled, glazed partitions and false ceiling.
	As a result of Studying about false	LO2	Identify suitable material required for the construction of doors, windows, ventilator, arches etc.
	ceiling, student will be able to understand how wires can be	LO3	Classify the components based on their arrangements, method or manner of construction.
	concealed, sound proofing and energy efficiency.		Design interior wall panelling and suspended ceiling detail drawings
			Produce the drawings of simple panelled and glazed partitions.
			Understand thermal insulation and acoustics insulation.
	As a result of studying about thermal ad acoustics insulation, student will		Identify methods in which thermal and acoustics can be achieved.
CO5	be able to make use of various	LO3	Classify the components and terminology.
	material wrt to building type.	LO4	Summarize thermal insulation techniques, acoustical treatment details for different spaces.

REFERENCES:

- 1. W.B. Mckay Building construction Vol. 1 (5th edition), Vol. 2 (4th edition) and Vol. 3 (5th edition)
- 2. R.Chudley &R. Greeno Building Construction Handbook, ninth edition
- 3. Francis D.K. Ching Building Construction illustrated, 4th edition, 2015
- 4. R.Chudley &R. Greeno Building Construction Handbook, ninth edition
- 5. Arthur Lyons, Materials for Architects and Builders Oxfordshire, England, New York: Routledge, 2014
- 6. Don A. Watson, construction materials and process, McGraw Hill Co, 1972
- 7. Stephen Emmitt, Christopher A. Gorse Barry's Advanced Construction of Buildings, 3rd Edition
- 8. The American Institute of Architects Architectural Graphics standards 11th edition

Note: Total five questions shall be asked. Each question will consist of two parts, one of which will be of 7 marks (which shall be compulsory) and another with 3 marks (which shall be optional).

3. Building Services-II (Electrical & Mechanical) (Code – 210516)

Objectives -

The course aims to obtain knowledge of various services in a building such as electrical, illumination, etc., an understanding of layouts of electrical, plumbing, AC ducts, lighting, etc., Air conditioning system and its working.

S. No	Subject Cod	Subject Name	Catego	Maximum Marks Theory Slot			ks Allott	ed					tact	Periods per	Total	Mode of	Mode of	
			ry		Theory	Slot]	Practical S	lot	Mark	HRS		•	week	Credi	Exam	Teaching
					l Term luation	Continuous Evaluation		End Sem.	Evalu	nuous lation	S		L	Т	P	ts		(Offline/ Online)
				Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	Skill based mini project								
3.		Building Services-II (Electrical & Mechanical)	BSAE- 12	50	10	20	20	-	-		100	3	2	1	-	3	PP	Blended* (2/1)

UNIT-1 ELECTRICAL SERVICES

Electrical systems – Basic of electricity – single/Three phase supply, Electrical installations in buildings – Types of wires, Wiring systems and their choice, planning electrical wiring for building – Main and distribution boards, HT transformers, electrical panel rooms, cable trenches, controls, Circuits, fuses, main switch box, meter box, circuit breakers. Uninterrupted power supply, inverters, protective devices in electrical installation – Earthing for safety – Types of earthing – ISI Specifications, Lighting protection Electrical installations in various building types, Residential bungalow, apartments, commercial recreational buildings and factory buildings etc. Market survey of Electrical materials and electrical appliances.

UNIT-2 ILLUMINATION AND LIGHTING DESIGN

Principles of Illumination: Basics of Lighting Technology and Terminology, Classification of lighting–Artificial light sources. Systems of lighting such as direct, indirect, diffused etc.,

Design of modern lighting: Lighting for stores, offices, schools, hospitals and house lighting. Elementary idea of special features required and minimum level of illumination required for physically handicapped and elderly in building types. Seeing light: learn about vision and perception, color, and - understanding shade and shadow Light fixture: Controlling light, luminaire optics and distributions - introduction to light fixture materials and construction, and components Light in Architecture and the Psychology of Light,

Lighting Design Concepts, Lighting in terms of energy efficiency, ergonomic aspects and aesthetic aspects. Light a surface: Horizontal and vertical - present various approaches and techniques - finding lightfixtures. For a Task - present various approaches and techniques, simple lighting effects.

Calculating Light: learn light metrics and calculation methods - review energy and the environment Lighting calculations Lighting Design :Residential lighting, Office and Corporate Lighting, Hospitality Lighting Design, Health Care/Institutional Lighting Design, Lighting for Stores, Lighting Common Spaces

UNIT-3 AIR CONDITIONING

Components of an air-conditioning system & their function-Refrigeration cycle, different systems of AC, window, split, small standalone unit, and air cooled direct expansion system used for auditorium spaces, chill water systems with air handling units, estimating the cooling load of different spaces in a building with simple calculation, duct lay out for both types of systems. Intelligent building systems in air conditioning, Sick building syndrome, effect of pollutants, improving air quality in air-conditioned buildings.

UNIT-4 PUMPS AND MACHINERIES

Pumps: Different types of Pumps, working, applications. Water pumps, sewage pumps, Centrifugal, Reciprocating pump, turbine (diagrams & functioning only)

Compressors: Different types of Compressors and their applications.

Lifts And Escalators: Elevators (Lifts) and escalators—Brief history-types of Elevators like traction, Hydraulic etc., Double-decker, sky lobby, lift lobby, lift interiors etc., Definition and components Elevatoring a building: environmental considerations i.e., location in building, serving floors, grouping, size, shape of passenger car, door arrangement etc., Service requirements: Quality of service, quantity of service, time, passenger handling capacity, space and physical requirements, machine room spaces and its typical layout Escalators – Definition, Application. Location and arrangement in buildings. Space requirement, Conveyor belts-movement of passengers and goods

UNIT-5 ELECTRICAL AND AC DUCT LAYOUT OF SIMPLE BUILDINGS

Fixtures and accessories used in electrical installation –Preparing an electrical layout for part of design project, with simple load calculations. Design consideration for AC plant location and size. Ac ducting layout for an office building, shopping complex etc.

			COs & LOs for BUILDING SERVICES-II
			n of the course is to introduce students to the various electrical and mechanical systems in the them understand electric layouts, fixtures and their sustainable applications in buildings.
	To understand the basics	LO1	Understand the principles of electricity, installation and safety in electricity supply
CO	of electric supply in buildings, guidelines for	LO2	Observe the methods of electricity supply in metropolitan areas, methods of wiring and earthing etc
1	electric installations and		Analyse the guidelines for electric installations in various buildings
	safety measures	LO4	Survey on electric materials and appliances.
		LO1	Understand the principles of lighting design, classification and systems of lighting in buildings.
СО	To learn the application of lighting design principles	LO2	Observe the lighting design requirements for various buildings based on function, occupants and usage.
2	in design and evaluate lighting requirements	LO3	Analyse the psychology of lighting design and concepts based on efficiency, ergonomics and aesthetics
	using light metrics	LO4	Survey on electric materials and appliances.
		LO5	Evaluate lighting requirement based on light metrics and calculations
		LO1	Define the principles of air conditioning in buildings, types and methods of air conditioning.
СО	To evaluate the HVAC systems in buildings, their	LO2	Analyse air conditioning requirements in different types of enclosed spaces, load calculation and
3	principles and methods of air conditioning	LO3	Identify various systems of air conditioning in buildings and their sustainable application
	S	LO4	Evaluate the effects of air conditioning such as sick building syndrome and pollutants.
	To understand the	LO1	Understand the working of various mechanical systems in building, its classification, design considerations
1	functioning of various mechanical systems and	LO2	Analyse the environmental considerations and service requirements in installation of mechanical devices.
	their installation in buildings	LO3	Evaluate the space requirements, location and arrangement of mechanical devices in buildings
		LO1	Evaluate the air conditioning layout of any existing building
	To prepare electric	LO2	Evaluate the electrical layout of any existing building
	layouts and HVAC		Prepare the electric layout for buildings of various scales
	layouts for large buildings	LO4	Prepare the air conditioning layout for large buildings
		LO5	Calculate the power load and cooling load for various buildings

- 1. Heating, Cooling, Lighting: Sustainable Design Methods for Architects Oct 13, 2014 by NorbertLechner DEWALT Plumbing Code Reference: Based on the 2015 International Plumbing and Residential Codes (DEWALT Series)
- 2. Electrical Wiring Residential Jan 1, 2011by Ray C. Mullin and Phil Simmons

- 3. Architectural Lighting: Designing with Light and Space (Architecture Briefs), May 4, 2011 by Hervé Descottes and Cecilia Ramos.
- 4. HVAC Design Sourcebook Oct 26, 2011, by W. Larsen Angel

4. Building Sciences & Energy Conservation (Code – 210517)

Objectives -

The course aims to obtain knowledge of building sciences such as design methodology, resource optimization and innovative approaches to eco-design, the acclaimed sustainable buildings designed within the past decade, energy conservation through building design, designing an eco-building.

S. No.	Subject Coo	Subject Name	Catego					ks Allott	ed		Total	CT HRS	C		ct Periods r week		Mode of Exam	Mode of Teaching
110.			ry		Theory	Slot]	Practical S	lot	S	шкэ		pe	i week	ts		(Offline/ Online)
					l Term luation		nuous uation	End Sem.		nuous iation			L	Т	P			
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	based								
4.		Building Sciences & Energy Conservation	BSAE-1	50	10	20	20	-	-		100	3	2	1	-	3	PP	Blended* (2/1)

UNIT-1 CLIMATE & THERMAL COMFORT

Global climatic factors, elements of climate, classification & characteristics of tropical climates, site climate and Urban climate - Thermal balance of the human body, Thermal comfort indices – Effective temperature, CET, calculation of comfort zone & determination of overheated& under heated periods.

UNIT-2 SOLAR GEOMETRY & DESIGN OF SUNSHADING DEVICES

Apparent movement of the sun, sun path diagrams (solar chart) - Solar angles, Shadow angles, solar shading masks. etc - Exercises on plotting isopleths, transfer of isopleths to solar chart, fitting a shading mask over the overheated period & design of sun shading devices for different orientations.

UNIT-3 PRINCIPLES OF THERMAL DESIGN IN BUILDINGS

Thermal quantities – heat flow rate, conductivity (k–value)& resistivity, conductance through a multilayered body, surface conductance, transmittance – U value of different materials – convection , radiation , concept of sol-air temperature & solar gain factor - heat loss & heat gain .Periodic heat flow in building – time lag & decrement factor & its application in selection of appropriate materials for walls & roof. Effect of Insulation & cavity on time-lag.

UNIT-4 VENTILATION & DAY LIGHTING

Functions of ventilation – stack effect due to the thermal forces, wind velocity – wind rose diagram, wind pressure - Air movement through building & around buildings – factors affecting indoor air flow, wind shadow etc. - The nature of light, its transmission, reflection – colored light, the Munsell system

Photometric quantities – illumination, day lighting prediction – the daylight design graph.

UNIT-5 DESIGN FOR CLIMATIC TYPES

Building design & layout planning consideration for warm humid, hot dry, composite & tropical upland climates, climatic data sets – analysis – climate graph – the Mahoney tables & its recommended specification - Exercises on design of small Buildings for various climates.

COs & LOs for Building Sciences & Energy Conservation (210504)

Overall Course Outcome: The basic objective of this course is to make students learn about human thermal comfort along with required construction techniques and designing strategies to achieve it. It would deal with the study of climate and its relation with the built environment.

		LO1	Define global climatic factors and elements
CO1	Label various climatic factors affecting human	LO2	Classify various climatic parameters on micro and macro level of site (tropical climates, site climates and urban climate)
CO1	, ,	LO3	Examine thermal comfort indices for thermal balance in human body
		LO4	Identify overheated and under heated periods
		LO1	Relate sun path and its dynamics to site planning and building designing
	Evaluate characteristics of	LO2	Illustrate winter & summer solar angles per day for designing proper shading devices
CO2	building openings according to its orientation		Experiment with heliodon device used to simulate the sun and shadow patterns that occur at various locations and times across the surface of the earth
		LO4	Analyze various aspects of solar geometry in building orientation
	Assess various building	LO1	Define thermal quantities
	materials in order to achieve	LO2	Outline U values of different building materials to identify their extent of thermal insulation
CO3	thermal comfort inside a	LO3	Make use of dry bulb and wet bulb thermometers, rain gauge, etc.
	building	LO4	Determine appropriate materials for walls & roof according to periodic heat flow in building
		LO1	Illustrate stack effect for passive air movement throughout a building
	Influence the integration	LO2	Analyze natural light transmission, day lighting penetration inside a building
CO4	natural elements as part of built environment	LO3	Make use of anemometers to identify wind direction and speed during site analysis
		LO4	Test stack effect and natural light transmission on any of the student's design problem
	Adapt climate specific		Know all climatic zones exists and their climate data sets
CO5	building design strategies in one of the student's design		Categorize various building design & layout planning for different climatic conditions
	problem	LO3	Adapt building design strategies of different climatic zones in one of the student's design

- 1. O.H. Koenigsberger, Manual of Tropical housing and building Climatic Design, Orient Longman, Chennai, 1975.
- 2. M. Evans Housing, Climate & Comfort, Architectural Press, London, 1980.
- 3. E.Schild &M. Finbow Environmental Physics in construction & its application in Architectural Design Granadar, London, 1981.
- 4. B.Givoni Man, Climate & Architecture, Applied Science, Essex 1982.
- 5. Donald Watson & Kenneth labs Climatic Design Mcgraw hill New York 1983.
- 6. A.Konya- Design Primer for Hot Climates, Architectural Press, London, 1980.

5.ELECTIVE- II

a. ARCHITECTURAL PHOTOGRAPHY & JOURNALISM (210521)

Objectives -

To provide the skills relevant to the practice of professional journalism, and to introduce students to the fundamentals of writing, explaining various strategies and their criticism.

S. No.	Subject Coo	Subject Name	Catego			Maxim	ım Marl	ks Allott	ed		Total Mark		C		ct Periods r week		Mode of Exam	Mode of Teaching
110.			ry		Theory	Slot]	Practical S	lot	S	шкэ		pe	1 WEEK	ts		(Offline/ Online)
					l Term luation		nuous uation	End Sem.		nuous iation			L	Т	P			
				End Sem	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	based								
5.	210521	Architectural Photography & Journalism	DE-2	50	10	20	20	-	-		100	3	2	1	-	3	PP	Blended* (2/1)

UNIT -1 INTRODUCTION TO ARCHITECTURAL PHOTOGRAPHY

General introduction to the art of photography; concept of color; concepts of lighting, distance, visual angle, frames; media. Technical definitions, types of lighting fixtures, types of flashes, controlling lighting levels with flash photography. Color rendering in photographic medium, color rendering in photographs under different lighting condition, lighting colors and its effect on a photograph, color filters in a camera. Exercise in lighting photography with artificial light and black and white photos.

UNIT-2 PHOTOGRAPHIC TECHNIQUES AND COMPOSITION

Equipment: cameras and lenses – techniques: film speed, exposure measurement, gray scale– photofinishing and editing digital images. Perspectives: Single Point, Two- Point, Three- Point and methods of correcting distortions – Lighting: External and Interior

UNIT-3 JOURNALISM

Introduction to journalism, key concepts and objectives of Journalism – Specialized journalism: with emphasis on architectural journalism - Journalism skills: research, reporting, writing, editing, criticism.

UNIT- 4 DISCUSSIONS AND ISSUES

Regional, National and International discussion forums, Changes in contemporary and historical design practices. Discussions on topics needed in an architectural journal and current issues - types of journals, works of key architectural journalists, Public Discourse on the Internet, Mass Media and Public Opinion – critique on selected pieces of journalism.

UNIT-5 FIELD PROGRAM

Exercise on integrating photography in architectural journalism.

COs & LOs for Building Sciences & Energy Conservation (210504)

Overall Course Outcome: The basic objective of this course is to make students learn about human thermal comfort along with required construction techniques and designing strategies to achieve it. It would deal with the study of climate and its relation with the built environment.

		LO1	Define global climatic factors and elements
CO1	Label various climatic factors affecting human	LO2	Classify various climatic parameters on micro and macro level of site (tropical climates, site climates and urban climate)
COI	, ,	LO3	Examine thermal comfort indices for thermal balance in human body
		LO4	Identify overheated and under heated periods
		LO1	Relate sun path and its dynamics to site planning and building designing
	Evaluate characteristics of	LO2	Illustrate winter & summer solar angles per day for designing proper shading devices
CO2	building openings according to its orientation		Experiment with heliodon device used to simulate the sun and shadow patterns that occur at various locations and times across the surface of the earth
		LO4	Analyze various aspects of solar geometry in building orientation
	Assess various building	LO1	Define thermal quantities
	materials in order to achieve	LO2	Outline U values of different building materials to identify their extent of thermal insulation
CO3	thermal comfort inside a	LO3	Make use of dry bulb and wet bulb thermometers, rain gauge, etc.
	building	LO4	Determine appropriate materials for walls & roof according to periodic heat flow in building
		LO1	Illustrate stack effect for passive air movement throughout a building
	Influence the integration	LO2	Analyze natural light transmission, day lighting penetration inside a building
CO4	natural elements as part of built environment	LO3	Make use of anemometers to identify wind direction and speed during site analysis
		LO4	Test stack effect and natural light transmission on any of the student's design problem
	Adapt climate specific		Know all climatic zones exists and their climate data sets
CO5	building design strategies in one of the student's design		Categorize various building design & layout planning for different climatic conditions
	problem	LO3	Adapt building design strategies of different climatic zones in one of the student's design

- 1. Julian Calder and john Garrett, The 35mm Photographer's Handbook, Pan Books, London 1999
- 2. Julie Adair King, Digital Photography for Dummies, COMDEX, New Delhi 1998
- 3. Professional photography –photographing buildings, David Wilson, Rotovision
- 4. Point view- The art of architectural photography, E.Manny A Ballan, VNR
- 5. Huckerby, Martin., The Net for Journalists: A Practical Guide to the Internet for Journalists in Developing Countries. UNESCO/Thomson Foundation/ Common wealth Broadcasting Association, 2005. 6. Ward, S. J. A. "Philosophical Foundations of Global Journalism Ethics." Journal of Mass Media Ethics., Vol. 20, No. 1, 3-21, 2005

b. VERNACULAR ARCHITECTURE (210522)

Objectives -

Introduce traditions of building structures for habitation, made without the intervention of professional architects. Anticipated Learning

S. No.	Subject Coo	Subject Name	Catego ry		Maximum Mark						Total Mark		Contact Periods per week				Mode of Exam	Mode of Teaching
			- 5		Theory	Slot			Practical S	lot	s			F		ts		(Offline/ Online)
					l Term luation		nuous uation	End Sem.		nuous iation			L	Т	P			
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	based								
5.	210522	Vernacular Architecture	DE-2	50	10	20	20	-	-		100	3	2	1	-	3	PP	Blended* (2/1)

Unit 1: Introduction to the field of Vernacular Architecture Defining and differentiating vernacular architecture from contemporary architecture, Scope of Vernacular Architecture in Indian Context, Factors Influencing Vernacular Architecture, Building Material and Construction Techniques in Indian Vernacular Architecture, Vernacular Architecture in 21st Century

Unit2: Vernacular Architecture of Rajasthan Local Community rural Houses and havelis from Rajasthan, Shekhawati Haveli of Rajasthan, Construction techniques and materials of the region.

UNIT 3: Vernacular Architecture of Gujarat, Sociology and Planning, Woodwork Details of Gujarat, and Construction techniques and materials of the region.

UNIT 4: Vernacular Architecture of East and North their settlement pattern and Construction techniques and materials of the region.

UNIT 5: Vernacular Architecture of the South Regional topography, local climate, variation in settlement pattern and architecture in different parts of the region and construction techniques and materials of the region.

archite	ecture in (different p	arts of th	ie regio	on and construction techniques and materials of the region.
			<u>CC</u>)s & L(Os for Building Sciences & Energy Conservation (210504)
constr					ctive of this course is to make students learn about human thermal comfort along with required ategies to achieve it. It would deal with the study of climate and its relation with the built
				LO1	Define global climatic factors and elements
CO1	Label factors	various affecting	climatic human	ILO2	Classify various climatic parameters on micro and macro level of site (tropical climates, site climates and urban climate)
COI	body	8			Examine thermal comfort indices for thermal balance in human body
				LO4	Identify overheated and under heated periods

		LO1	Relate sun path and its dynamics to site planning and building designing							
	Evaluate characteristics of	LO2	Illustrate winter & summer solar angles per day for designing proper shading devices							
	building openings according		Experiment with heliodon device used to simulate the sun and shadow patterns that occur at various locations and times across the surface of the earth							
		LO4	Analyze various aspects of solar geometry in building orientation							
	A 1111	LO1	Define thermal quantities							
	Assess various building materials in order to achieve	LO2	Outline U values of different building materials to identify their extent of thermal insulation							
CO3	thermal comfort inside a	LO3	Make use of dry bulb and wet bulb thermometers, rain gauge, etc.							
	building	LO4	Determine appropriate materials for walls & roof according to periodic heat flow in building							
		LO1	Illustrate stack effect for passive air movement throughout a building							
	Influence the integration	LO2	Analyze natural light transmission, day lighting penetration inside a building							
	natural elements as part of built environment	LO3	Make use of anemometers to identify wind direction and speed during site analysis							
		LO4	Test stack effect and natural light transmission on any of the student's design problem							
	Adapt climate specific		Know all climatic zones exists and their climate data sets							
CO5	building design strategies in one of the student's design		Categorize various building design & layout planning for different climatic conditions							
	problem	LO3	Adapt building design strategies of different climatic zones in one of the student's design							

- 1. Dawson Bary, Cooper Ilay: Traditional Buildings of India,1998
- 2. Michell, G., Penguin Guide to the Monuments of India, Vol I, Viking, London 1989.
- 3. Tadgell, The History of Indian Architecture, Design and Technology Press, London 1990.
- 4. Paul Oliver, Encyclopedia of Vermacular Architecture of the World, Cambridge University Press, 1997.
- 5. V.S. Praman, Havali Wooden Houses & Mansions of Gujarat, Mapin Publishing Pvt. Ltd., Ahmedabad, 1989.
- 6. Kullrishan Jain & Minakshi Jain Mud Architecture of the Indian Desert, Aadi Centre, Ahmedabad, 1992.
- 7. G.H.R. Tillotsum; The tradition of Indian Architecture Continuity, Controversy Change since 1850, Oxford University Press, Delhi, 1989.
- 8. Richardson, Vickey; New Vernacular Architecture: Laurance King Publishing, 2001

c. Vastu Shastra for Architecture (210523)

Objectives -

- To introduce students to the ancient Indian science of space planning—Vastu Shastra.
- To understand the principles of Vastu and its relevance in contemporary architecture.
- To develop critical thinking in integrating traditional knowledge systems with modern design.

S.	Subject	Subject Name	Category		Maximum Marks								_		ct Periods		Mode of	
No.	Code				Theory Slot]	Practical S	lot	Mark s	нкэ		pe	r week	ts	Exam	Teaching (Offline/ Online)
					d Term aluation		inuous uation	End Sem.	1	nuous lation			L	Т	P			
				Sem.		Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	Skill based mini project								
5.		Vastu Shastra for architecture	DE-2	50	10	20	20	ı	-		100	3	2	1		3	PP	Blended* (2/1)

Unit I: Introduction to Vastu Shastra

Origin and Historical background, Relation to Vedic texts and Indian cosmology, Basic concepts: Purusha Mandala, Vastu PurushaPanchabhutas (Five Elements) and their architectural correlation, Significance of cardinal directions

Unit II: Vastu Principles and Site Planning

Site selection criteria, Topography, soil, water, shape of plot, Orientation and zoning, Climate considerations in Vastu, Vastu and sustainability

Unit III: Spatial Organization in Vastu

Design of domestic spaces: orientation of rooms, Mandala planning system: 9x9 and 8x8 grids, Placement of doors, windows, staircases, Role of Brahmasthan, Agni corner, water zones, Use of sacred geometry

Unit IV: Application to Building Typologies

Vastu in temples, palaces, towns (Historical overview), Vastu in contemporary residential buildings, Institutional and commercial space considerations, Integration with modern building bye-laws

Unit V: Critique and Contemporary Relevance

Scientific validations and criticisms of Vastu, Relevance in contemporary urbanism and sustainability, Myths vs Facts, Ethical considerations in professional practice, Global perspectives on traditional architecture and energy flow

COs & LOs forBasics of Web Development (210523)

Overall Course Outcome: The basic objective of this course is to make students learn about web development, JAVA and web hosting so that they are able to deploy a website and optimize the performance of a website.

	Understand the	LO1	Explain the historical roots and origin of Vastu Shastra from Vedic traditions
701	fundamental principles and	LO2	Define the concept of Vastu Purusha Mandala and its spatial logic
CO1	historical evolution of Vastu	LO3	Identify the relationship between Vastu and Indian cosmology
	Shastra.	LO4	Illustrate the role of Panchabhutas (Five Elements) in Vastu design principles
	Analyze the role of	LO1	Evaluate the influence of cardinal directions on spatial arrangement.
202		LO2	Examine site features such as shape, slope, water sources, and their Vastu implications.
CO2	and elemental theory in Vastu-based planning.	LO3	Analyze Vastu-compliant zoning for domestic, commercial, and institutional sites
	Apply Vastu principles to	LO1	Design residential floor plans aligned with Vastu Mandala grids.
CO3	the design of residential and	LO2	Determine appropriate room placement according to Vastu guidelines
	small-scale buildings.	LO3	Identify ideal placement of staircases, entrances, kitchen, and toilets
	Evaluate traditional and	LO1	Document Vastu compliance in selected historical Indian structures.
CO4	contemporary buildings through the lens of Vastu Shastra.	LO2	Compare modern building layouts with traditional Vastu rules.
205	Critically assess the relevance, limitations, and	LO1	Discuss debates around scientific validity and superstition in Vastu.
CO5	ethical use of Vastu in modern architecture.	LO2	Present global parallels to Vastu (e.g., Feng Shui) and compare principles

REFERENCES:

- 1. "Vastu Shastra: For a Healthy, Prosperous and Happy life",by B. Niranjan Babu
- 2. "Vastu Shastra: The Ancient Indian Science of Architecture and Design" by B. B. Puri
- 3. "Vastu Vidva"by Adam Hardy
- 4. "Architecture and Vastu Shastra" by Sashikala Ananth

6. Self-study, Seminar (SWAYAM/NPTEL & MOOC) (Code – 210518)

S. No.	Subject Coc	Subject Name	Catego		Maximum Marks				ed		Total Mark						Mode of Exam	Mode of Teaching
140.			ry		Theory Slot				Practical S	lot	S	шкэ		pe	i week	ts		(Offline/ Online)
					d Term luation		inuous uation	End Sem.	Conti Evalı				L	T	P			
				End Sem.	Proficienc y in subject/ course	Mid	Quiz/ Assign ment /Session al		Lab work & Sessional	Skill based mini project								
6.		Self study, Seminar (SWAYAM/NPT EL & MOOC)	SEC-6	-	-	-	-	-	100		100	4	-	-	4	2	SO	Offline

Note: Any one of the course available on SWAYAM shall be opted and shall not be repeated throughout the course (B.Arch.)

7. Novel engaging courses

S. No.	Subject Coo	Subject Name	Catego ry		Theory		ım Marl		ed Practical S	lot	Total Mark		Co		ct Periods r week		Mode of Exam	Teaching
					Theory Term Iuation	Conti	nuous uation	End Sem.	Conti	nuous nation	S		L	Т	P	ts		(Offline/ Online)
				Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	based								
7.		Novel engaging courses	CLC	-	-	-	-	-	50		50	2	-	-	2	1	SO	Interactive

8. Summer Internship Project- II (Code – 210519)

S. No.	Subject Coo	Subject Name	Catego ry		Theory		um Marl		ed Practical S	Slot	Total Mark s				ct Periods r week		Mode of Exam	Mode of Teaching (Offline/ Online)
					l Term luation		inuous uation	End Sem.	Evalu	nuous aation			L	T	P			
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	based								
7.	210519	Summer Internship Project- II	SEC-7	-	-	-	-	50	-	-	50	2	-	-	2	1	SO	Offline

Seminar / Workshop/ Training during previous Summer break will be evaluated

9. Disaster management – 100005

OBJECTIVE -The objective of the subject is to introduce the students about reduce or avoid the potential losses from hazards, assure prompt and appropriate assistance to the victims of a disaster, and achieve a rapid and effective recovery.

S. No.	Subject Cod	Subject Name	Catego ry		Theory		ım Mark		ed Practical S	lot	Total Marks	_	Co		ct Periods r week		Mode of Exam	Mode of Teaching (Offline/ Online)
					l Term luation		nuous uation	End Sem.	ı	nuous iation			L	T	P			
				Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	based								
7.	1000005	Disaster management	MAC-3	50	10	20	20	-	-	-	100	2	2	-	-	Grad e	SO	Online

UNIT- 1 NATURAL HAZARDS AND DISASTER MANAGEMENT

Understanding the Concepts and definitions of Disaster, Hazard, Vulnerability, Risk, Capacity – Disaster and Development, Disaster management and Disaster Management cycle Understanding the Causes and effects of natural calamities - floods, tropical cyclones, landslides, heat waves & Tsunami. Institutional and Financial Mechanism National Policy on Disaster Management, National Guidelines and Plans on Disaster Management; Role of Government (local, state and national).Non-Government and Intergovernmental Agencies

UNIT- 2 ELEMENTARY SEISMOLOGY, EARTHQUAKE EFFECT AND SEISMIC DESIGN PRINCIPLES

Major Historic Earthquakes in the World, earthquake hazard map of India, Causes of Earthquakes: Elastic Rebound theory, Continental Drift and Plate Tectonics, Types of Plate Boundaries, types Of faults, seismic waves – classification of body waves and surface waves, magnitude, intensity, epicenter and energy release. Introduction to Seismic zones, Need for Seismic Zonation, Types of Zonation and Seismic Zonation scales

Earthquake Effects:- On ground, soil rupture, liquefaction and landslides, Behaviors of various types of buildings, lifelines and collapse patterns, Behavior of Non Structural Elements like services, fixtures, mountings etc., Social & Economic Consequences of earthquakes

Concept of seismic design, stiffness, strength, period, ductility, damping, hysteretic energy dissipation, center of mass, center of rigidity, torsion, design eccentricities, Seismic effects related to building configuration. Plan & vertical irregularities, Ductility based design: Design of energy absorbing devices, Seismic base isolation and seismic active control.

UNIT- 3 EARTHQUAKE RESISTANT CONSTRUCTION DETAILS AND DESIGN GUIDELINES

Various Types and construction details of Foundations, soil stabilization, retaining walls, plinth fill, flooring, walls, openings, roofs, terraces, parapets, boundary walls, underground and overhead tanks, staircases and isolation of structures. Local practices: traditional regional responses.

Design guidelines for disaster resistant construction at appropriate situations - Engineering, architectural, landscape & planning solutions for floods, tropical cyclones & Tsunami

UNIT- 4 REHABILITATION AND RECONSTRUCTION

Concept of Rehabilitation and Reconstruction, Types of Rehabilitation, Architecture at Risk, Guiding Principles of Rehabilitation and Reconstruction, Different Case Examples of Post Disaster Recovery in and Around India. Problem Areas in Disaster Recovery, Inter-linkages between Recovery and Development.

UNIT-5 FIRE SAFETY, RESISTANCE & HAZARD MANAGEMENT IN BUILDINGS

Fire, Causes of Fire and Spread of Fire, Fire Fighting, Protection and Fire Resistance, Equipment and Methods of Fighting Fire, Code of Fire Safety, Fire Regulations, Combustibility of Materials. Structural material and Fire Resistance, Planning and Design of Fire Escape Routes and Elements, Wet Risers, Sprinklers, Smoke Detectors, Fire Doors & Water Curtains etc.

			COs & LOs for Disaster management (100007)
			ctive of this course is to introduce the students about reducing and avoiding the potential losses e assistance to the victims of a disaster, and achieve a rapid and effective recovery.
		LO1	Define hazard, disaster, vulnerability and capacity building
g o 1	Define disaster management	LO2	Classify causes and effects of natural calamities
CO1	and its implementation	LO3	Examine the disaster management processes
		LO4	Identify the role of various institutions in disaster management
		LO1	List major Historic Earthquakes in the World
G 0 2	Summaries the cause of the	LO2	Illustrate the cause of earthquake and basic terminologies
CO2	earthquake and various seismic zones.	LO3	Analyse the concepts of response spectrum
		LO4	Determine the use of different Seismological Instruments
		LO1	Recall the physical effects of Earthquake
CO3	Identify physical aspect affecting design principles at	LO2	Outline the behavior of Non Structural Elements and Social & Economic Consequences of earthquakes
CO3		LO3	Illustrate building configuration based on seismic characteristics of the sites
		LO4	Perceive seismic design principles
	Perceive different	LO1	Recall building elements where seismic risk reduction intervention could be done
CO4	construction techniques to make structure earthquake		Summarize the construction details and various types of building elements specific to earthquake resistance
		LO3	Appraise local and traditional earthquake response practices
CO5	Conclude existing design guidelines as solution to		Infer case studies of disaster management - earthquake, cyclone, landslides, floods, tsunamis, droughts, etc
	1	LO2	Categorize design guidelines for disaster resistant construction at appropriate situations

- 1. Agarwal Pankaj, Shrikhande Manish, Earthquake Resistant Design Of Structures, Prentice-Hall of India, New Delhi, 2006
- 2. S. K. Duggal, Earthquake Resistant Design Of Structures, Oxford University Press, 2007
- 3. Publications of National Disaster Management Authority (NDMA) on Various Templates and Guidelines for Disaster Management
- 4. Guidelines For Reconstruction Of Houses Affected By Tsunami, UNDP India, & Government Of Tamil Nadu, 2004

- 5. Manual on natural disaster management in India, M C Gupta, NIDM, New Delhi
- 6. Disaster Management Act 2005, Publisher by Govt. of India
- 7. SERC Guidelines for Design and Construction of buildings and structures in cyclone-prone areas, SERC, CSIR, Government of India, 1998,
- 8. IS 1893(Part 1):2002 'Criteria for Earthquake Resistant Design of Structures: Part 1 General provisions and Buildings'
- 9. Ramachandran G., Charter D. (2011) Fire Safety and Risk Management, SPON Press, New York.
- 10. Martin Muckett, Andrew Furness (2007) Introduction to Fire Safety Management, Taylor & Francis. New York.
- 11. Bureau of Indian Standerd (2005)
- 12. National Building Code (2016)
- 13. Taranath B.S. (2004). Wind and Earthquake Resistant Buildings: Structural Analysis and Design. CRC Press.
- 14. World Bank (2009). Handbook for Reconstructing after Natural Disasters.

THIRD YEAR SIXTH SEMESTER

Architectural Design - VI (Code - 210601) Objectives -

The course aims to obtain knowledge of Architecture as a design response to Technology, hospitality industry in the first project & requires the student, large scale building with Innovation & experimentations.

ı	S. No.	Subject Cod	Subject Name	Categor			Maximu	ım Mark	ks Allotte	ed						Periods per			
				y		Theory	Slot]	Practical S	lot	Mark s	HRS		'	week	Credi ts	Exam	Teaching (Offline/
						l Term luation		nuous uation	End Sem.		nuous aation			L	Т	P			Online)
					Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al		Lab work & Sessional	Skill based mini project								
İ	1.		Architectural Design VI	DC- 13	100	10	20	20	40	20	20	250	7	2	3	2*(1.5)	8	AO	Offline**

PROJECT I: DESIGN FOR HOSPITALITY INDUSTRY

The project requires the understanding of the special nature and functioning of the hotel industry and to respond with suitable concepts of space planning, circulation, interior design, materials and lighting. Example: Hotels-Business, resort, heritage, boutique etc. The student needs to concentrate on site planning, space planning, circulation, services and the various aspects of interior design such as furniture, flooring, ceiling, lighting etc. Students get exposure to the difference between a business hotel & a resort as well as the special needs of heritage and Boutique hotels. Exercises in interior space visualization using computer software is attempted.

PROJECT II: URBAN INFRASTRUCTURE PROJECTS

Contemporary transportation terminals and stadiums are large buildings with multiple entries & exits dealing with large crowds and having multiple levels with large spans, complex services & demanding environmental conditions. Function, convenience and security will become the basic design parameters. Example - Bus terminal / Railway station / Indoor sports complex / Aquatic complex etc. This studio challenges the designer to come up with a feasible structural solution after undertaking a study of large span structural systems. Moreover planning for transport terminals requires understanding of safety norms & to design sport facilities understanding of optimum environmental parameters is the requisite.