SECOND YEAR THIRD SEMESTER

1. Architectural Design – III (Code – 210311)

Objectives –

The course aims to obtain knowledge of Architecture as responding to site conditions, the designing process, spaces and relationship of architecture with personal traits, information and choices such as occupation, life style, religion etc.

S	. No.	Subject Cod	Subject Name	Categor			Maxim	um Mark	s Allott	ed		Total	СТ	Cor	itact	Periods per	Total	Mode of	Mode of
L				У		Theory	Slot			Practical S	lot	Mark	HRS			week	Credi	Exam	Teaching
					Enc Eva	l Term luation	Conti Evalı	inuous uation	End Sem.	Conti Evalu	nuous ation	S		L	Т	Р	ts		(Offline/ Online)
					End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
	1.	210311	Architectural Design – III	DC- 8	100	20	20	20	50	30	10	250	6	2	2	2*(1.5)	7	AO	Offline**

PROJECT 1(Prototype): TOWNHOUSE / VILLA

Study of contemporary practices & design for townhouses and villas in urban areas, to sensitize the students towards life style, individual preferences, space – activity relationship and exploration of how material, color, texture and light affect the quality of spaces is the main focus. It is also intended as an exercise in massing & configuration of façade elements such as the balancing of solids & voids, adoption of a system of proportioning and elements of contemporary detailing. This design exercise will also attempt to involve the student in the built form / open space relationship & explore the connectivity between indoor & outdoor spaces.

PROJECT 2(Prototype): NURSERY / PRIMARY / SECONDARY SCHOOL

Case studies on contemporary trends in school design to know how various architects have responded to the design program, site conditions, student age group etc. The project aims to enlighten the student on how the school design responds to various education philosophy and grooming methods. The analysis of important functional aspects such as space adequacy, circulation in the built form and play areas, locating the various spaces according to functional adjacency and careful design of toilet areas is intended. The objective is to also optimize the variables of the physical environment such as thermal comfort, daylighting and noise control in design.

PROJECT 3 & 4(Prototype): Time bound Problems of 6 hours to 48 hours.

	COs & LOs for Architectural Design – III Overall Course Outcome: The course aims to obtain knowledge of Architecture as responding to site conditions, the designing process,												
Overall Co	urse Outcome: The course a	aims to ob	btain knowledge of Architecture as responding to site conditions, the designing process,										
spaces and r	elationship of architecture w	ith person	nal traits, information and choices such as occupation, life style, religion etc.										
		LO1	Identify spaces responding to site condition and personal issues such as occupation, lifestyle,										
			religion etc.										
	Students will be able to	LO2	Map gathered information of visited physical setting										
CO1	design townhouses and	LO3	Explore the integration of indoor and outdoor areas.										
	villas	LO4	Produce sketches, models and photographs for analysis and design.										
		LO5	Analyze the materials, construction techniques and structural systems used in the elements of built forms.										
		LO1	Develop sensitivity towards existing habitat spaces with its building elements										
	Students will be able to design buildings related to education philosophy	LO2	Analyze how school designs respond to various education philosophy and grooming methods with help of case studies.										
CO2		LO3	Explore the integration of classroom spaces with outdoor play areas in school buildings.										
	1 1 5	LO4	Produce sketches, models and photographs for analysis and design.										
		LO5	Design school buildings that respond to a particular educational philosophy.										
		LO1	Understand the application of the architectural design process for medium scale projects of human habitat										
	Students will be able to	LO2	Transform the human behavioural needs into architectural program requirements										
CO3/CO4	maximize the potential of	LO3	Analyze the information on context and the human-space relationship										
	the period.	LO4 Compose the architectural spaces in a design project in a given period.											
	ne period.	LO5	Communicate architectural drawings with the help of various mediums in given period.										

- Time saver standards for building types, De Chiara and Callender, Mc Grawhill company.
 Neufert Architect's data, Bousmaha Baiche& Nicholas Walliman, Blackwell science ltd.

Note: minimum four design problems shall be introduced in the semester out of which, one major problem, one small problem and two shall be time bound problems.

Note: One design problem shall be given in the End Semester Examination. 6X2 hours examination.

2. Building Construction – II (Code - 210312)

Objectives –

The course aims to obtain knowledge about doors, windows, different types of materials and their use in construction, the different waterproofing, damp proofing materials & technology available & their application, the vertical transportation designing & detailing.

S. No	Subject Cod	Subject Name	Categor			Maxim	um Marl	s Allotte	ed		Total	СТ	Cor	itact	Periods per	Total	Mode of	Mode of
			У		Theory	y Slot]	Practical S	lot	Mark	HRS			week	Credi	Exam	Teaching
				End Eva	l Term luation	Conti Evalu	nuous uation	End Sem.	Conti Evalu	nuous ation	s		L	Т	Р	ts		(Offline/ Online)
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
2.	210312	Building Construction -II	BSAE-	50	10	20	20	20	20	10	150	5	2	1	2*(1.5)	6	РР	Blended** (3/3)

UNIT-1 BUILDING MATERIALS

Ferrous and Non-Ferrous metals & Plastics

• Properties and uses: Aluminum, zinc, lead, copper.

• Properties and Architectural uses of plastics: Thermoplastics, thermosetting plastics and, Structural plastics – Reinforced plastics and Decorative laminates-plastic coatings, Adhesives, and sealants – Modifiers and Plasticizers

- Fabrications of plastics.

• Primary plastic building products for walls, roof, and partitions.

UNIT- 2 DETAILS OF DOORS, WINDOWS & VENTILATORS

• Timber Doors and its Joints: Single, double-leaf, ledged braced & battened door, framed ledged braced battened door, Paneled door, flush door, and Composite door.

• Timbers Windows & ventilators: Casement(side hug & top hug), Sliding pivoted (horizontal and vertical) folding and bay windows, fixed light of different sizes and shapes.

• Combined doors and windows and ventilators.

UNIT-3 STAIRCASES AND LIFT

• Staircases: Types according to profile-straight flight, dog legged, quarter-turn half-turn, bifurcated, spiral & Helical.

• Lift: Vertical transportation. Types and details.

UNIT-4 DAMP PROOFING AND WATERPROOFING

• Damp proofing: Hot applied and cold-applied–Emulsified asphalt, Bentonite clay. Butyl rubber, silicones, Vinyl's, Epoxy resins and metallic waterproofing materials, their properties, and uses. Waterproofing: waterproofing membranes such as rag, asbestos, glass felt, plastic and synthetic rubber vinyl, butyl rubber, neoprene, polyvinyl chloride – prefabricated membranes sheet lead, asphalt their properties and uses.

• Application: Application of the above in the basement floor, swimming pool, and terraces.

UNIT-5 CLADDING SYSTEMS & FINISHES

• Types of Cladding systems – Stone, timber, weatherboard, Fiber cement, Brick, Vinyl, Metal (aluminum composite panels (ACP), Precast concrete cladding panel, Curtain wall, Rain screen wall system. Exterior insulation & Finishes.

COs & LOs for Building construction-II

Overall Course Outcome: Students will be able to **understand** the knowledge about doors, windows, different types of materials and their use in construction, the different waterproofing, damp proofing materials & technology available & their application, the vertical transportation designing & detailing.

		LO1	Remember basic concepts metal, and its uses.						
	Students will be able to	LO2	Learn the properties of different metals.						
CO1	understand the role of	LO3	Understand its uses in the architecture industry.						
COI	metal in structure technology.	LO4	Analyze the types of Reinforced plastics and Decorative laminates-plastic coatings, Adhesives, and its uses.						
		LO5	Evaluating its role for rooms, windows, roof lights, domes, gutters, and handrails						
		LO1	Remember basic concepts regarding detailing of doors, windows & ventilators.						
	Students will be able to demonstrate their	LO2	Learn its types according to uses.						
CO^{2}	understanding through	LO3	Understand the detailing of doors, windows & ventilators.						
02	application in design and detailing of doors, windows	LO4	Analyze the various types of doors, windows & ventilators, their extensive uses in building construction.						
	& ventilators.	LO5	Draw all the elements of doors, windows & ventilators.						
		LO1	Remember basic concepts regarding detailing of R.C.C staircases and masonry.						
	Students will be able to	LO2	Learn its types according to profile.						
CO3	demonstrate their	LO3	Understand the detailing of staircases and Lift.						
COS	application in design and detailing of staircase & lifts	LO4	Analyze the various types of staircases and masonry, their extensive uses in Building construction.						
	detailing of stanease te filts.	LO5	Draw all the elements of staircases and lifts.						
		LO1	Learn basic concepts about damp roofing & waterproofing.						
	Students will be able to	LO2	Understand its various types of damp roofing.						
CO4	waterproofing in the	LO3	Apply it on a given live project.						
04	building with its application.	LO4	Analyze the market survey of different types of damp roofing & waterproofing material available in the market.						
		LO5	Evaluating through case studies and drawings of selected building types.						
		LO1	Learn basic types of cladding material.						
	Students will be able to	LO2	2 Understand its uses on a project.						
CO5	analyze different cladding	LO3	Apply it on a given live project.						
	systems and finishes for the	LO4	Analyze the market survey of different types of cladding material available in the market.						
	ilding.	LO5	Evaluating through case studies and drawings of selected building types.						

1. W.B. Mckay – Building construction Vol. 1 (5th edition), Vol. 2 (4th edition) and Vol. 3 (5th edition)

- 2. R.Chudley & R.Greeno Building Construction Handbook, ninth edition
- 3. S.C. Rangwala Engineering materials (Fortieth edition) Charotar Publishing pvt.ltd
- 4. P.C Varghese, "Building Materials", Prentice Hall of India Pvt. Ltd., New Delhi, 2005
- 5. Use of Bamboo and Reeds in building Construction UNO Publications

Note: Total five questions shall be asked. Each question will consist of two parts, one of which will be of 7 marks (which shall be compulsory) and another with 3 marks(which shall be optional).

3. Graphics –III (Code – 210313)

Objectives –

The course aims to obtain knowledge of various softwares used for drafting, 3D model making, rendering and presentation, such as AutoCAD, Revit, 3Ds MAX, Photoshop, CorelDraw, etc. according to the availability of experts.

S	. No.	Subject Cod	Subject Name	Categor			Maxim	um Mark	s Allott	ed		Total	СТ	Con	tact	Periods per	Total	Mode of	Mode of
				У		Theory	/ Slot			Practical S	lot	Mark	HRS			week	Credi	Exam	Teaching
					Enc Eva	l Term luation	Conti Evalı	nuous uation	End Sem.	Conti Evalu	nuous ation	- s		L	Т	Р	ts		(Offline/ Online)
					End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project	-							
	3.	210313	Graphics -III	PAEC- 1	-	-	-	-	20	20	10	50	6	-	-	6	3	SO	Offline**

UNIT-1 COMPUTER AS A DRAFTING TOOL

- Productivity tools in CAD, organization of layers for working drawings, use of blocks and symbols hatch patterns.
- Dimensioning systems extracting of areas from drawings, concept of paper space plotting the drawings

UNIT-2 COMPUTER AS A DESIGN TOOL

- Repetition of forms mirroring, coping and array, etc. calculation of areas, volumes.
- Creating and using templates, blocks, and symbols and using them in architectural drawings. Managements of large drawing files.
- Working in a network environment-Security systems-converting drawing files into Internet compatible files.

UNIT-3 MEASUREMENT DRAWING WITH THE HELP OF CAD

- Exercise will be a group activity; to measure and draw the floor plan along with the plot boundaries, four side elevations, four sections and block plan, site plan of a large building or a settlement with the help of CAD.
- In addition to this drawing shall be prepared based on examples of buildings by giving a sketch design. Drawings shall be detailed enough to explain the complete design.

UNIT-4 VISUAL COMMUNICATION

• Photoshop: Creating and saving images, basic image editing, Photoshop toolbox and tools, using layers, special effects.

UNIT-5 INTRODUCTION TO 3-D Software

• 3-D Max/Sketchup: Creating simple models of buildings, basic editing, tools, effects, etc.

COs & LOs for Graphics III

Overall Course Outcome: Students will be able to draft plans, elevations, sections, views and other details and render them to make them look professional.

	Students will be able to	LO1	Learn about computer-aided drawing.						
~~ .	apply basic commands in	LO2	Understand the objects, blocks, symbols, hatch patterns in AutoCAD.						
CO1	AutoCAD to draw	LO3	Apply various tools in AutoCAD with reference to drawings.						
	objects.	LO4	Draw objects using basic dimensioning, patterns, plotting, etc.						
	Students will be able to	LO1	Learn various further complex commands in AutoCAD to design.						
CO2	draw complex objects	LO2	Understand management of files, working in a network environment, etc.						
	in AutoCAD.	LO3	Design & Draw complex objects using commands learned.						
		LO1	Learn the concept of measured drawing and details to be considered while doing measured drawing.						
CO3	Students will be able to	LO2	Understand how AutoCAD can be used to measure drawings.						
005	draw measured drawings.	LO3	Apply various commands of AutoCAD in measured drawings.						
		LO4	Draw measured drawing of a building includes plans, elevations, sections etc.						
	Students will be able to	LO1	Learn various tools in Photoshop & 3D software.						
	use Photoshop to	LO2	Understand use of commands in Photoshop & 3D software.						
CO4	illustrate building plans,	LO3	Apply various commands to draw in Photoshop & 3D software.						
	elevations, etc. professionally.	LO4	Draw components, complex composition, rendering of Plans, elevations, sections in Photoshop & 3D software.						

Note: Exercises of measurement drawings may be clubbed with study tours. **REFERENCES:**

- 1. User manual & tutorials of Google Sketch Up software.
- 2. Auto CAD reference manual Autodesk UNC, 1998
- 3. Auto CAD architectural user's guide Autodesk Inc. 1998
- 4. Sham Tickoo, Advanced Technique in AutoCAD Re.14 1977 6. Sham Tickoo, Understanding AutoCAD 14 (windows) 1977
- 5. Photoshop CS Bible Deke McClelland.
- 6. Adobe Photoshop 7.0 classroom in a book Adobe creative team.

4. Surveying and Leveling (Code – 210314)

Objectives –

The course aims to obtain knowledge of the basic process of land surveying and fundamentals of various types of surveys adopted in architecture and civil, use various surveying methods in practice, field survey and to prepare a layout for understanding.

S. No.	Subject Cod	Subject Name	Categor y		Theory	Maximu y Slot	um Marl	ks Allotte	ed Practical S	lot	Total Mark s	CT HRS	Cor	tact V	Periods per veek	Total Credi ts	Mode of Exam	Mode of Teaching (Offline/
				End Eval	l Term luation	Conti Evalı	nuous ation	End Sem.	Conti Evalı	nuous ation			L	Т	Р			Online)
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
4.	210314	Surveying & Leveling	BSAE-	50	10	20	20	-	-		100	3	1	2	-	3	PP	Blended*** (2/1)

UNIT-1 SURVEYING

Aspects of surveying for the Architect. Surveying instruments classification by function. Useful data and formulae.

UNIT-2 SCALES

Scales-Plain scale, diagonal scale, comparative scale, shrunk scale, vernier scale.

UNIT-3 ACCURACY TEST AND INSTRUMENTS

Study, test, degree of accuracy, use and care of surveying instruments and accessories.

UNIT-4 SURVEY TECHNIQUES

Site survey techniques: Chain surveying, compass surveying, plain table, and theodolite.

UNIT-5 LEVELING AND CONTOURING

Basics of Leveling and contouring. Processes to level a highly undulated sites and contour a plain site.

Note: Class work and field work of the above subject should be oriented towards the layout of buildings. Students should also be taken to site visits for explaining the practical aspects of surveying.

COs & LOs for Surveying and Levelling

Overall Course Outcome: Students will be able to identify different survey techniques and will be able to use instruments used in survey to develop the layout of the building.

III Dui V	ej to develop the hajout of	the ou	inamB.
	Students will be able to	LO1	Learn various aspects of surveying for the Architect.
001	understand and apply	LO2	Understand surveying instruments, useful data and formulae.
COI	useful formulas used in surveying.	LO3	Apply useful data and formula.
	Students will be able to	LO1	Study various scales used in surveying.
CO2	construct various scales	LO2	Understand use of different scales.
	used in surveying.	LO3	Construct various scales based on requirement.
	Students will be able to	LO1	Study use of surveying instruments and accessories.
CO3	apply surveying	LO2	Understand the degree of accuracy of the surveying instrument.
	instruments for surveys.	LO3	Apply surveying instruments and accessories used in different surveys.
	Students will be able to	LO1	Learn different site survey techniques.
CO4	apply site survey techniques and will learn	LO2	Understand chain surveying, compass surveying, plain table, and theodolite.
04	how to make layout of buildings.	LO3	Apply different types of surveying for site surveys.
	Students will be able to	LO1	Learn about Levelling.
CO5	apply levelling and	LO2	Understand contouring.
	surveys.	LO3	Develop Levelling and contouring on site survey.

REFERENCE BOOKS:

- 1. T. P. KANETKAR & S.V. KULKARNI, "Surveying & Leveling", Pune VidyarthiGriha Pub.
- 2. DR. B.C. PUNAMIA, "Surveying Vol.1", Laxmi Pub.
- 3. SHAHANE AND IYENGAR, "A Text book of Surveying & Leveling", Engineering Book Co.
- 4. BERNARD H. KNIGHT, "Surveying and leveling for students".

5. History of Architecture-III (Code - 210315)

Objectives –

The course aims to obtain knowledge about the development of architecture in the ancient Europe and the culture and context which produced it such as climate, religion, social practices & the politics, the evolution of architectural form & space with reference to Technology, Style and Character using sketches as the principal method of learning - about the prehistoric world, Ancient Egypt, West Asia, Greece ,Rome, Medieval times and Renaissance period.

S. No.	Subject Cod	Subject Name	Categor		Maximum Marks Allotted					Total Mork	СТ	Contact Periods per		Total Credi	Mode of	Mode of Topohing		
			У		Theory	Slot			Practical S	lot	s s	пкэ			week	ts	Exam	(Offline/
				Enc Eva	l Term luation	Conti Evalı	inuous uation	End Sem.	Conti Evalı	nuous ation			L	Т	Р			Online)
				End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
5.	210315	History of Architecture-III	DC- 9	50	10	20	20	-	-		100	3	2	1	-	3	PP	Blended* (2/1)

UNIT-1 GREEK ARCHITECTURE

Evolution of City states in Greece, the Hellenic & Hellenistic art & architecture, Evolution of the classical orders & the features of the Greek temple, the building of the Acropolis with one outstanding example of Doric (Parthenon), Ionic (Erechtheon) & Corinthian. Public architecture: Theatre of Epidaurus and Agora, Optical illusions in Greek architecture.

UNIT-2 ROMAN ARCHITECTURE

Formation of Roman republic & Empire & influence of geology, culture & lifestyle. Roman architectural character using concrete, marble, travertine etc & masonry types used for walls. Tuscan & Composite orders, Roman forums and basilicas – methods of Vault & Dome construction with examples of Pantheon, Thermae of Caracalla, Colosseum, & Basilica of Constantine.

UNIT-3 EARLY CHRISTIAN & BYZANTINE ARCHITECTURE

Spread of Christianity, the evolution of early Christian Church form from the Roman basilica (St. Clemente), Centralized plan concept (St. San Vitale, Ravenna). The creation of eastern & western Roman Empire, the development of domes & pendentive, Byzantine architectural character with study of St. Sophia (Hagia Sophia) at Istanbul.

UNIT-4 ROMANESQUE & GOTHIC ARCHITECTURE

Romanesque period: Monastic orders & development of Craft and merchant guilds, Influences & architectural character of Romanesque churches in Italy (Pisa complex), France (Abbey Aux Hommes) and England (Tower of London) - Development of vaulting. Development of Gothic architecture in France, evolution of Gothic Cathedral & structural system using vaulting & flying buttress, the example of Notre dame cathedral at Paris.

UNIT-5 RENAISSANCE ARCHITECTURE IN EUROPE

Idea of rebirth and revival of classical architecture & the development of art & science. Italian renaissance character. Early renaissance & urban renaissance style and High renaissance period. Works of various artists and architects during the period (Andrea Palladio, Sir Christopher Wren, Michelangelo, Leonardo

			<u>COs & LOs for HOA – III</u>
Overall globe a	Course Outcome: Students w nd the resulting architectural	vill be a product	ble to develop an appreciation of various architectural movements and its chronology across the ions that are unique in time and place.
0		LO1	Learn the evolution of Greek Dynasties & cities.
	Students will be able to	LO2	Understand diverse artistic and architectural expressions in various periods of Greek Architecture.
CO1	apply Greek architectural	LO3	Illustrate visual and verbal vocabularies of Greek Architecture.
	design.	LO4	Analyze Greek architectural forms and space through various examples.
		LO5	Reproduce with help of sketches/visuals (softwares)/3D (models) of various architectural forms and styles of Greek Architecture.
		LO1	Learn the evolution of Roman Empire, its cities and Architecture.
	Students will be able to	LO2	Understand diverse artistic and architectural character in various parts of Roman Architecture.
CO2	architecture in their own	LO3	Illustrate visual and verbal vocabularies of Roman Architecture.
002	design.	LO4	Analyze Roman architectural forms and space through various examples.
		LO5	Reproduce with help of sketches/visuals (softwares)/3D (models) of various architectural forms and styles of Roman Architecture.
		LO1	Learn evolution of both Early Christian & Byzantine Architecture.
	Students will be able to apply elements of Egyptian	LO2	Understand diverse artistic and architectural expressions in various periods of Early Christian & Byzantine Architecture.
CO3	architecture in their own	LO3	Illustrate visual and verbal vocabularies of Early Christian & Byzantine Architecture.
	design.	LO4	Analyze Early Christian & Byzantine architectural forms and space through various examples.
		LO5	Reproduce with help of sketches/visuals (softwares)/3D (models) of various architectural forms and styles of Early Christian & Byzantine Architecture.
	0, 1, , , , , 11, 1, 1, 1, 1, 1, 1, 1, 1,	LO1	Learn evolution of both Romanesque & Gothic Architecture.
	apply elements and	LO2	Understand diverse artistic and architectural expressions in various periods of Romanesque & Gothic Architecture.
CO4	Architecture in their own	LO3	Illustrate visual and verbal vocabularies of Romanesque & Gothic Architecture.
	design.	LO4	Analyze Romanesque & Gothic architectural forms and space through various examples.
		LO5	Reproduce with help of sketches/visuals (softwares)/3D (models) of various architectural forms and styles of Romanesque & Gothic Architecture.
	04 - 1	LO1	Learn the evolution of the Renaissance Architectural Movement.
	apply elements of South	LO2	Understand diverse artistic and architectural expressions in various periods of Renaissance Architectural Movement.
CO5	architecture in their own	LO3	Illustrate visual and verbal vocabularies of Renaissance Architectural Movement.
	design.	LO4	Analyze Renaissance Architectural Movement, its form and space through various examples.
	-sign.	LO5	Reproduce with help of sketches/visuals (softwares)/3D (models) of various architectural forms and styles of Renaissance Architectural Movement.

- 1. Sir Banister Fletcher, A History of Architecture, CBS Publications (Indian Edition), 1999.
- 2. Spiro Kostof A History of Architecture Setting and Rituals, Oxford University Press, London, 1985.
- 3. Leland M Roth; Understanding Architecture: Its elements, history and meaning; Craftsman House; 1994.
- 4. Pier Luigi Nervi, General Editor History of World Architecture Series, Harry N. Abrams, Inc.Pub., New York, 1972.
- 5. S. Lloyd and H.W. Muller, History of World Architecture Series, Faber and Faber Ltd., London, 1986.
- 6. Gosta, E. Samdstrp, Man the Builder, Mc. Graw Hill Book Company, New York, 1970.
- 7. Webb and Schaeffer; Western Civilisation Volume I; VNR: NY: 1962.
- 8. Vincent Scully: Architecture; Architecture The Natural and the Man Made : Harper Collins Pub: 1991

6. Structures-III (Code – 210316)

Objectives –

The course aims to obtain understanding of the basic principles of limit state design in reinforced concrete structural systems and the interpretation of detail structural drawings for the purpose of construction, the structural behavior of RCC buildings from an architect's perspective and hence does not delve into the process of detailed structural analysis design which is the forte of the structural engineer.

Ę	5. No.	.Subject Cod	Subject Name	Categor			Maxim	um Mark	s Allott	ed		Total	CT	Сог	itact	Periods per	Total	Mode of	Mode of
l				У		Theory	/ Slot			Practical S	lot	s s	пкз			week	ts	схаш	(Offline/
					Enc Eva	l Term luation	Conti Evalu	inuous uation	End Sem.	Conti Evalu	nuous ation			L	Т	Р			Online)
					End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
	6.	210316	Structure-III	BSAE- 7	50	10	20	20	-	-		100	3	2	1	-	3	pp	Offline***

UNIT-1 FOUNDATIONS IN BUILDINGS

Soil load bearing capacity – concept of RCC spread footing - Types of R.C.C. foundation – Individual, Combined, Strip footings – Raft foundation (Theory only) – Eccentric footings with projection on one side only- the situations in which the various footings are used – friction pile foundation used in clayey soil (section & understanding of the principle)- pile foundation used in sandy soil & the pile foundation used in multi-storied buildings (section & principle only).Interpretation of typical structural details in foundation drawings .Site visits necessary for understanding the above.

UNIT – 2 ROOF SLABS & STAIRCASE

Exposure to the basic design concepts of Limit state method of design – recommendations in the code book - Classification of slabs – Estimation of loads – Design of one way, two way, circular and continuous slabs using SP – 16(Theory only). Interpretation of reinforcement details in a typical structural drawing for one way, two way slab & continuous slab. Understanding the reinforcement details for a RCC waist slab in dog legged staircase and for a folded slab staircase using typical structural drawings.

UNIT-3 BEAMS & LINTELS

Exposure to the basic design concepts - Estimation of loads on beams – Transfer of load from slab to beam – Understanding the design of simply supported beams, cantilevered & continuous beams using code coefficients & detailing using SP-16 for the design (Theory only). Steel detailing of beams for earthquake proofing (section only) – the function of plinth beam belt & continuous lintel belt –ring beam for RCC dome roof, typical reinforcement detail for waffle (coffer) slab (section only).Site visits to understand typical details in RCC slabs & beams.

UNIT - 4 COLUMNS

Understanding the estimation of loads on columns – Load transfer from slab and beam to columns. Structural behavior of Long and short columns –Distinction between rectangular and circular columns – Difference between columns subjected to uniaxial and those subjected to bi-axial bending. Knowledge about the design of columns using column interaction diagrams (Theory only) – Use of SP-16 for reinforcement detailing. Interpretation of typical structural drawing for columns & footings.

UNIT- 5 FLAT SLABS

Understanding the situations in which flat slabs are used - advantages of flat slab construction. Components of flat slab – Configuration of columns – Design of flat slab by direct design method as per BIS codes (Theory only). Site visit to understand flat slab construction.

			COs & LOs for Structure - IV									
Overall	verall Course Outcome: Students will be able to design and interpret the structural systems for all reinforced concrete structures using the nit state design method for structural analysis.											
limit sta	te design method for structura	al analy	rsis.									
		LO1	Learn the principles of structural design process for RCC foundations									
	To interpret the structural	LO2	Classify the types of foundations, soil capacity and loads in design of foundations									
CO1	design process and analyse design of RCC foundations	LO3	Outline the features of IS code provisions regarding limit state method for designing RCC foundations									
	for the purpose construction	LO4	Interpret the typical structural details in foundation design									
		LO5	Asses the working of structural details through site visit									
		LO1	Learn the principles of structural design method for Slabs and staircase									
	To analyse the structural	LO2	Identify the types of RCC slabs and RCC staircases and their design considerations									
CO2	design details and reinforcement of RCC slabs	LO3	Outline the features of IS code provisions regarding limit state method for designing slabs and staircases foundations									
	and staircase for the purpose of construction	LO4	Interpret the typical structural and reinforcement details in slab (one way, two way, continuous) /staircase design , (waist slab, folded slab etc)									
		LO5	Asses the working of reinforcement details through site visit									
	To interpret the load	LO1	Learn the principles of structural design method for Beams and lintel									
	calculation for structural design of beams and lintel in	LO2	Outline the features of IS code provisions regarding limit state method for designing beams and lintel in RCC structures									
CO3	RCC structure and analyse	LO3	Evaluate the load considerations for design of beams and lintel in RCC structures									
	their structural design details for the purpose of	LO4	Interpret the typical structural details for beams in special conditions such as earthquake resistant buildings, plinth beam, ring beam, coffer slab etc									
	construction	LO5	Asses the working of structural details through site visit									
		LO1	Learn the principles of structural design method for column in RCC structure									
	To interpret the structural	LO2	Outline the features of IS code provisions regarding limit state method for designing columns in RCC structures									
CO4	structure and the design	LO3	Evaluate the load considerations, transfer of load and their structural behaviour for design of columns in RCC structure									
	interaction diagram	LO4	Interpret the typical structural details for column and the difference between various columns using column interaction diagram									
		LO5	Asses the working of structural details through site visit									
		LO1	Learn the principles of structural design method for Flat slab									
CO5	To interpret the design of	LO2	Outline the features of IS code provisions regarding limit state method for designing beams and lintel in RCC structures									
	dotoilo	LO3	Evaluate the need of flat slab in structures and their component and design consideration									
	ucialls	LO4	Interpret the typical structural details for flat slab									
		LO5	Asses the working of structural details through site visit									

1.

Victor E. Sauoma, Structural Engineering- analysis & design, University of Colorado,2011. Simha .N.C and Roy .S.K, Fundamentals of Reinforced Concrete, S. Chand& Co. Ltd, Delhi,2001 2.

7. Summer Internship Project –I (Institute Level Evaluation) (Code – 210319)

S.	. No.	Subject Cod	Subject Name	Categor y		Theory	Maxim 7 Slot	um Mark	s Allotted Practical Slot			Total Mark	CT HRS	Contact Periods per week			Total Credi	Mode of Exam	Mode of Teaching
				End Term Evaluation		l Term luation	Continuous Evaluation		End Sem.	Continuous Evaluation				L	Т	Р			Online)
					End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
	7.	210319	ummer Internship roject –I	SEC-4	-	-	-	-	50	-		50	2	-	-	2	1	SO	Offline

8. Biology for Architects (Code – 210310)

Objective – The course aims to obtain understanding of the basic principles of biomimicry, and use of biomimicry in architecture, relation of biomimicry to building, skin and introduce students to principles of sustainability.

2	S. No.	Subject Cod	Subject Name	Categor		Maximum Marks Allotted Total CT Contact Periods per							Total Credi	Mode of	Mode of				
l				у	Theory		v Slot		Practical Slot			s s	шқа	week			ts	Exam	(Offline/
					End Eva	l Term luation	Conti Evalı	nuous uation	End Sem.	Conti Evalu	nuous ation			L	Т	Р			Online)
					End Sem.	Proficienc y in subject/ course	Mid Sem.	Quiz/ Assign ment /Session al	Exam	Lab work & Sessional	Skill based mini project								
	8.	210310	iology for Architec	MAC-1	50	10	20	20	-	-	-	100	2	2	-	-	Grade	РР	Blended* (2/1)

UNIT 1 INTRODUCTION TO BIOMIMICRY

History of biomimicry, Biomimetic, Bionics, various types of Biomimicry. Concept of Biomimicry Approaches to Biomimicry. Principles and levels of Biomimicry.

UNIT 2 NATURAL PATTERNS & BIOMIMICRY

Various patterns in nature, Understanding Biomimicry: theory and case studies, building elements as cells in biology, Patterns of Biophilia.

UNIT 3 SKIN: 3D PATTERNS & BIOMIMICRY

3D Patterns, use of 3D patterns in biomimicry, the impact of use of biomimicry on reducing the buildings energy consumption, buildings interaction with the environment.

UNIT 4 SUSTAINABILITY IN ARCHITECTURE

History, theory and types. Impact of the built environment on nature. Process of making construction process and maintenance of a building sustainable.

UNIT 5 INTEGRATING BIOLOGY IN DESIGN

Application of Biology in the design process along with design exercise to realize the process of discovering biological inspiration and its application.

	<u>COs &</u>	LOs for	Biology for Architects
Overall C buildings	ourse Outcome: Students will be able and their methods of designing.	e to und	erstand the biological behaviour and inspiration for designing
		LO1	Understand elements of nature for the purpose of problem solving
	Students will be able to Define	LO2	Memorize the historical concepts of biomimicry
CO1	basic elements and principles of	LO3	Relate concepts of biomimetic with built environment
	biomimicry approaches	LO4	Learn principles of biomimicry
		LO5	Express in the form of presentations, concepts and approaches to biomimicry
		LO1	Relate cell as in science to the built form
		LO2	Appraise movements, stillness & patterns in nature
CO2	Students will be able to Analyse natural environment	LO3	Summarize established theories and concept like biophilia, prospect and refuge and more
	and surrounding to achieve biomimicry in architecture	LO4	Observe natural elements as an inspiration for designs and composition
		LO5	Compose of basic natural element in digital or manual formats
		LO1	Link the three dimensional spaces, patterns with biomimetic architecture
601	Students will be able to Experiment three dimensional	LO2	Integrate use of biomimicry for energy efficiency of buildings
CO3	patterns to achieve low energy consumption in buildings	LO3	Validate with study of case examples for relationship between building and environment
		LO4	Stimulate textures, patterns inspired from nature, on and around built forms
		LO1	Define sustainability in each field incorporating architecture studies
CO4	Students will be able to Apply theories and concepts of	LO2	Understand the design philosophy behind the history of sustainable architecture
001	sustainability to built form and	LO3	Infer from various environmental impact assessment reports
	surroundings	LO4	Programme building that are sustainable and have ease of construction
		LO1	Learn of designing comfortable spaces
	Students will be able to Design	LO2	Apply different strategies to achieve sustainable goals
CO5	structures, without harming our	LO3	Play with locally available material according to site and design development
		LO4	Build a methodology to integrate biology in design

References:

- 1. Kohler, Matthias & Silke Langenberg, ed. Fabricate (2014 print, 2017 online) NA2543.T43 F33 2014 2014 gta Verlag digital fabrication, material-based design
- 2. Aksamija, Ajla Sustainable Facades: Design Methods for High- Performance Building Envelopes online ebook 2013 Wiley building envelopes
- 3. Aranda, Benjamin; Lasch, Chris Tooling NA2728 .A58 2006 2006 Princeton Architectural parametric design
- 4. Ball, Philip Nature's patterns: a tapestry in three parts. Shape online ebook (2nd edition of Self-made Tapestry) 2011 Oxford University Press biomimicry, pattern.