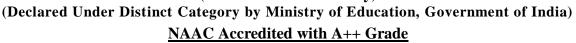


(Deemed to be University)


BOS MEETING

DEPARTMENT OF CHEMICAL ENGINEERING

DATE: 27/05/2024

(Deemed to be University)

ITEM -2

To review and finalize the scheme structure of B.Tech. VII Semester with the provision of *Three* (03) Departmental Electives (DEs) and Open Category (OC) Course. (Out of which One (01) Elective and o1 Open category course is to be offered in traditional mode and remaining Two (02) Departmental Electives are to be offered in online mode with credit transfer for the batch admitted in 2021-22.

(Deemed to be University)

NAAC Accredited with A++ Grade

Department of Chemical Engineering Scheme of Evaluation

B. Tech. VII Semester For batches admitted in academic session 2021-22

S. No.	Subjec t Code	Category Code	Subject Name				Maxim	um Mar	ks Allotted				Contact Hours per						
10.	Code	Code			Theory	Slot			Practical Slo	eal Slot MOOCs				week		_		Mode of	
					d Term luation		tinuous luation	End	Evaluation en				Total Mark	L	T	P	Total Credits	Teaching (Online, Offline,	of
				nd Sem. Exam.	\$Proficiency in subject /course	Mid Sem. Exam	Quiz/ Assignme nt	Sem. Exam.	Lab work & Sessional	Skill Based Mini Project			S					Blended)	Exam.
1.	DE	DE	Departmental Elective (DE-2)	50	10	20	20	-	-	-	-	-	100	3	1	-	3	Blended	PP
2.	DE	DE	Departmental Elective* (DE-3)	-	-	-	-	-	-	-	25	75	100	3	-	-	3	Blended	MCQ
3.	OC	DE	Departmental Elective(DE-4)*	-	-	-	-	-	-	-	25	75	100	3	-	1	3	Blended	MCQ
4.	OC	OC	Open Category (OC-2)	50	10	20	20	-	-	ı	-	-	100	3	1	ı	3	Blended	MCQ
5.	170715	DLC	Process Computation Lab	-	-	-	-	60	20	20	-	-	100	-	1	4	2	Offline	SO
6.	170716	DLC	Creative Problem Solving (Evaluation)	-	-	-	-	25	25	-	-	-	50	-	-	2	1	Blended	SO
7.	170717	DLC	Summer Internship Project- III (04 weeks) (Evaluation)	-	-	-	-	60	-	-	-	-	60	-	1	4	2	Offline	SO
	Tota	ıl		100	20	40	40	145	45	20	50	150	610	12		10	17	-	-
8	1000008	MAC	Universal Human Values & Professional Ethics(UHVPE)	50	10	20	20	-	-	-	-	-	100	2	-	-	GRADE	Blended	MCQ
	Addition	al Course	for Honours or minor			Permitt	ed to opt f	or maxin	num two add	itional cou	rses for th	e award o	f Honour	s or I	Mino	r spe	cialization		

\$ proficiency in course/subject-includes the weightage towards ability/skill/competence/knowledge level/ expertise attained etc. in that particular course/subject.

Specialization

DE-II(Offline)	DE-III(Online)	DE-IV (Online)	OC-III
Transport Phenomena -170721	Chemical Process Safety - 170761	Petroleum Reservoir Engineering-170765	Industrial Safety and Hazards - 910215
Equilibrium Staged Operations -170722	Sustainable Energy Technology -170762	Petroleum Technology-170766	-
Heterogeneous Reaction Systems -170723	Fluidization Engineering - 170767	Chemical Process Intensification - 170768	-
Multi – Component Distillation -170724			

SSMCQ: Multiple Choice Question SSAO: Assignment + Oral SSPP: Pen Paper SSSO: Submission + Oral

^{*} Course run through SWAYAM/NPTEL/ MOOC Learning Based Platform with Credit Transfer

(Deemed to be University) NAAC Accredited with A++ Grade

	Mode of Teacl	hing						
	Theory				Lab	Total Credits		
Offline	Online	Blended	Offline	РР	AO	MCQ	so	Total credits
03	-	09	05	03	-	09	05	17
17.65%	-	52.94%	29.41%	17.65%	-	52.94%	29.41%	Credits %

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -3

To propose the list of courses which the students can opt from SWAYAM/NPTEL/MOOC based Platforms, to be offered in online mode for Two (02) Departmental Electives (DE) Course, with credit transfer in the B.Tech. VII Semester under the flexible curriculum (Batch admitted in 2021-22)

DE-III (Online)	DE-IV (Online)
Chemical Process Safety - 170761	Petroleum Reservoir Engineering- 170765
Sustainable Energy Technology - 170762	Petroleum Technology-170766
Fluidization Engineering-170767	Chemical Process Intensification - 170768

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -4

To prepare and finalize the syllabus of courses to be (for batch admitted in 2021-22) under offered Departmental Elective (DE) Course (in traditional mode) for B. Tech. VII Semester along with their COs

List of Departmental Elective-III (Offline Mode)

Course Name	Course Code
1. Transport Phenomena	170721
2. Equilibrium Staged Operations	170722
3. Heterogeneous Reaction Systems	170723
4.Multi-Component Distillation	170724

(Deemed to be University) NAAC Accredited with A++ Grade

1. Transport Phenomena

Category	Title	Code		Credits-	3	Theory Paper
Departmental Elective	Transport Phenomena	170721	L	Т	P	Max. Marks-50
			3	-	-	Duration- 2 hrs

Course Objective:

This course will provide the fundamentals to solve real life problems involving transports of momentum, energy and mass in biological, mechanical and chemical systems using a unified approach.

Syllabus

Unit-I Similarity in momentum, heat and mass-transport –Newton's laws of viscosity, Fourier's laws of conduction and Fick's laws of diffusion.Flux-transport property relationships, Estimation of transport properties-measurement and correlations.

Unit-II Velocity distribution in laminar flow of falling film. Flow over an inclined plane, a circular tube annulus and between two parallel plates.

Unit-III Shell balance approach for developing equations of change for momentum, Heat and mass transport, Equations of change and their approximations for transport in one dimension.

Unit-IV Transport equations in turbulent flow and equations for turbulent fluxes. Velocity, Temperature and concentration profiles for laminar and turbulent flow conditions. Temperature and concentration profiles for conductive and convective transport in solids and fluids.

Unit-V Macroscopic momentum and heat balance equations, Kinetic energy calculations Constant area and variable area flow problems. Flow through bends. Time determination for emptying of vessels.

Course Outcomes: After the successful completion of this course, students will be able to:

- CO1 **Explain** the basic terminology of Transport phenomena.
- CO2 Apply shell balance to mass, momentum and heat transfer.
- CO3 **Solve** the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration
- CO4 Analyze industrial problems along with appropriate boundary conditions.
- CO5 Apply analogies among momentum, heat and mass transfer.
- CO6 **Describe** mechanisms of transport phenomena, present in given isothermal and non-isothermal, laminar and turbulent flow systems

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	3	2	2	1								2		
CO ₂	3	3	2									2		2
CO ₃	3	3	3									2		2
CO ₄	2	2	3									2		
CO5	3	2	2									2		
CO6	3	3	3									2		

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books:

- 1. Transport Phenomena By Bird R.B., Stewart W.E and Lightfoot E.W.(John Wiley & Sons)
- 2. Transport Phenomena A Unified Approach By Brodkey R.S. and Hershey (McGraw Hill Book Co.)

(Deemed to be University) NAAC Accredited with A++ Grade

Reference Books:

- 1. R.W.Fahien., Elementary Transport Phenomena, McGraw Hill, New York, 1983
- 2. Welty J.R., Wicks C.E., Wilson R.E. and Rorer G.L, Fundamentals of momentum, heat andmass transfer, 5th edition, John Wiley & sons, New York 2007

(Deemed to be University)

NAAC Accredited with A++ Grade

2. Equilibrium Staged operations

Category	Title	Code	Credits-3			Theory Paper
Departmental Elective	Equilibrium Staged	170722	L	Т	P	Max. Marks-50
	Operations		3	-	-	Duration- 2 hrs

Course Objective:

To provide an adequate knowledge of equilibrium stage operations such as multi component multistage separations distillation, absorption, stripping and extraction

Syllabus

UNIT I - Distillation-Stage wise contact operation. Methods of distillation: batch, continuous, flash, steam, vacuum, molecular distillations.

UNIT II - McCabe-Thiele and Ponchon-Savarit methods. Design of distillation towers. Elements of multi component distillation, Fenske-Underwood - Gilliland Method Azeotropic and extractive distillation.

UNIT III -General principles of leaching, Bollman extractor, Hildebrandt extractor. General principles of liquid –liquid extraction, working principle of extraction equipment: mixer-settlers, spray and packed extraction towers, agitated tower extractors. Percentage extraction calculation for single stage and multistage crosscurrent operations, Minimum solvent rate and number of theoretical stages for continuous countercurrent operation

UNIT IV - Introduction to adsorption, adsorbents and adsorption processes, adsorption equipment: fixed-bed absorbers, gas-drying equipment. Pressure-swing adsorption, adsorption from liquids, adsorption isotherms. Equilibrium Consideration – Liquid adsorption, Kinetic and Transport Considerations

UNIT V - Theoretical Model for an Equilibrium Stages used in separation operation, General Strategy of Mathematical and Graphical Methods for separation operation, Bubble Point Method for Distillation operation, Triangular diagram, Isotherms.

Course Outcomes: After the successful completion of this course, students will be able to:

- **Describe** the fundamentals of separation operation. CO₁
- **Describe** the approximation technique and its algorithms for multicomponent CO₂ multistage separations
- CO₃ **Analyze** the equilibrium data obtained in the various separation operation
- **Analyze** industrial problems along with equilibrium stage operation. CO4
- **Apply** the knowledge of kinetics and transport. CO₅
- **CO6 Apply** the mechanisms of industrial equilibrium separation operation

Course Articulation Matrix

	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3	2	2									2		
CO ₂	3	3	2									2		2
CO ₃	3	3	3									2		2
CO4	2	2	3									2		
CO5	3	2	2									2		
CO6	3	3	3									2		2

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

1. Treybal. R.E, "Mass Transfer Operations", 3rd Edition, McGraw Hill, 1980.

(Deemed to be University) NAAC Accredited with A++ Grade

Reference Books:

- 1. Smith. J.M., "Chemical Engineering Kinetics", 3rd edition, McGraw Hill International Editions, New Delhi, 1981.
- 2. Ronald. W.Missen, Charles.A.Mions, Bradley.A.Saville, "Introduction to Chemical Reaction Operation and Kinetics", John Wiley and Sons, Singapore, 1999.
- 3. Seader. J D, & E J Henley, "Separation Process Principles", John Wiley & Sons Inc., 1998.

(Deemed to be University) NAAC Accredited with A++ Grade

3. Heterogeneous Reaction Systems

Category	Title	Code	Credi	it-2		Theory Paper
Departmental	Heterogeneous	170723	L	T	P	Max.Marks-50
Elective	Reaction Systems		3	0	0	Duration- 2 hrs.

Course objectives: To apply the knowledge of material and energy balances, mass transfer and chemical reaction engineering—I for solving problems involving heterogeneous reaction systems and to understand and apply the principles of non-ideal flow in the design of reactors.

Unit-I Heterogeneous processes: Catalysis and adsorption; Classification of catalysts, Preparation of catalysts, Promoters and Inhibitors, General mechanism of catalytic Reactions surface area and pore size distribution Rate equation of fluid solid Catalytic reactions, Procurement and Analysis of kinetic data, kinetics of catalyst deactivation

Unit -II External transport processes and their effects on heterogeneous reactions yield and selectivity Reaction and diffusion in porous catalysts, Isothermal and non-isothermal effectiveness factors, Effect of intra-phase transport on yield, selectivity & poisoning, Global reaction rate.

Unit -III Design of catalytic reactors, Isothermal & adiabatic fixed bed reactor staged Adiabatic reactors, Non-isothermal non - adiabatic fixed bed reactors, Fluidized bed reactors, Slurry reactors, Trickle bed reactors.

Unit-IV Models for fluid - solid non-catalytic reactions, controlling mechanisms, Diffusion through gas film controls. Diffusion through ash layer controls, Chemical reaction controls, fluidized bed reactors with and without elutriation.

Unit – **V** Gas-liquid reactions and liquid-liquid reaction, Rate equation based on film theory, Reaction design for instantaneous reactions and slow reactions, Aerobic Fermentation, Application to Design Tools for Fast Reactions.

Course Outcomes:

- CO1 **Analyze** the heterogeneous processes.
- CO2 Explain the various catalytic processes and catalytic poisoning
- CO3 **Examine** the effect of various parameters like yield selectivity etc. on catalytic reaction
- CO4 **Design** the multiple phase reactors
- CO5 **Design** the model for solid fluid non catalytic reaction
- CO6 **Describe** the models for fluid-fluid catalytic reaction

Course Articulation Matrix

	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	3	2	2									2		
CO ₂	3	3	2									2		2
CO ₃	3	3	3									2		2
CO4	2	2	3									2		
CO5	3	2	2									2		
CO6	3	3	3									2		2

(Deemed to be University) NAAC Accredited with A++ Grade

Suggested Reading:

- 1 Chemical Engineering Kinetics by J.M Smith (3rd Edition McGraw Hill)
- 2 Chemical Reaction Theory an introduction by K.G.Denbigh & K.G. Turner (2nd Ed.United Press & ELBS 1972)
- 3 Chemical Kinetics and Reaction Engg. by G. Copper & G.V.J. Jeffery's
- 4 Chemical Reaction Engg by O.Levenspiel (2nd Ed. Wiley Eastern, Singapore.
- 5 Chemical process principles Part-III by Hougen, Watson & Ragatz, Kinetics & Catalysis(2nd Edition Asian Publishing House Bombay)
- 6 Elements of Chemical Reaction Engg. by Fogler, H.S. (2nd ed. Prentice Hall of IndiaPvt. Ltd. New Delhi 1997

(Deemed to be University)

NAAC Accredited with A++ Grade

4. MULTI – COMPONENT DISTILLATION

Category	Title	Code	Cred	it-2		Theory Paper		
Departmental	MULTI –	170724	L	T	P	Max.Marks-50		
Elective	COMPONENT DISTILLATION		3	0	0	Duration -2 hrs.		

Course Objective: This course will enable students to understand the basic theories of multicomponent distillation and learn the design procedure for multicomponent distillation.

UNIT-I Multi component systems consisting of hydrocarbons of different molecular structure, Thermodynamics and vapor liquid equilibrium, Distribution coefficients, the effect of temperature, pressure and composition. Definition and expressions of bubble point, dew point in multi component systems.

UNIT-II Key components-light and heavy key components, Flash Distillation, material balance and equilibrium, relationship for conventional distillation column, convergence methods.

UNIT-III Enthalpy balance for conventional columns, refinements for conventional column, total reflux, product composition, Lewis and Matheson methods, Composition corrections, Liquid/Vapor ratios, Method of Thiele and Geddes.

UNIT-IV Conventional and complex columns at total and minimum reflux, minimum reflux. Minimum reflux calculations, Plate efficiencies, Q- method of convergence for systems of distillations columns. Use of efficiencies for mass and heat transfer in conventional complex columns.

UNIT-V Equipments for distilling by non-conventional methods, Azeotropic extractive and molecular distillations. Use of packed columns, columns diameter and height of transfer unit (HTU). Super critical flux and extraction.

Course Outcomes:-

- CO1 **Select** key component
- CO2 **Solve** number of theoretical and actual stages required for multi component distillation by using various methods.
 - CO3 **Examine** how to break azeotrope using azeotropic and extractive distillation.
 - CO4 Estimate reflux ratio required for the distillation operation.
 - CO5 **Estimate** tower diameter and operating pressure for multi distillation column.
 - CO6 Analyze various design options for energy conservation in the distillation column.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	3	2	2									2		
CO ₂	3	2	2									2		2
CO ₃	3	3	2									2		2
CO4	2	2	3									2		3
CO5	3	2	2									2		3
CO6	3	3	3									2		2

1 - Slightly; 2 - Moderately; 3 - Substantially

Suggested Reading:

- 1. Holland-Fundamentals to multi component distillation –McGraw Hill, NY.
- 2. Holland and liaps Computer methods for solving dynamic separation problems McGraw Hill, N.Y.
- 3. Treybal RE- Mass transfer operation- McGraw Hill, International edition. New Delhi.

(Deemed to be University)

- NAAC Accredited with A++ Grade
 4. Smith BD-Design of Equilibrium Stage Process- McGraw Hill, New Delhi.
- 5. Van Winkle- Distillation McGraw Hill, Booh Co., New Delhi.

(Deemed to be University)

NAAC Accredited with A++ Grade

To prepare and finalize the syllabus of courses to be offered (**for batch admitted in 2021-22**) under the **Open Category (OC) Courses** (in traditional mode) for B.Tech. VII semester students of other departments along with their COs

Open Category (OC) Course

Industrial Safety & Hazards (OC-2)

(Deemed to be University)

NAAC Accredited with A++ Grade

Industrial Safety & Hazard Analysis (OC-2)

Category	Title	Code	Cred	its-4		TheoryPaper
Departmental OC	Industrial Safety & Hazard Analysis	910215	L	T	P	Max.Marks-50 Duration-1.5hrs.
			3	1	-	

Course Objective:

This course will provide effective use of chemical industries utilities. This course also emphasizes the knowledge of loss prevention, personal safety, industrial safety, hazard analysis, toxicology and personal pro-active equipment.

Syllabus:

Unit-I: Origin of process hazards: Laws Codes, Standards, Case Histories, properties of Chemicals, Health hazards of industrial substances.

Unit-II: Toxicology:Toxic materials and their properties, effect of dose and exposure time, Relationship and predictive models for response, Threshold value and its definitions, material safety data sheets, industrial hygiene evaluation.

Unit-III: Fire & Explosion: Fire are exposure hazards causes fire and preventive methods Flammability characteristics of chemical, fire and explosion hazard, rating of process plant, Propagation of fire and effect of environmental factors, Ventilation, Dispersion, Sprinkling, Safety and relief values.

Unit-IV: Other Energy Hazards: Electrical hazards, noise hazards, Radiation hazards in Process operations, Hazards communication to employees, Plant management and maintenance to reduce energy hazards.

Unit-V: Risk Analysis and Hazard Identification: Event probability and failure, Plant reliability and risk analysis, HAZOP, HAZON event and consequence analysis, Measurement and calculation of Risk analysis, Safety Training program, Disaster management and emergency planning.

Course Outcomes: After the completion of this course, Students will be able to

CO1: Analyze the origin of hazards and fundamental principles of safety

CO2: Analyze the issues related to toxicants and minimize the toxicants dose.

CO3:**Explain** the fire & explosion hazard and the controlling measurement techniques used in the chemical industries

CO4:**Evaluate** the professional obligations related to the plant management and maintenance to reduce energy hazards.

CO5: Analyze the risk analysis and plant reliability to reduce the hazard

CO6:**Formulate** the HAZOP study, event tree analysis and fault tree analysis

Course Articulation Matrix

	PO1	PO ₂	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO ₁	3	3	2	1	2		1		1	2		2	2	2
CO ₂	3	3	3	2	3				2	2		2	3	3
CO ₃	3	2	2	1	2					2		2	2	2
CO ₄	2	2	1	1	1	1	1			1		2	1	2
CO5	3	2	2	1	2					2		2	2	2
CO6	2	3	2	1	2	1	2			2		2	2	2

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books:

1. D. A. Crawl, J. A. Louvar (Prentice Hall of India, New Delhi, 1990) - Chemical Process Safety Fundamentals with Applications

(Deemed to be University) NAAC Accredited with A++ Grade

Reference Books:

- 1. C. A. Wentz (2th Edition 2001, McGraw Hill) Safety, Health and Environmental Protection
- 2.B. D. Smith (4th Edition 2003, McGraw Hill) Design of Equilibrium State Process

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -6

To review and finalize the Experiment list/ Lab manual for Departmental Laboratory Course (DLC) to be offered in B. Tech. VII semester (for batches admitted in 2021-*22*)

Departmental Laboratory Course (DLC)

Process Computation Lab (170715)

(Deemed to be University)

NAAC Accredited with A++ Grade

170715: Process Computation Lab

- 1. To apply mass balance for a process situation using excel
- 2. To apply energy balance for a process situation using excel
- 3. To plot and learn Duhring's plot
- 4. To plot various time changing plots for parameters involved in a process
- 5. To analysis parameter relations in a process situation using in-out relations
- 6. To develop flow-sheet in excel
- 7. To develop balance sheet for a process situation
- 8. To develop understanding of calling of workbooks for use at one time
- 9. To learn about data validation and consolidation in excel

After completion of this laboratory course, the student will be able to

CO1: Operate and program in MS Excel

CO2: Construct the flow sheets of chemical process units.

CO3: **Solve** mass balance for a process situation using excel.

CO4: **Apply** energy balance for a process situation using excel.

CO5: Construct various time changing plots for parameters involved in a process.

CO6: **Perform** data validation and consolidation in excel.

Course Articulation Matrix

	PO1	PO2	PO ₃	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3	2					2		3				3	3
CO ₂	3	3										3	3	3
CO ₃	3	3										3		3
CO4	2	3		2									2	3
CO5	3	3	2							3		3	3	3
CO6	3	2				3			3	3		3	2	2

1 - Slightly; 2 - Moderately; 3 - Substantially

(Deemed to be University) NAAC Accredited with A++ Grade Skill Based Mini Project

170715: Process Computation Lab

- 1. To study and illustrate unit conversion applied for physical and chemical properties related in Chemical engineering based on user defined functions
- 2. To illustrate optional arguments in excel for parameters like pressure, density and volume concentrations
- **3.** Illustrate data checking on case study like The data table can include valid temperature limits that the (User Defined Function) UDF can check.
- 4. Illustrate error handling in excel
- **5.** Illustrate derived data entry for certain case study related to chemical engineering problems
- **6.** Illustrate "Solver" as a powerful version of Goal Seek that allows solving systems of equations, and in particular, linear equations that you will come across from mass and energy balances.
- 7. Study the "Project Tracker Excel" feature for a particular flow sheet
- **8.** Study and illustrate "Spreadsheets in Chemical Engineering as a tool in Process Design and Process Integration
- **9.** Create a Dew Point Calculator in Excel
- 10. Study and create Centrifugal Pump Calculation sheet

(Deemed to be University) NAAC Accredited with A++ Grade

ITEM -7

To propose the list of "Additional Courses" which can be opted for getting an

- (i) Honours (for students of the host department)
- (ii) Minor Specialization (for students of other departments)

These will be offered through SWAYAM/NPTEL/MOOC based Platforms for the B.Tech. VII semester students (for the batch admitted in 2021-22) and for B.Tech. V semester (for the batch admitted in 2022-23)

(Deemed to be University) NAAC Accredited with A++ Grade

List of Additional Courses to be offered in July-Dec .2024 (From SWAYAM/NPTEL

S.No.	Purpose	Name of Course	Duration of the course in weeks
1	For Minor	Fluidization Engineering	12 Weeks
•	Specialization(Oth ers Department)	Polymers: concepts, properties, uses and sustainability	12 Weeks
	(VII Semester)	Transport Phenomena of Non- Newtonian Fluids	12 Weeks
2	For Minor	Heat Transfer	12 Weeks
•	Specialization	Chemical Reaction Engineering-I	12 Weeks
	(Others Department) (V Semester)	Mechanical Unit Operations	12 Weeks

The details of Courses offered for **Honours (V Semester) track wise** for 2022 admitted students:

Tracks	Energy	Separation	<u>Unit</u>	<u>Polymer</u>	Environmental
>	Engineering	<u>Processes</u>	Operations	Technology	Engineering
S. No.	Courses	Courses	Courses	Courses	Courses
1	Artificial Lift	Thermal	Rheology and	Introduction to	Basic
	(12 weeks)	Processing of	Processing of	Polymer Physics	Environmental
		Foods	Paints, Plastic	(10 1)	Engineering and
		(10 1)	and Elastomer	(12 weeks)	Pollution
		(12 weeks)	Based		Abatement
			Composites		(12 weeks)
			(08 weeks)		

(Deemed to be University)

NAAC Accredited with A++ Grade

		11212 0 12002 00		01000	
2	Energy	Colloids and	Transport	Polymer Process	
	Conversion	Surfaces	Phenomena of	Engineering	Trace And
	Technologies	(00 1)	Non-	(10 1)	Ultra-Trace
	(Biomass and	(08 weeks)	Newtonian	(12 weeks)	
	Coal)		Fluids		Analysis of
	(00		(10 1)		Metals Using
	(08 weeks)		(12 weeks)		Absorbtion
					Absorption
					Spectrometry
					(08 weeks)
3	Hydrogen			Polymers:	
	Energy:			Concepts,	
	Production,			Properties, Uses	
	Storage,			and Sustainability	
	Transportation			(10 1)	
	and Safety			(12 weeks)	
	(12 weeks)				

The details of Courses offered for **Honours (VII Semester) track wise** for 2021 admitted students:

Tracks	Energy	Separation	<u>Unit</u>	Polymer	Environmental
>	Engineering	<u>Processes</u>	Operations	Technology	Engineering
S. No.	Courses	Courses	Courses	Courses	Courses
1	Technologies	Adsorption	Solid – Fluid	Fundamentals of	Environmental
	for Clean and	Science and	Operations	Protein Chemistry	Chemistry (12
	Renewable Energy	Technology: Fundamentals	(12 weeks)	(12 weeks)	weeks)
	Production (08	and			
	weeks)	Applications			
		(08 weeks)			

(Deemed to be University)

NAAC Accredited with A++ Grade

2	Enhanced Oil	Thermal	Principles of	Mechanical	Environmental
	Recovery	Operations in	Downstream	Behavior of	Modeling and
	Techniques	Food Process	Techniques in	Polymers and	Simulation (12
	(10 1)	Engineering:	Bioprocess (12	Composites (12	weeks)
	(12 weeks)	Theory and	weeks)	weeks)	
		Applications			
		(12 weeks)			
3	Petroleum				Municipal Solid
	Formation				Waste
	Evaluation (12				Management
	weeks)				(12 weeks)

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -8

To review and finalize the *scheme structure of B.Tech. V Semester under* the flexible curriculum (*Batch admitted in 2022-23*)

(Deemed to be University) NAAC Acredited with A++ Grade

B.Tech. V Semester (Chemical Engineering) For batches admitted in academic session 2022 – 23

	Subject Code	8	Subject Name	1		Maximi	um Marks A	Allotted			Total	Con	tact Hou		Total	Mode of	Mode of
No.	1	ry Code	Г	1	Theory	y Slot	1		Practical Sl	iot	Marks		week	i.	Credit s	Teaching (Offline/Onli	Exam
	 		[Er	and Sem.	Mid Sem.	Quiz/ Assign	End Sem	Lab Work &	Skill Based		L	T	P		ne)	
				End Term Evalua tion	§Proficienc y in subject /course	Exam.	ment		Sessiona l	Mini Project							
1.	2170511	MC	Data Science	50	10	20	20	60	20	20	200	3	0	2	4	Blended	MCQ
2.	2170512	DC	Mass Transfer –II	50	10	20	20	60	20	20	200	2	1	2	4	Blended	PP
3.	2170513	DC	Chemical Reaction Engineering – I	50	10	20	20	60	20	20	200	2	1	2	4	Blended	PP
4.	2170514	DC	Computational Methods in Chemical Engg	50	10	20	20	60	20	20	200	2	1	2	4	Blended	PP
5.	2170515	DC	Process Engineering & Costing	50	10	20	20	-	-	-	100	2	-	-	2	Blended	PP
6.	2170516	DLC	Minor Project-I	-	-	-	-	60	40	-	100	-	-	4	2	Offline	SO
7.	2170517		Self-learning/Presentation (SWAYAM/NPTEL/MOOC)# or Interdisciplinary course from other institutions and platforms with credit transfer		-	-	-	-	40	-	40	-		2	1	Online + Mentoring	SO
8.	200XXX		Novel Engaging Course (Informal Learning)	-	-	-	- 1	50	-	-	50	-	-	2	1	Interactive	SO
9.	2170518		Summer Internship Project— II (Institute Level) (Evaluation)	-		-	-	60	-	-	60	-	-	4	2	Offline	SO
		Total	.1	250	50	100	100	410	160	60	1150	10	3	20	24	-	-
10.	1000006	MAC	Disaster Management (MC)	50	10	20	20	-	-	-	100	2	-		Grade	Blended	MCQ
	tional Course f	for Hone	ours or minor		Permi	tted to opt	i for maxir	mum two	o additional	courses fo	r the awa	ırd of	Honou	irs or M	finor spec	cialization	

MCQ: Multiple Choice Question

AO: Assignment + Oral

OB: Open Book

PP: Pen Paper

SO: Submission+ Oral

(Deemed to be University)

 $\underline{NAAC\ Acredited\ with\ A++\ Grade}$ "compulsory registration for one online course using SWAYAM/NPTEL/ MOOC, evaluation through attendance, assignments and presentation

\$Proficiency in course/subject – includes the weightage towards ability/ skill/ competence /knowledge level /expertise attained /attendance etc. in that particular course/subject

	Mode of Teach	ning						
Theory Lab					Total Credits			
Offline	Online	Blended	Offline	PP AO MCQ			so	Total Credits
-	1	19	04	14	-	04	06	24
-	4.17%	79.17%	16.67%	58.33%	-	16.67%	25%	Credits %

(Deemed to be University)
NAAC Accredited with A++ Grade

ITEM -9

To prepare and recommend the syllabi for all *Departmental Core (DC) Courses* of B. Tech. *V Semester (for the batch admitted in 2022-23)* under the flexible curriculum along with their COs.

S.No.	Semester	Code	Name of the course
1	V	2170512	Mass Transfer-II
2	V	2170513	Chemical Reaction Engg. –II
3	V	2170514	Computational Methods in Chemical Engg.
4	V	2170515	Process Engineering & Costing

(Deemed to be University)

NAAC Accredited with A++ Grade

2170512: Mass Transfer -II

Category	Title	Code	Credit-4			Theory Paper
Departmental Core- DC	Mass Transfer-II	2170512	L	Т		Max.Marks-50 Duration-2hrs.
			2	1	1	

Course Objectives: To know the brief knowledge of different separation techniques and the design of distillation column and adsorber and calculations involved in liquid-liquid extraction and solid liquid extraction as well.

Syllabus

Unit-I Fundamentals of Mass Transfer & Leaching: Analogies in transport processes, Determination of mass transfer coefficient in co- current and counter current processes in two phase packed beds, Flooding, Loading column internals: types of trays /plates and packing, point and plate efficiency. Leaching: Solid liquid equilibrium, Equipments, Principal of leaching, Co- current and counter-current system and calculation of number of stage required

Unit-II Distillation Operations: Vapor liquid Equilibria, Boiling point diagram, Relative volatility, Flash and differential/ Batch distillation for two component mixtures, Steam distillation, Azeotropic distillation and Extractive distillation.

Unit–III Continuous and Batch Distillation: Rectification, Reflux ratio, Calculation of numbers of plates by NTU, Optimum reflux ratio, Open steam, multiple feed and multiple product calculations, Enthalpy concentration diagram, Mc-Cabe Thiele and Panchon-Savarit method for calculation of number of theoretical plates, Approximate equations, Fensky and Underwood equations, Gilliland Correlation for actual numbers of plate calculation.

Unit- IV Extraction: Liquid–Liquid equilibria, packed & spray column, conjugate curve and tie line data, plait point, ternary liquid – liquid extraction, operation and design of extraction towers, analytical & graphical solution of single and multistage operation in extraction, Co-current, counter current and parallel current system.

Unit-V Adsorption: Adsorption theories, Types of adsorbent: activated carbon, silica and molecular sieves, Batch and column adsorption, Break through curves, Liquid percolation and gas adsorption, single & multi stage gas — solid and liquid - solid adsorption calculations.

Course Outcomes: After the successful completion of this course, students will be able to **CO1: Explain** the fundamentals of adsorption, leaching, distillation, & liquid-liquid extraction.

CO2: Infer the necessary information useful in design of mass transfer equipment.

CO3: Analyze the different contacting patterns & Analogies in the transfer process.

CO4: Apply the theoretical concepts for solving the practical problems.

CO5: Interpret the equilibrium data obtained in various mass transfer operations.

CO6: Propose favorable conditions for a separation to be carried out.

Course Articulation Matrix

Cou	Course Articulation Matrix													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO ₁	3	1	2	2	2	1	2	1	2	2		2		1
CO ₂	2	2	2	1		1	2	2	2	1	1	2		1
CO ₃	2	2	2	2		2	3	1		2		2		
CO4	3	3	2	1		2	2			2		2	1	2
CO ₅	3	3	2	2			2		2	2		2		1

(Deemed to be University)

				\mathbf{N}^{E}	AAC	<u>Accre</u>	<u>dited</u>	with	$\mathbf{A}++0$	<u>Grade</u>	<u>e</u>		
CO6	3	2	1	1			2		2	2		2	1

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

- 1. R.E. Treybal, "Mass Transfer Operations", McGraw Hill
- **2.** Binay K. Dutta, "Principles of Mass Transfer and Separation Processes", PHI learning private ltd.

Reference Books

- 1. W.L. Mc Cabe, J.M. Smit, "Unit Operation in Chemical Engineering", Tata Mc Graw Hill
- 2. J.M. Coulson, J.F. Richardson, "Colson & Richardson's Chemical Engineering", Butterworth Heinemann, Oxford
- 3. T.K. Shrewood, R.L. Pigford and C.R. Wilke., "Mass Transfer", Mc- Graw Hill

(Deemed to be University)

NAAC Accredited with A++ Grade

2170513: Chemical Reaction Engineering –I

Category	Title	Code	Cred	it-4		Theory Paper
Departme ntal	Chemical Reaction	2170513	L	T		Max.Marks-50 Duration-2hrs.
Core- DC	Engineering – I		2	1	1	

Course Objectives: To examine reaction rate data and determine the rate laws for designing chemical reactors with/ without temperature and heat effects & account for non-idealities prevailing in real reactors.

Syllabus

Unit-I Basic Concepts in Chemical Reaction Engineering and Classification of reactions: Definition of reaction rate, Variables affecting the rate, Concept of reaction equilibria, Order of reaction and its determination, Theoretical study of reaction rate, collision and activated complex theories, Mechanism of series reaction, Parallel or consecutive reactions, Autocatalytic reactions, Chain reactions & Polymerization reactions.

Unit-II Reactions Kinetics and Interpretation of data: Interpretation of kinetic data, integral and differential method of analysis, variable volume reactions, total pressure method of kinetic analysis.

Unit-III Reactor Design for Single Reactions: Classification of reactors, Concept of ideality, Development of design equation s for Batch, Semi batch, Continuous Stirred Tank & Plug Flow Reactors, Design of isothermal and non isothermal Batch reactor, CSTR & PFR, Combination of reactors, Reactors with recycle.

Unit-IV Reactor Design for Multiple Reactions: Multiple Reactions in Batch, Continuous stirred tank and Plug flow reactors, Yield and selectivity in multiple reactions. **Temperature & Heat Effects:** Multiple steady states in continuous stirred tank reactor, Optimum temperature progression and thermal characteristics of reactors.

Unit- V Basics of Non-Idea Flow: Non ideal reactors, RTD, Dispersion model, Tank in Series Model, Recycle Reactor, Segregated flow, Evaluation of RTD characteristics.

Course Outcomes: After the successful completion of this course, Students will be able to:

CO1: Apply the basic concepts in the analysis of homogeneous systems and deviation from ideal behavior.

CO2: Propose the different steps in reaction mechanisms and identify the Rate-determining step.

CO3: Develop Batch, CSTR, and PFR performance equations from general material balances.

CO4: Analyze Non-Isothermal operation in industrial Reactors

CO5: Determine conversion, selectivity & yield for Multiple chemical reactions.

CO6: Analyze the Non-Ideal behavior for any flow reactor.

Course Articulation Matrix

Cou														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO ₁	3	1	2	2	2	1	2	1	2	2		2		1
CO ₂	2	2	2	1		1	2	2	2	1	1	2		1
CO ₃	2	2	2	2		2	3	1		2		2		

(Deemed to be University)

NAAC	Accredited	with A++	Grade

				111	11101	10010	arca	*****	7 3 1 1 '	JIuu	<u> </u>			
CO ₄	3	3	2	1		2	2			2	_	2	1	2
CO5	3	3	2	2			2		2	2		2		1
CO ₆	3	2	1	1			2		2	2		2		1

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

- 1. Octave Levenspiel, "Chemical Reaction Engineering", John Willey & Sons
- 2. H. S. Fogler., "Elements of Chemical Reaction Engineering", Prentice Hall of India Pvt. Ltd., New Delhi.

Reference Books

- 1. J.M. Smith, "Chemical Reaction Kinetics", McGraw Hill
 - 2. K.G. Denbigh & K.G. Turner, "Chemical Reaction Theory an Introduction", United Press & ELBS

(Deemed to be University)

NAAC Accredited with A++ Grade

2170514: Computational Methods in Chemical Engg.

Category	Title	Code	Cred	it-4		Theory Paper
Departmental Core-DC	Computational Methods in	2170514	L	Т		Max.Marks-50 Duration-2hrs.
Core De	Chemical Engg.		2	1	1	Duration 2ms.

Course Objectives: To get the exposure about finite differences and interpolation, to find numerical solutions of ordinary differential equations and unsteady state heat and mass transfer problems and also find numerical solutions of partial differential equations.

Syllabus

Unit-I Treatment of Engineering Data: Graphical representation, Empirical equation, Interpolation, Newton's formula, Lagrange's Interpolation formula, Extrapolation, Integration, Graphical integration, Graphical construction of integral curves, Numerical integration.

Unit-II Interpretation of Engineering Data: Significant figures, Classification of measurements, Propagation of error, Variation and distribution of random errors, Properties of variance, Confidence limit for small samples.

Unit-III Ordinary Differential Equation: Formulation, Application of law of conservation of mass- mixing in flow process, Classification of ordinary-differential equations and its application of common chemical engineering problems.

Unit-IV Numerical Solution of Ordinary Differential Equations: Linear second order equation with variable coefficients, Numerical solution by Runge-Kutta method and its application to higher order equations.

Unit-V Formulation of Partial Differential Equations: Finite difference, Linear finite difference equations, Non linear difference equations, Optimization types and methods, its application related to chemical processes.

Course outcomes: After the successful completion of this course, students will be able to:

CO1: Explain the mathematical problems as applied to Chemical Engineering.

CO2: Interpret the engineering data& the features of different numerical methods.

CO3: Illustrate the use of numerical methods in Chemical Engineering scenarios.

CO4: Outline the scope of optimization in chemical processes & use of numerical solution of the ODEs.

CO5: Simplify the solution of engineering problems using PDEs & ODEs.

CO6: Solve PDEs & ODEs in various physico-chemical systems.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3	3	2	2	2	1	1			2		2	2	3
CO ₂	3	2	2	2	2					2		2	1	1
CO ₃	3	3	2	2	3				2	2		2	3	3
CO4	3	3	2	2	2	1	1			2		2	2	3
CO5	3	2	2	2	2					2		2		1
CO6	3	2	2	2	3					2		2	2	2

(Deemed to be University) NAAC Accredited with A++ Grade

Text Books:

- 1. Jenson and Jeffrey's, "Mathematical Methods in Chemical Engineering", Academic Press
- 2. S. K. Gupta, "Numerical Methods for Engineers", New Academic Science

Reference Books:

- 1. H.S. Mickley, T.K. Sherwood, C.R. Reed, "Applied Mathematics in Chemical Engineering", McGraw Hill publication
- 2. Alan Myers and Warren Seider, "Introduction to Chemical Engineering and Computer Calculations", Prentice Hall.

(Deemed to be University)

NAAC Accredited with A++ Grade

2170515: Process Engineering & Costing

Category	Title	Code	Cred	it-2		Theory Paper
Departmental Core-DC	Process Engineering &	2170515	L	T		Max.Marks-50 Duration-2 hrs.
	Costing		2	-	-	Z mo.

Course Objectives: To understand the basic concepts of flow sheeting, material and energy balances and process development, To apply algorithms for feasibility and optimization of flow sheet, To gain knowledge of estimation of capital investment, , total product costs, depreciation, cash flows, and profitability, To carry out process optimization based on economic profitability by connecting economics with design principles for real chemical engineering processes.

Syllabus

Unit I: System and subsystem in process engineering, system analysis, Economic degree of freedom, various algorithms, Synthesis of processes, Flow sheeting, Mathematical representation of steady state flow sheet.

Unit II: Equal time value of money, equivalence comparisons, discrete interest and continuous interest, develop0ment of its formula, comparison of alternative investment based on capitalized cost.

Unit III: Design Criteria Terms involved in profitability analysis, Gross income, depreciation, taxes, net profit, rate of return, venture profit, payout time, break even point.

Unit IV: Time value of money, net present value and venture worth. Capital cost and manufacturing cost estimation methods, Economic analysis and evaluation. Sensitivity & risk analysis, simplifying scale –up cost estimation.

Unit V: Analysis of R&D investment, Technological Forecasting for the process industries, interaction between design and cost equation for optimal design of equipment's, inflation, energy conservation and environmental control.

Course Outcomes: After the successful completion of this course, students will be able to

- CO1 Explain the flowsheet and synthesis of process.
- CO2 Compare the various alternate methods for investments.
- CO3 **Illustrate** the various methods of depreciation and its impact.
- CO4 **Analyse** the rate of return, venture profit, payout time, breakeven point for the any investment.
 - CO5 **Describe** the capital cost and manufacturing cost estimation methods.
 - CO6 Analyze R&D investment and technological for recasting for the process industries.

Course Articulation Matrix

	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	2	3	3	2	1	1					2	2		2
CO ₂	3	2	2		2						2	2		2
CO ₃	3		2		2						2	2		
CO4	3				2						2	2		
CO5	2										2	2		
CO6		2		2										

(Deemed to be University) NAAC Accredited with A++ Grade

Text Books:

Peters, M.S. and Timmerhause, K.D. – PLANT DESIGN AND ECONOMICS FOR CHEMICAL ENGINEERS –Ed. Mc. Graw- Hill.

References:

Schwery H.E. – PROCESS ENGINEERING ECONOMICS – Mc. Graw Hill (1955)

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -10

To review and recommend the Experiment list/ Lab manual for all the Laboratory Courses to be offered in B. Tech. *V Semester* (*for batch admitted in 2022-23*)

(Deemed to be University)

NAAC Accredited with A++ Grade 2170512- Mass Transfer –II Lab

- 1. Preparation of the Vapor Liquid Equilibrium and Boiling point diagram for binary liquid mixture
- 2. Determination of relative volatility of a given system of acetic-acids water
- 3. To verify Rayleigh equation for differential distillation of binary system
- **4.** To determine height equivalent to a Theoretical Plate (HETP) of a Packed Distillation Column
- 5. To study Steam distillation Process
- **6.** To study Batch distillation Process
- 7. To study Continuous distillation Process
- **8.** Experimental study on packed tower distillation unit
- 9. Experimental study on Sieve plate distillation unit
- 10. To study Bubble cap distillation column
- 11. To estimate percentage leaching of oxalic acid from sand using water as a solvent.
- **12.** To estimate percentage leaching of oxalic acid from sand using water as a solvent using three stages cross current operation
- 13. To study the adsorption of a gas in a packed column and calculation of NTU and HTU
- 14. To perform Batch Adsorption and verify Freundlich Law and Langmuir Isotherm.

Note: Each student should perform at least eight experiments out of the above list.

After completion of this laboratory course, the student will be able to

- **CO 1**: demonstrate an understanding of mass transfer modes and models.
- **CO 2:** formulate the idea of the different types of distillation columns
- CO 3: apply principles of mass transfer phenomena to chemical process industries.
- **CO 4:** enable solving the problems on process and materials related combined mass transfer phenomena.
- **CO 5:** demonstrate surface phenomena like adsorption
- CO 6: apply comparative analysis in choice of types of plate and packing in a distillation column

(Deemed to be University)

NAAC Accredited with A++ Grade

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3	3	2	2	2	1	2	1	2	2		2	3	3
CO ₂	2	2	2	2	2				2	2	1	2	2	2
CO ₃	3	3	2	2	2					2		2	2	2
CO4	3	3	3	2	2	1	2	1	2	2		2	3	3
CO ₅	3	3	2	2	2				2	2		2	3	2
CO6	3	2	2	2	2	2	2	2	2	2	2	2	2	2

(Deemed to be University)

NAAC Accredited with A++ Grade 2170513 CHEMICAL REACTION ENGINEERING -I

- 1. To determine the rate constant of hydrolysis of an ester-catalyzed by acid.
- 2. To determine temperature dependency of rate constant evaluation of activation energy and verification of Arrhenius law.
- 3. To study a homogeneous reaction in semi- batch reactor under isothermal conditions.
- 4. To determine the order of reaction (n) and the reaction rate constant (k) for the given saponification reaction of ethyl acetate in aqueous sodium hydroxide solution in a Batch Reactor
- 5. Study of non-catalytic homogeneous saponification in CSTR.
- 6. To study a non-catalytic homogeneous reaction in a plug flow reactor.
- 7. To determine the residence time distribution behaviour of batch mix- reactor.
- 8. To determine the RTD behaviour of tubular reactor.
- 9. To determine the RTD behaviour of CSTR.
- 10. To determine the velocity rate constant of the hydrolysis of ethyl acetate by sodium hydroxide.
- 11. To determine the conversion in PFTR, for Saponification of ethyl acetate with NaOH at ambient conditions.
- 12. Determine the rate constant and order of reaction between potassium per sulfate and potassium iodide.
- 13. To study a homogeneous catalytic reaction in a batch reactor under adiabatic conditions.
- 14. Study of catalytic saponification reaction in a tubular flow reactor.

Note: Each student should perform at least eight experiments out of the above list.

After completion of this laboratory course, the student will be able to

- **CO 1:** Demonstrate the basic concepts of chemical reaction engineering like estimation of order of a reaction
- **CO 2:** Compare various reactors for a particular reaction in term of conversion and time of completion.
- **CO 3:** Analyze the Optimum temperature progression for single reaction, Isothermal, adiabatic, non adiabatic operation.
- **CO 4:** Determine the residence time distribution of fluid in vessel & concept of micro and macro mixing.
- **CO 5:** Identify related calculation and solutions to chemical reaction engineering problems for designing chemical reactors.
- **CO 6:** Design industrial scale reactor on the basis of kinetic data obtained at labscale.

(Deemed to be University)

NAAC Accredited with A++ Grade

Course Articulation Matrix

	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO ₁	3	3	2	2	2	1	1			2		2	2	3
CO ₂	3	2	2	2	2					2		2	1	1
CO ₃	3	3	2	2	3				2	2		2	3	3
CO4	3	3	2	2	2	1	1			2		2	2	3
CO5	3	2	2	2	2					2		2		1
CO6	3	2	2	2	3					2		2	2	2

(Deemed to be University)

NAAC Accredited with A++ Grade

2170514 Computational Methods in Chemical Engineering Lab

- 1. Data representation and treatment by graphical methods, pressure volume, temperature and concentration relationship for gases and their mixtures
- 2. Redlich-Kwong equation of state and other Viral equations to estimate thermodynamic properties like compressibility factor, molar volume and P-V-T relationship
- 3. Estimation of properties from empirical correlations
- 4. Estimation of critical properties from group contribution method
- 5. Measurement errors their propagation and minimization of random errors, selection of confidence limits
- 6. Numerical solutions of quadratic and linear algebraic equations using various methods on the solvers in MATLAB
- 7. Numerical solutions of batch reactor problems using Euler Algorithm
- 8. Polynomial root finding using "Newton Raphson method and Secant method"
- 9. Numerical integration by Trapezoidal rule, Simpsons 1/3rd and 3/8rd rule
- 10. Approximate solutions of ordinary differential equations by Runge-Kutta algorithm and its application in chemical engineering
- 11. Numerical solution of transient flow temperature profile of fluid using different computational methods on MATLAB solver
- 12. Mass balance problem using continuity equation applied to a dynamic system. Formation of differential equations (component balance) and their solutions

Note: Each student should perform at least eight experiments out of the above list.

After completion of this laboratory course, the student will be able to

- CO 1: solve problems of algebraic and differential equations, simultaneous equation, partial differential equations
- **CO 2:** convert problem solving strategies to procedural algorithms and to write program structures
- **CO 3:** solve engineering problems using computational techniques
- CO 4: assess reasonableness of solutions for selecting appropriate levels of solution sophistication
- CO 5: apply basics of MATLAB for solving ODE and PDE forms of modeling equations

Cou	Course Articulation Matrix													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	3	3	2	2	3	1	1	1	2	2	1	2	1	2
CO ₂	3	3	2		2				2			2	2	2
CO ₃	3	2	2		2					2		2	1	1
CO ₄	2	3	2	2	2					2		2	2	1
CO5	3	3	2	2	2					2		2	2	2
CO6	3	3	1	1	2					2		2	2	2

(Deemed to be University)

NAAC Accredited with A++ Grade

2170511: DATA SCIENCE

- 1. Introduction to Python for data analytics science
- 2. Basic Statistics and Visualization in Python by
 - a. Write a Python script to find basic descriptive statistics using summary
 - b. Write a Python script to find subset of dataset by using subset
- 3. K-means Clustering
- 4. Association Rules
- 5. Linear Regression
- 6. Logistic Regression
- 7. Naive Bayesian Classifier
- 8. Decision Trees
- 9. Simulate Principal component analysis
- 10. Simulate Singular Value Decomposition
- 11. Classification model
 - a. Install relevant packages for classification.
 - b. Choose a classifier for classification problems.
 - c. Evaluate the performance of the classifier.
- 12. Clustering model
 - a. Clustering algorithms for unsupervised classification.
 - b. Plot the cluster data using Matplotlib

Note: Each student should perform at least eight experiments out of the above list.

After completion of this laboratory course, the student will be able to

- **CO 1:** Apply the Python Programming Language.
- CO 2: Solve data science problems.
- **CO 3:** Differentiate the classification and Regression Model.
- **CO 4:** Simulate component analysis
- **CO 5:** Apply Regression to data set

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	3	3	2	2	3						1	2	1	
CO ₂	3	3	2		2							2	2	
CO ₃	3	2	2		2							2	1	
CO4	2	3	2	2	2							2	2	
CO ₅	3	3	2	2	2							2	2	
CO ₆	3	3	1	1	2							2	2	

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -11

To review and recommend the list of projects which can be assigned under the 'Skill based mini-project' category in various laboratory components based courses to be offered in B.Tech. V Semester (for the batch admitted in 2022-23).

(Deemed to be University)

NAAC Accredited with A++ Grade Skill Based Mini Projects V Semester

2170511 MC Data Science

- 1. Design an AI Healthcare Bot System using Python
- 2. Design Chronic Obstructive Pulmonary Disease Prediction System
- 3. Design College Placement System Using Python
- 4. Design Face Recognition Attendance System for Employees using Python
- 5. Design Liver Cirrhosis Prediction System using Random Forest
- 6. Design Multiple Disease Prediction System using Machine Learning
- 7. Design Secure Persona Prediction and Data Leakage Prevention System using Python
- 8. Design Stroke Prediction System using Linear Regression
- 9. Design Heart Failure Prediction System
- 10. Design Yoga Poses Detection using OpenPose
- 11. Design Credit Card Fraud Detection System Python
- 12. Design Recipe Recommendation from the Ingredients Flutter App

2170512 DC Mass Transfer -II

- 1. Design Application of distillation in extraction of essential oil
- 2. Design Application of Vapour liquid equilibrium
- 3. Design application of Mc Cabe Thiele for determining number of stages
- 4. Design role of reflux ratio in distillation column
- 5. Design comparative columns (plate vs packed) for distillation
- 6. Study of breakthrough curves with experimental runs
- 7. Designing enthalpy concentration diagram
- 8. Design Application of azeotropic distillation (positive or negative deviation)
- 9. Design Application of extractive distillation
- 10. Design Application of Batch column Adsorption

2170513 DC Chemical Reaction Engineering – I

- 1. Case study on various theories of reaction rate
- 2. Design application of variable volume reactors
- 3. Design application of batch reactor
- 4. Design application of Semi Batch reactors
- 5. Design application of continuous reactors
- 6. Design application of Optimum Temperature Progression
- 7. Design application of Recycle Reactors
- 8. Design application of Tank in Series Model
- 9. Design application of Dispersion Model
- 10. Design application of Residence time distribution

(Deemed to be University) NAAC Accredited with A++ Grade

2170514 DC Computational Methods in Chemical Engg

- 1. Design application of Interpolation in Chemical Engineering with case study
- 2. Design application of Extrapolation in Chemical Engineering with case study
- 3. Design application of Graphical Integration in Chemical Engineering with case study
- 4. Design Application of law of conservation of mass in mixing flow process
- 5. Design application of ODE to common chemical engineering problems.
- 6. Design role of Propagation of error, Variation and distribution of random error in specific chemical engineering case study
- 7. Design application of Linear second order equation with variable coefficients,
- 8. Design application of Numerical solution by Runge-Kutta method to higher order equations.
- 9. Design application of Finite difference,
- 10. Design any one Optimization method with its application related to chemical processes.

(Deemed to be University) <u>NAAC</u> Accredited with A++ Grade

To propose the list of courses from SWAYAM/NPTEL/MOOC Platforms to be offered (for batch admitted in 2022-23) in online mode under Self-Learning/Presentation, in the B.Tech. V Semester

Tentative list of Seminar/Self Study Courses V Semester

S.N	Course Name	Semester	Name of Faculty
0.	(From		
	SWAYAM/NPTEL)		
1	Natural Gas Engineering (8		
	weeks)		
2	Body Language: Key To	V Sem	Prof. Shivangi Sharma
	Professional Success (4 weeks)		Fior. Sinvangi Sharma
3.	Moral Thinking: An Introduction		
	To Values And Ethic (4 weeks)		

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (Deemed to be University) NAAC Accredited with A++ Grade

To review and finalize the *scheme structure of B.Tech*. *III Semester under* the flexible curriculum (*Batch admitted in 2023-24*)

(Deemed to be University)

NAAC Accredited with A++ Grade

Department of Chemical Engineering Scheme of Evaluation

B. Tech. III Semester For batches admitted in academic session 2023 – 24

S.	Subject	Categ	Subject Name		l		ım Mark					C	onta	ct			
No.	Code	ory Code			Theory	y Slot			Practical S	lot			ours j week	L		Mode	
		Couc			l Term luation		inuous uation	End	Contir Evalua		Total Mark	L	T	P	Total	of Teaching (Online,	\$\$Mod
				End Sem. Exam	y in subject /course	Sem. Exam.		End Sem. Exa m.	Lab Work & Session al	Skill Based Mini Projec t	s				Credits	Offline, Blended)	e of Exam.
1.	3100028	BSC	Engineering Mathematics-II	50	10	20	20	-	-	-	100	3	1	-	4	Offline	PP
2.	3170311	DC	Fluid Mechanics	50	10	20	20	40	30	30	200	2	1	2	4	Blended	PP
3.	3170312	DC	Organic Process Technology	50	10	20	20	-	-	-	100	3	-	-	3	Blended	PP
4.	3170313	DC	Chemical Engineering Thermodynamics	50	10	20	20	-	-	-	100	3	-	-	3	Blended	PP
5.	3170314	DC	Heat Transfer	50	10	20	20	40	30	30	200	3	-	2	4	Blended	PP
6.	3170315	DLC	Chemical Synthesis Lab	-	-	-	-	40	30	30	100	-	-	2	1	Offline	SO
7.	3170316	DLC	Self-learning/Presentation (SWAYAM/NPTEL/MOOC)	-	-	-	-	-	40	-	40	1	-	2	1	Online + Mentoring	SO
8.	200XXX	CLC	Novel Engaging Course (Informal Learning)	-	-	-	-	50	-	-	50	-	-	2	1	Interactive	SO
9.	3170317	DLC	Skill Internship Project (Institute Level) (Evaluation)	-	-	-	-	60	-	-	60	-	-	4	2	Offline	SO
		T	otal	250	50	100	100	230	130	90	950	14	2	14	23	-	-
10.	3000002	Natural Sciences & Skills	Engineering Chemistry	50	10	20	20	30	10	10	150	1	-	2	GRADE	Blended	MCQ
11.	1000001	MAC	Indian Constitution & Traditional Knowledge	50	10	20	20	-	-	-	100	2	-	-	GRADE	Blended	MCQ

^{\$} proficiency in course/subject-includes the weightage towards ability/skill/competence/knowledge level/ expertise attained etc. in that particular course/subject.

Natural Sciences Skills: Engineering Physics / Engineering Chemistry / Environmental Science/ Language (Credits of Natural Sciences & Skills will be added in the VI Semester)

\$\$MCQ: Multiple Choice Question \$\$AO: Assignment + Oral \$\$PP: Pen Paper\$\$SO: Submission + Oral

Mode of Teaching Mode of Examination Total Credits

(Deemed to be University)

NAAC Accredited with A++ Grade

	Theory		Lab		Theory		Lab	
Offline	Online	Blended	Offline	PP	AO	мсо	so	
18	-	02	03	18	-	-	05	23
78.26%	-	8.7%	13.04%	78.26%	-	-	21.74%	Credits %

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -14

To review and finalize the syllabi for all Departmental Core (DC) Courses of *B. Tech. III Semester* (for batch admitted in 2023-24) under the flexible curriculum along with their COs.

(Deemed to be University)

NAAC Accredited with A++ Grade

3170311: FLUID MECHANICS

Category	Title	Code	Credi	its-4		Theory Paper
Departmental Core-DC	Fluid Mechanics	3170311	L	T	P	Max.Marks-50 Duration-2hrs.
			2	1	2	

Course Objective:

To understand the basic concept of fluid flow and its application to chemical process industries including pipe flow, fluid machinery like pumps and various flow meters.

Syllabus:

Unit –I: Introduction: Properties of fluid, forces on fluid, stresses, the concept of constitution relations, fluid statics, Normal forces in fluid, pressure measurement, forces on submerged bodies, buoyancy, Stability.

Unit-II: Classification of Fluids: Newtonian and Non – Newtonian fluid, Viscosity measurement, Equations of changes: Equation of Continuity & Equation of Motion, Navier stokes equation, concept of Reynolds number and friction factor: friction for rough and smooth pipes, loss of head due to friction in pipes and fittings.

Unit-III: Boundary layer theory, Bernoulli's equation, fluid machinery, pumps, fans, blowers, compressors and vacuum pumps, Power and head requirement for pumps.

Unit-IV: Flow of incompressible fluid in conduits and thin layers, flow past immersed bodies, Dimensional analysis, Buckingham π - Theorem, dimensionless numbers and their significance, similitude criteria.

Unit-V: Measurement of Flow: Fluid flow Measurement pitot tube, orifice meter, venture meter, rotameter, weirs and notches.

Course Outcomes: After the completion of this course, Students will be able to

- **CO1** Explain the fundamentals of fluid statics & fluid flow.
- **CO2** Estimate pressure drops, forces acting on bodies & power and head requirements of pumps.
- **CO3** Apply equations of change to various fluid flow systems.
- **CO4** Formulate the interdependence of various parameters using dimensional analysis.
- **CO5 Determine** the flow rate through different flow measuring devices.
- **CO6** Examine the losses due to friction in pipes and other fluid machinery.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO ₁	3	3	2	1	2					3		2		1
CO ₂	3	3	3	1		1		1	1	2	1	2	2	2
CO ₃	3	2	2	2	2	1	1		1	2	1	2	2	2
CO4	3	2	2	2	2	1	1			1	1	1	1	2
CO5	3	3	2	1	1	1				1	1	2	1	
CO6	3	3	1	2	2				1	2	1	2	1	1

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

1.W.L. McCabe & J.C. Smith- UNIT OPERATIONS IN CHEMICAL ENGG- $7^{\rm rd}$ edition McGraw Hill.

Reference Books

- 1. J.M. Coulson & J.F. Richardson- Chemical Engineering- Vol I & II.
- 2. B.S. Maney, Zel(SI) Van Nostand & Reinhold- Mechanics of Fluid-ELBS, 1970.
- 3. I. Grannet- Fluid Mechanics for Engineering and Technology.
- 4. S.K. Gupta- Momentum Transfer- New Age Publication

(Deemed to be University)

NAAC Accredited with A++ Grade

3170312: ORGANIC PROCESS TECHNOLOGY

Category	Title	Code	Cred	its-3		Theory Paper
Departmental Core-DC	Organic Process Technology	3170312	L	T	P	Max.Marks-50 Duration-2hrs.
			3	0	0	

Course Objective:

The purpose of the organic process technology course is to improve knowledge of the chemical processes along with emphasis on recent technological development.

Syllabus:

Unit-I: Pulp and paper industry-Raw Materials, types of pulp and its preparation, Manufacturing of paper, Agro based industries, Fermentation industry, Alcohol by fermentation, Citric acid and Antibiotics like Penicillin.

Unit-II: Intermediates for petrochemicals from petroleum based stocks, phenol, methanol, ethylene propylene, aromatic, toluene and xylene, polymer industries.

Unit-III: Preparation, manufacturing and properties of Fats and oil, man made fiber; rayon, polyester polyamides and acrylics, cellulose and acetate, Rubber industries, Soap and detergent. Insecticides and pesticides, Dyes and dyes intermediate.

Unit-IV: Carbon Technology: Introduction, Classification of activated carbons, raw materials and manufacture of activated carbons, classification of carbon fibers, precursors for carbon fibers, manufacture of carbon fibers from polyacrylonitrile, manufacture of carbon black by furnace black process, applications.

Unit-V: Nanotechnology: Introduction, properties of Nanoparticles like optical properties, reactivity, synthesis, Introduction, Structure and properties of carbon Nanotubes and fabrication of carbon nanotubes & applications.

Course Outcomes: After the completion of this course, Students will be able to

CO1: **Explain** the processing of natural products.

CO2: Describe microbial processes and edible oil refining process.

CO3: **Elaborate** the processes for producing petrochemicals.

CO4: **Characterize** polymers and elaborate its production processes.

CO5: **Describe** the production processes of fibers.

CO6: Evaluate the different processes from economical aspects.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3	1	2	1	1	1	2	1	1	2		2		1
CO ₂	2	2	2	1		1	2	2	2	1	1	2		1
CO ₃	2	2	2	2		2	3	1		2		2		
CO4	3	3	2	1		1	1			2		2	1	2
CO5	3	2	1	1			2		2	2		2		1
CO6	3	2	1	1			2		2	2		2		1

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

- 1. Austin, G.T. Shreve's Chemical Process Industries -5th edition McGraw Hill New York 1984.
- 2. Dryden C.E., Outlines of chemical technology-3rd edition affiliated East West Press, New Delhi, 1997.

Reference Books

1.V. B. Gupta & V.K. Kothari- Manufacturing Fiber Technology- Chapman Hall, New York I

(Deemed to be University) NAAC Accredited with A++ Grade

edition 1997.

2. V.K. Kothari-Process in Textile, science Technology, Vol –I & II –IAFL publication, S-351 Greater Kailash part-I New Delhi.-48 Ed.

(Deemed to be University)

NAAC Accredited with A++ Grade

3170313: Chemical Engineering Thermodynamics

Category	Title	Code	Cred	it-3		Theory Paper
Departmental	Chemical	3170313	L	T	P	Max.Marks-50
Core-DC	Engineering					Duration-2hrs.
	Thermodynamics		3	0	0	

Course Objective:

To understand the basic concepts and applications of classical thermodynamics, thermodynamic properties, equations of state, methods used to describe and predict phase and chemical equilibria.

Syllabus

Unit- I The First law of Thermodynamics and Equations of State: Steady and unsteady closed and flow process, Critical properties corresponding state, Compressibility, P-V-T behavior of pure fluids, Virial-equations, Generalized correlations and eccentric factor.

Unit-II The Second and Third Law of Thermodynamics: Entropy of various systems, Thermodynamics equations, Effect of pressure on specific heat, Joule-Thompson effect, Third law of thermodynamics, Compression of ideal gas, Refrigeration capacity, Carnot cycle, Vapor compression cycle, Air refrigeration cycle.

Unit-III Thermodynamic Properties of Fluids: Thermodynamic properties of homogeneous mixtures, Property relations for systems of variable compositions, Partial properties, Fugacity and Fugacity coefficient in ideal solutions, Properties change of mixing, Activity, Heat effects of mixing process, Excess properties, Activity coefficient of gaseous mixtures.

Unit-IV Phase Equilibria: Criteria of phase equilibrium and stability, Phase equilibrium in single component system, Phase rule, Gibbs-Duhem's equation, Vapor-liquid equilibria.

Unit- V Chemical Reaction Equilibria: Chemical potential, Effect of pressure and temperature on heat of reaction and on free energy, Van't Hoff's equation, Clausius-Clapeyron equation, Chemical Reaction Equilibria and its applications

Course Outcomes: After the successful completion of this course, students will be able to

CO1: infer the fundamental concepts of thermodynamics to chemical engineering applications.

CO2: explain the first and second laws of thermodynamics with their practical implications.

CO3: analyze the processes involving refrigeration and compression.

CO4: classify the thermodynamic properties of solutions with their relationships.

CO5: infer the detail of vapor liquid equilibria and its use in practical situations.

CO6: analyze the chemical equilibrium with thermodynamics for predicting behavior of reacting systems.

Course Articulation Matrix

	PO1	PO ₂	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO ₁	3	2	2	2	2					2		2	1	1
CO ₂	2	2	1	2					1	2		2		
CO ₃	3	2	2	2	1		1			2		2	1	2
CO4	3	3	2	2	1					1		1	2	1
CO5	3	3	3	2	2		1		1	1	1	2	2	2
CO6	3	2	2	2	1					1		1	1	1

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

- 1. Smith J.M. & Van Ness., "Introduction to Chemical Engineering Thermodynamics", McGraw Hill
- 2. Sandler, S.I., "Chemical Engineering Thermodynamics", John Wiley & Sons
- 3. Dodge B.F., "Chemical Engineering Thermodynamics", McGraw Hill
- 4. Narayanan K.V., "Chemical Engineering Thermodynamics", Prentice Hall India Learning Private Limited

Reference Books

(Deemed to be University)

- NAAC Accredited with A++ Grade

 1. Balzhiser, Samuels and Eliassen, "Chemical Engineering Thermodynamics", Prentice Hall.
- 2. Rao Y.V.C, "Chemical Engineering Thermodynamics", University Press (I) Ltd., Hyderabad
- 3. Kyle B.G., "Chemical Process Thermodynamics", Prentice Hall of India Pvt. Ltd., New Delhi

(Deemed to be University)

NAAC Accredited with A++ Grade

3170314: HEAT TRANSFER

Category	Title	Code	Cred	Credits-4		Theory Paper
Departmental Core-DC	Heat Transfer	3170314	L	T	P	Max.Marks-50 Duration-2hrs.
			2	1	2	

Course Objective:

To understand the fundamentals of heat transfer mechanisms in fluids and solids and their applications in various heat transfer equipment in process industries.

Syllabus:

Unit – I: Modes of heat transfer one-dimensional and two dimensional, heat rate equations, theory of insulation, critical radius calculations, types of insulation material, conduction through slab, cylindrical and sphere.

Unit-II: Consecutive heat transfer, heat transfer in boundary layer and in film, natural and forced convection, co/ counter /cross current contacting for heat transfer, individual and overall heat transfer coefficient, fouling factor.

Unit- III: Radiative heat transfer, Black body radiation, concept of shape factor, method of determination of shape factor, radiation exchange in enclosure with black surfaces.

Unit-IV: Heat transfer under phase change conditions, boiling and condensation of pure components, heat flux temperature diagram for boiling and condensation under vertical and horizontal surfaces, nucleate and pool boiling, effect of surface condition of condensation, correlation for heat transfer under condensation. Evaporation: Types of evaporators and their applications, single and multiple effect evaporators, Design and operation of forward, backward and mixed feed operations, effect of boiling point elevation and hydrostatic heat vapor recompression.

Unit- V: Heat exchange equipment- General design of shell and tube exchangers, condensers, extended surface equipment, heat exchanger equation – coli to fluid, jacket to fluid, double pipe, shell and finned tube heat exchanger.

Course Outcomes: After the completion of this course, Students will be able to

CO1: Explain the mechanism of heat transfer by conduction, convection and radiation.

CO2: List dimensionless Numbers applicable in heat transfer and their physical significance.

CO3: Illustrate individual and overall heat transfer coefficient.

CO4: Explain all parts of the Heat Exchangers and Evaporators.

CO5: **Analyze** the design of various types of Heat exchangers.

CO6: Analyze the design of various types of Evaporators.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	2	3	2	2	2	2	2	1	1	2		2	2	2
CO ₂	1	2	2	1	1					2		2	2	2
CO ₃	3	3	2	2	2		1			2		2	3	3
CO4	2	1	2	1			1		1	2		2	1	1
CO5	3	1	2	2	2	1	1	1	2	2	1	2	2	2
CO6	3	1	2	2	2	1	1	1	2	2	1	2	2	2

1 - Slightly; 2 - Moderately; 3 – Substantially

Text Books

1. J. P. Holman – Heat Transfer – P.H.I.

Reference Books

- 1. Donald Q. Kern- Process Heat Transfer- Tata Mc Graw Hill.
- 2. Alan J. Chapman- Heat Transfer IV ED. Collier Mc. Millan

(Deemed to be University)
NAAC Accredited with A++ Grade

ITEM -15

To review and recommend the list of experiments and skill-based mini projects of *B.Tech. III semester* (for batch admitted in 2023-24

(Deemed to be University) NAAC Accredited with A++ Grade

3170311: FLUID MECHANICS

List of Experiments:

- 1. To determine the local point pressure with the help of pitot tube.
- 2. To find out the terminal velocity of a spherical body in water.
- 3. To determine the viscosity of a spherical body in water.
- 4. To find the pressure drop in a packed bed,
- 5. To study the flow behavior of a Non-Newtonian fluid and to determine the flow constants.
- 6. To determine the power number- Reynolds Number curve.
- 7. To differentiate between laminar and turbulent flow using Reynolds experiments.
- 8. To study the characteristics of an air compressor.
- 9. To study the characteristics of a centrifugal pump.
- 10. To study the flow of a fluid in a pipeline and to prepare the friction factor-NRe plot.
- 11. To determine the friction losses, expansion losses and reduction losses in bends and pipes and verify the Bernoulli equation.
- 12. To prepare the calibration curve for an orifice meter and Rotameter.
- 13. To prepare the calibration curve for a Venturimeter.

Note: Every student should perform at least eight experiments out of the above list.

Lab Course Outcomes

After the completion of this lab course, Students will be able to

- CO1 Analyze the effects of flow measurement by flow measuring devices.
- CO2 Calculate the degree of error in discharge rate of rotameter.
- CO3 Calculate the coefficient of discharge for venturimeter and orifice meter.
- CO4 Calculate the coefficient of discharge for notches & weirs.
- CO5 Analyze the losses in pipe fittings & pressure drop in packed bed
- CO6 Analyze transportation of fluids via pumps & other devices.

Course Articulation Matrix

Course Articulation Matrix														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1	3	3												2
CO ₂	3	3	3	3										2
CO ₃	3	3	3	3										2
CO ₄		3		3										2
CO5		3	3	3										2

(Deemed to be University)

_	NAAC Accredited with A++ Grade														
	CO6	3	3	2	3										2

^{1 -} Slightly; 2 - Moderately; 3 – Substantially

(Deemed to be University)

NAAC Accredited with A++ Grade

3170311: FLUID MECHANICS

Skill Based Mini Project

- 1. Study of fluid flow through a pipe with a sudden expansion or contraction.
- 2. Analysis of laminar and turbulent flow in a pipe using computational fluid dynamics (CFD) software.
- 3. Design and fabrication of a wind tunnel to study the flow around a model of a car or airplane.
- 4. Study of the flow characteristics of a fluid in a rotating tank.
- 5. Analysis of heat transfer in a fluid flow using computational software.
- 6. Investigation of the flow of a fluid through a packed bed of particles.
- 7. Design and fabrication of a water turbine to study the effects of blade shape on turbine efficiency.
- 8. Study of the flow of a fluid through a porous medium.
- 9. Study of Bird Flight Aerodynamics
- 10. Drag Estimations on Experimental Aircraft

(Deemed to be University)

NAAC Accredited with A++ Grade 3170314: HEAT TRANSFER

List of Experiments:

- 1. To determine the thermal conductivity of metal rod.
- 2. To determine the equivalent thermal conductivity of composite wall.
- 3. To determine heat transfer coefficient in forced convection.
- 4. To determine heat transfer coefficient in natural convection.
- 5. To determine heat transfer coefficient with the help of Stephan Boltzman Apparatus.
- 6. To calculate emissivity of the test plate by emissivity measurement apparatus.
- 7. To determine heat transfer coefficient in double pipe heat exchangers.
- 8. To study the heat transfer characteristics of a shell and tube heat exchanger (Heating / cooling) of water.
- 9. To determine heat transfer coefficient in counter and parallel flow heat exchanger.
- 10. To measure the rate of evaporation using an open pan evaporator.
- 11. To measure the rate of condensation of pure water vapor and to determine the heat transfer coefficient.
- 12. Demonstrate the film wise, drop wise condensation and determination of heat transfer coefficient.
- **13.** To study the single effect evaporator and find out the heat transfer coefficient.

Note: Each student should perform at least eight experiments out of the above list.

Lab Course Outcomes

After the completion of this lab course, Students will be able to

CO1: Analyze the modes of heat transfer conduction, convection and radiation

CO2: Apply various experimental heat transfer correlations in engineering applications

(Deemed to be University)

NAAC Accredited with A++ Grade CO3: Evaluate the thermal analysis and sizing of heat exchangers.

CO4: Evaluate the emissivity of materials

CO5: Demonstrate the thermal conduction in metal rod

CO6: Infer the application of heat exchanging equipment in chemical process industries.

Course Articulation Matrix

				I		I			I			I		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂
CO1	3	3		2			3		2	2	2			
CO ₂	3	2		2			3	2	2	2	2		3	
CO ₃	3	3												
CO4	3	3		2			2	3	2	2	2		3	
CO5	3			2				2	3	3	2		3	
CO6	3			2				2	3	3	2		3	

^{1 -} Slightly; 2 - Moderately; 3 – Substantially

(Deemed to be University)

NAAC Accredited with A++ Grade

3170314: HEAT TRANSFER

Skill Based Mini Project

- 1. Based on the general operation happening near you, differentiate between various modes of Heat transfer.
- 2. Estimate the heat transfer rate within solid metal rod.
- 3. Estimate the various factors that are responsible for fouling in Heat Exchangers.
- 4. Compare the emissivity of two different metal plates/rod.
- 5. List out the different blackbody materials available around us and compare the radiation laws proposed for black bodies
- 6. Illustrate the different condensation process.
- 7. Demonstrate the film wise, drop wise condensation.
- 8. Demonstrate and interpret of Evaporation process of two different fluid.
- 9. Differentiate the Heat transfer and Thermodynamics with appropriate example/s
- 10. Compare the various types of industrial Heat Exchangers
- 11. Explain the importance of Heat transfer in your daily life and industrial aspect.
- 12. List out the thermal conductivity of the various materials (industrial aspect) and compare other properties.
- 13. Perform Greenhouse effect experiment –Climate change in a Jar

(Deemed to be University)

NAAC Accredited with A++ Grade

3170315: CHEMICAL SYNTHESIS LAB

Course Objective

The aim of this course is to give you exposure to advanced synthetic techniques, introduce you to chemical literature searches, give you experience following and expanding on literature preparations, provide you with an opportunity to improve your technical writing.

List of Experiments:

- 1. To determine BOD & COD for given wastewater sample.
- 2. Preparation of acetic acid from ethyl alcohol.
- 3. To find out the sucrose content in aqueous solution by polarimeter.
- 4. To evaluate the viscosity of molasses.
- 5. To determine the percentage of formaldehyde in formalin.
- 6. To determine iodine value of the given oil sample.
- 7. To determine the acetic acid, ethanol concentration in aqueous solutions.
- 8. To prepare azo dye and find the yield.
- 9. Prepare a standard phenol solution and estimate the percentage of phenol in the given unknown sample of phenol.
- 10. To prepare urea formaldehyde resin and report percentage conversion.
- 11. To determine total dissolved and suspended solids in water and waste water
- 12. To determine turbidity in water and waste water
- 13. To determine hardness of water

Note: Each student should perform at least eight experiments out of the above list.

Course Outcomes: After the completion of this course, Students will be able to

- CO1. Research a specific compound, or a family of compounds, to propose a synthetic route for isolation of this compound.
- CO2. Perform advanced manipulations of apparatus relevant to a synthetic chemistry laboratory; use a Schlenk line to synthesize oxygen- and moisture-sensitive products.

(Deemed to be University)

- NAAC Accredited with A++ Grade
 CO3. Characterize chemical compounds using modern spectroscopic techniques.
- CO4. Maintain a laboratory notebook following scientific best practices.
- CO5. Communicate findings in a format consistent with the scholarly standards of the chemical sciences.
- CO6. Articulate and follow ethical principles in a scientific context, including professional standards of laboratory practice, the communication of literature research without plagiarism, and the crediting of collaborators.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO ₁	PSO ₂
CO1				2			3		2	2	2			
CO ₂				2			3	2	2	2	2		3	
CO ₃														
CO4				2			2	3	2	2	2		3	
CO5				2				2	3	3	2		3	
CO6				2				2	3	3	2		3	

(Deemed to be University)

NAAC Accredited with A++ Grade

3170315: CHEMICAL SYNTHESIS LAB

Skill Based Mini Project

- 1. Develop laboratory setup to learn principles of cellulose fiber spinning according to the viscose process
- 2. Synthesis and application of Indigo dye
- 3. Synthesis of fuel from rapeseed oil
- 4. Synthesis of biodiesel from waste cooking oil
- 5. Synthesis of Alum from waste beverage cans
- 6. Quantitative determination of functional groups like Acid, Phenol, Nitro, Amino, Ester,

Hydroxy, Aldehyde.

- 7. Organic Preparations and purification through activated charcoal treatment/ crystallization (Single/ two-step) of the following; (1) Acetanilide, (2) p-Nitro- Acetanilide, (3) p- Bromo-Acetanilide, (4) Aspirin, (5) m- Dinitrobenzene, (6) Oxalic Acid.
- 8. To perform Esterification reaction
- 9. To perform Sulfonation reactions
- 10. To synthesize emulsion polymer using emulsion polymerization set up

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -16

To propose the list of courses from SWAYAM/NPTEL/MOOC Platforms to be offered in the *B.Tech .III Semester (for batches admitted in 2023-24)* in online mode under *Self-Learning/Presentation*.

Tentative list of Seminar/Self Study Courses in III

S.No.	Course Name (From SWAYAM/NPTEL)	Semester	Name of Faculty
1	Ethics in Engineering Practise (8 weeks)		
2	Mechanical Operations (4 weeks)	III Sem	Prof. Shivangi Sharma
3	Water, Society & Sustainability (4 weeks)		

(Deemed to be University)
NAAC Accredited with A++ Grade

ITEM -17

To review and recommend the *Scheme structure* & *Syllabi* of **PG Programme** (M.E./M.Tech./MCA/MBA) along with their Course Outcomes (COs)

(Not Applicable)

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -18

To review and recommend the *Scheme structure and Syllabus* of **Ph.D. Course Work** (specific to Doctoral Research Scholars, if any)

(Not Applicable)

(Deemed to be University)
NAAC Acredited with A++ Grade

ITEM -19

To review the CO attainments, to identify gaps and to suggest corrective measures for the improvement in the CO attainment levels for all the courses taught during July-Dec 2023 session.

Madhav Institute of Technology & Science, Gwalior

(Deemed to be University)

Chemical Engineering

Course Outcome Attainment & Gap Analysis of July - Dec 2023 Semester

					CO) Attainm				
S. No.	Name of the Course &Code		Course Outcomes	Direct attainment	Indirect attainment	Overall	Target	Gap	Status	Corrective Actions
		CO1	Differentiate between various Fuels	2.6	2.6	2.6	2.2	-0.4	Attained	Case study can be given
		CO2	Analyze Quality Control Parameters fordifferent types of fuels	2.3	2.4	2.32	2.2	-0.12	Attained	Questions with more difficulty level to beincluded
1	Fuel Technology	CO3	Develop process flow for petroleum fuel.	2.4	2.4	2.4	2.2	-0.2	Attained	Explanation should be correlated with industry
	(3170121)	CO4	Analyze the major engineering problems involved in the process.	2.4	2.5	2.42	2.2	-0.22	Attained	Explanation should begiven with more illustrations
		CO5	Make interpretation about the renewableenergy sources.	2.8	2.7	2.78	2.2	-0.58 Attained Explanation should be given with more illustrations -0.2 Attained Seminar Presentation tobe taken Attained Seminar Presentation tobe taken		
		CO6	Explain the current status of fuel consumption and requirement in India.	2.3	2.6	2.4	2.2	-0.2	Attained	Seminar Presentation tobe taken
		CO1	Explain the processing of natural products	2.4	2.8	2.48	2.3	-0.18	Attained	Seminar Presentation tobe taken
		CO2	Describe about microbial processes andedible oil refining process	2.4	2.6	2.44	2.3	-0.14	Attained	Assignments to beincluded
		CO3	Elaborate the processes for producing petrochemicals	2.3	2.5	2.34	2.3	-0.04	Attained	Mini project to be included
2	Organic Process Technology (2170312)	CO4	Characterize polymers and elaborate itsproduction processes.	2.4	2.5	2.42	2.3	-0.12	Attained	Questions with moredifficulty level to be included
		CO5	Describe the production processes offibers	2.5	2.6	2.52	2.3	-0.22	Attained	Quiz to be included
		CO6	Evaluate the different processes fromeconomical aspects	2.3	2.6	2.36	2.3	-0.06	Attained	Case study can be given
	Fluid Machanias	CO1	Explain the basic fundamentals of fluidstatics & fluid flow.	2.7	2.6	2.68	2.7	0.02	Not Attained	Application basedtutorial to be given
3	Fluid Mechanics (2170311)	CO2	Estimate pressure drops, forces acting on bodies & power and head requirements of pumps.	2.8	2.7	2.78	2.7	-0.08	Attained	Numerical based quizzesto be given

		CO3	Apply equations of change to various fluidflow systems.	2.7	2.7	2.7	2.7	0	Attained	Application basedtutorial to be given
		CO4	Formulate the inter-dependency of various parameters using dimensional analysis.	2.9	3	2.92	2.7	-0.22	Attained	Explanation should begiven with more illustrations
		CO5	Determine the flow rate through different flow measuring devices.	2.7	2.8	2.72	2.7	-0.02	Attained	Teaching along with experimentation
		CO6	Examine the losses due to friction in pipesand other fluid machinery.	2.9	2.6	2.84	2.7	-0.14	Attained	Mini project to beincluded
		CO1	Analyze the effects of flow measurement by flow measuring devices.	2.7	2.5	2.66	2.4	-0.26	Attained	Skill based project to begiven
		CO2	Calculate the degree of error in dischargerate of rotameter.	2.8	2.7	2.78	2.4	-0.38	Attained	Practical demonstrations to be given
4	Fluid Mechanics Lab	CO3	Calculate the coefficient of discharge forventurimeter and orifice meter.	2.7	2.5	2.66	2.4	-0.26	Attained	
	(2170311)	CO4	Calculate the coefficient of discharge forrectangular notch.	2.9	2.8	2.88	2.4	-0.48	Attained	Skill based project to begiven
		CO5	Calculate the coefficient of discharge fortriangular notch.	2.6	2.7	2.62	2.4	-0.22	Attained	
		CO6	Calibrate the flow measuring instruments.	2.4	2.4	2.4	2.4	0	Attained	Practical demonstrations to be given
		CO1	Infer the fundamental concepts of thermodynamics to chemical engineering applications.	2.8	3	2.84	2.6	-0.16	Attained	Weekly quizzes to beconducted
		CO2	Explain the first and second laws of thermodynamics with their practical implications.	2.6	3	2.68	2.6	-0.08	Attained	Application basedtutorial to be given
5	Chemical	CO3	Analyze the processes involving refrigeration and compression.	2.4	2.6	2.44	2.6	0.16	Not Attained	Practice problems to begiven
	Engineering Thermodynamics (2170313)	CO4	Classify the thermodynamic properties of solutions with their relationships.	2.8	2.5	2.74	2.6	-0.14	Attained	Tutorial to be given along with practice problems
		CO5	Infer the detail of vapour liquid equilibria and its use in practical situations.	2.5	2.8	2.56	2.6	0.04	Not Attained	Analysis based questions to be given
		CO6	Analyze the chemical equilibrium with thermodynamics for predicting behavior ofreacting systems.	2.6	2.7	2.62	2.6	-0.02	Attained	Analysis based questions to be given
		CO1	Explain the mechanism of heat transfer by conduction, convection and radiation.	2.7	2.9	2.74	2.2	-0.54	Attained	Tutorial to be givenalong with practice problems
6	Heat Transfer (2170314)	CO2	List dimensionless Numbers applicable inheat transfer and their physical significance.	2.6	2.8	2.64	2.2	-0.44	Attained	Case study can be given
		CO3	Illustrate individual and overall heat transfer coefficient.	2.7	2.9	2.74	2.2	-0.54	Attained	Seminar presentation tobe included

		CO4	Explain all parts of the Heat Exchangers and Evaporators.	2.8	2.7	2.78	2.2	-0.58	Attained	Teaching along with experimentation
		CO5	Analyze the design of various types of Heatexchangers.	2.6	2.8	2.64	2.2	-0.44	Attained	Mini project work to begiven
		CO6	Analyze the design of varioustypes of Evaporators.	2.4	3	2.52	2.2	-0.32	Attained	Analysis based questions to be given
		CO1	Describe the modes of heat transfer conduction, convection and radiation.	3	2.5	2.9	2.5	-0.4	Attained	More sessions on virtuallabs to be conducted
_	Heat Transfer Lab	CO2	Analyze the application of various experimental heat transfer correlations in engineering applications.	2.9	2.4	2.8	2.5	-0.3	Attained	More sessions on virtuallabs to be conducted
7	(2170314)	CO3	Evaluate the thermal analysis and sizing of heat exchangers.	2.5	2	2.4	2.5	-0.1	Attained	More sessions on virtuallabs to be conducted
		CO4	Evaluate the emissivity ofmaterials	3	2.6	2.92	2.5	-0.42	Attained	More sessions on virtuallabs to be conducted
		CO5	Study the thermal conduction in metal rod	2.7	2.3	2.62	2.5	-0.12	Attained	More sessions on virtuallabs to be conducted
		CO6	Explain the application of heat exchanging equipment in chemical process industries.	2.9	2.3	2.78	2.5	-0.28	Attained	More sessions on virtuallabs to be conducted
		CO1	Research a specific compound, or a family of compounds, to propose a synthetic route for isolation of this compound.	2.3	2.4	2.32	2.3	-0.02	Attained	Application based explanation to be given
		CO2	Perform advanced manipulations of apparatus relevant to a synthetic chemistrylaboratory, use a Schlenk line to synthesize oxygen- and moisturesensitive products.	2.4	2.3	2.38	2.3	-0.08	Attained	Practical demonstrationsto be given
8	Chemical Synthesis	CO3	Characterize chemical compounds using modern spectroscopic techniques.	2.5	2.4	2.48	2.3	-0.18	Attained	Practical demonstrations to be given
0	Lab(2170315)	CO4	Maintain a laboratory notebook followingscientific best practices.	2.6	2.8	2.64	2.3	-0.34	Attained	Practical demonstrations to be given
		CO5	Communicate findings in a format consistent with the scholarly standards of the chemical sciences.	2.7	2.6	2.68	2.3	-0.38	Attained	Practical demonstrationsto be given
		CO6	Articulate and follow ethical principles in a scientific context, including professional standards of laboratory practice, the communication of literature research without plagiarism, and the crediting of collaborators	2.5	2.3	2.46	2.3	-0.16	Attained	Practical demonstrationsto be given
9	Data Science (170511)	CO1	Define different Data Science techniques.	2.7	3	2.76	2.2	-0.56	Attained	Analysis based questions to be given

		CO2	Illustrate various tools used for Data Science technique.	2.8	3	2.84	2.2	-0.64	Attained	Mini project to be given
		CO3	Apply data visualization techniques to solve real world problems.	2.7	3	2.76	2.2	-0.56	Attained	Analysis based questions to be given
		CO4	Build exploratory data analysis for Data Science methods.	2.5	3	2.6	2.2	-0.4	Attained	Analysis based questions to be given
		CO5	Apply Data Science techniques for solvingreal world problems.	2.4	3	2.52	2.2	-0.32	Attained	Analysis based questions to be given
		CO6	Evaluate the performance of algorithms indata science.	2.4	2.8	2.48	2.2	-0.28	Attained	Application basedtutorial to be given
		CO1	Examine the basics of adsorption, leaching, distillation, liquid-liquid extraction & the principle of diffusion underlying them.	2.7	2.8	2.72	2.7	-0.02	Attained	Explanation should begiven with more illustrations
		CO2	Infer the necessary information useful in design of mass transfer equipment.	2.8	3	2.84	2.7	-0.14	Attained	Practical problems to begiven
10	Mass Transfer - II (170512)	CO3	Analyze the different contacting patterns & Analogies in transfer process.	2.8	2.8	2.8	2.7	-0.1	Attained	Explanation should begiven with more illustrations
		CO4	Apply the theoretical concepts for solvingpractical problems.	2.6	2.7	2.62	2.7	0.08	Not Attained	Analysis based questions to be given
		CO5	Interpret the equilibrium data obtained invarious mass transfer operations.	2.6	2.8	2.64	2.7	0.06	Not Attained	Analysis based questions to be given
		CO6	Propose favourable conditions for a separation to be carried out.	2.7	2.5	2.66	2.7	0.04	Not Attained	Tutorial to be given along with practice problems
		CO1	Design calculation of distillation column	2.4	2.8	2.48	2.4	-0.08	Attained	More sessions on virtuallabs to be conducted
		CO2	Estimation of number of theoretical stages and composition of each plate	2.7	2.6	2.68	2.4	-0.28	Attained	More sessions on virtuallabs to be conducted
11	Mass Transfer - II	CO3	Analyze the separation by adsorption anddesign of adsorber	2.7	2.5	2.66	2.4	-0.26	Attained	More sessions on virtuallabs to be conducted
11	Lab(170512)	CO4	Design the spray and packed tower separation by liquid liquid extraction	2.6	2.8	2.64	2.4	-0.24	Attained	More sessions on virtuallabs to be conducted
		CO5	Analyze the separation by leaching	2.6	2.7	2.62	2.4	-0.22	Attained	More sessions on virtuallabs to be conducted
		CO6	Analyze the industrial application of separation equipments in process plant	2.5	2.6	2.52	2.4	-0.12	Attained	More sessions on virtuallabs to be conducted
12	Chemical Reaction Engineering - I (170513)	CO1	Apply the basic concepts in the analysis of homogenous system and deviation from ideal behavior.		2.7	2.54	2.5	-0.04	Attained	Assignment to be given

		CO2	Explain the different steps in reaction mechanisms and identify the Ratedetermining step.		2.8	2.64	2.5	-0.14	Attained	Explanation should begiven with more illustrations
		CO3	Develop Batch, CSTR, and PFR performance equations from general material balances.		2.6	2.76	2.5	-0.26	Attained	Application basedtutorial to be given
		CO4	Analyze Non-Isothermal operation inindustrial Reactors	2.3	2.6	2.36	2.5	0.14	Not Attained	Explanation should begiven with more illustrations
		CO5	Determine conversion, selectivity & yieldfor Multiple chemical reactions.	2.5	2.8	2.56	2.5	-0.06	Attained	More practice numerical problems to be given
		CO6	Discuss the Non-Ideal Behaviour for anyflow reactor.	2.4	2.7	2.46	2.5	0.04	Not Attained	Explanation should begiven with more illustrations
		CO1	Analyze the chemical reactors and reaction systems.	2.6	2.7	2.62	2.4	-0.22	Attained	More sessions on virtuallabs to be conducted
		CO2	Examine the design of experiments involving chemical reactors.	2.4	2.7	2.46	2.4	-0.06	Attained	More sessions on virtuallabs to be conducted
	Chemical	CO3	Analyze non ideality in real reactors.	2.6	2.5	2.58	2.4	-0.18	Attained	More sessions on virtuallabs to be conducted
13	Reaction Engineering - I Lab(170513)	CO4	Examine the experimental analysis of batch reactor, plug flow reactor and CSTR.	2.7	2.8	2.72	2.4	-0.32	Attained	More sessions on virtuallabs to be conducted
	1145(170313)	CO5	Examine the design and sizing of industrial scale reactor on the basis of kinetic data obtained at lab scale.	2.6	2.9	2.66	2.4	-0.26	Attained	More sessions on virtuallabs to be conducted
		CO6	Interpret the experimental data for usefulpurposes.	2.5	2.5	2.5	2.4	-0.1	Attained	More sessions on virtuallabs to be conducted
		CO1	Explain mathematical problems as applied to Chemical Engineering.	2.7	2.8	2.72	2.5	-0.16	Attained	Analysis based questions to be given
		CO2	Interpret the engineering data & the features of different numerical methods.	2.5	2.8	2.56	2.5	-0.06	Attained	Tutorial to be givenalong with practice problems
		CO3	Illustrate the use of numerical methods in Chemical Engineering scenario.	2.8	3	2.84	2.5	-0.34	Attained	Practical problems to begiven
14	Computational Methodsin Chemical	CO4	Outline the scope of optimization in chemical processes & use of numerical solution of the ODEs.	2.6	2.9	2.66	2.5	-0.16	Attained	Mini project work to begiven.
	Engineering (170514)	CO5	Simplify the solution of engineering problems using PDEs & ODEs.	2.4	2.7	2.46	2.5	0.04	Not Attained	Tutorial to be givenalong with practice problems
		CO6	Solve PDEs & ODEs in various physicochemical systems.	2.6	2.9	2.66	2.5	-0.16	Attained	Tutorial to be givenalong with practice problems

		CO1	Choose between various computational methods to solve a process problem.	2.5	2.6	2.52	2.5	-0.02	Attained	More simulation exercises be given
		CO2	Present a contrast between analytical & numerical solutions.	2.4	2.5	2.42	2.5	0.08	Not Attained	More simulation exercises be given
	Computational	CO3	Construct functions & codes for differentnumerical methods.	2.7	2.7	2.7	2.5	-0.2	Attained	More simulation exercises be given
15	Methodsin Chemical Engineering Lab	CO4	Solve ordinary & partial differential equations using the solvers in MATLAB.	2.9	2.4	2.8	2.5	-0.3	Attained	More simulation exercises be given
	(170514)	CO5	Analyze the solution of engineering problems using ordinary differential equations.		2.6	2.76	2.5	-0.26	Attained	More simulation exercises be given
		CO6	Make use of numerical integration & interpolation while solving chemical engineering problems	2.6	2.5	2.58	2.5	-0.08	Attained	More simulation exercises be given
		CO1	Explain the basics of heavy and inorganicchemical industry	2.7	2.6	2.68	2.5	-0.18	Attained	Explanation should begiven with more industrial examples
		CO2	Relate the importance of different unit operation and different unit processes involved in heavy and inorganic chemicalindustry	2.6	2.8	2.64	2.5	-0.14	Attained	Explanation should begiven with more industrial examples
16	Inorganic Process	CO3	Develop process flow diagram	2.4	2.9	2.5	2.5	0	Attained	Explanation should begiven with more industrial examples
10	Technology (170515)	CO4	Analyze the major engineering problems involved in the process	2.7	3	2.76	2.5	-0.26	Attained	Practical assignments tobe given
		CO5	Evaluate different types of processes based on the conversion and yield of desirable products		2.7	2.78	2.5	-0.28	Attained	Explanation should begiven with more industrial examples
		CO6	Analyze the importance of Fertilizer and cement technology	2.8	2.6	2.76	2.5	-0.26	Attained	Explanation should begiven with more industrial examples
		CO1	Tell the basics of various unit operations & unit processes.	2.8	2.6	2.76	2.6	-0.16	Attained	Topic with practical relevance to be encouraged
17	Minor Project - I (170516)	CO2	Outline the necessary features to be utilized in undergoing any project work.	2.7	2.8	2.72	2.6	-0.12	Attained	Outline of the work tobe clearly specified
		CO3	Choose among experimental work, modeling & a combination of both for anyproblem statement.	3	2.9	2.98	2.6	-0.38	Attained	Proper guidelines to begiven

		CO4	Justify the background for selecting a suitable project title.	2.4	2.6	2.44	2.6	0.16	Not Attained	Proper guidelines to begiven
		CO5	Plan the work in phases for accomplishment of the project objective.	2.6	2.8	2.64	2.6	-0.04	Attained	Proper guidelines to begiven
		CO1	Explain the basic terminology of Transport phenomena.	2.7	2.7	2.7	2.2	-0.5	Attained	Quizzes to be given
		CO2	Apply shell balance to mass, momentum and heat transfer.	2.6	2.7	2.62	2.2	-0.42	Attained	Mini project & presentation to be given
18	Transport Phenomena (170721)	CO3	Solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration	2.7	2.8	2.72	2.2	-0.52	Attained	Assignments & quizzesto be given
		CO4	Analyze industrial problems along with appropriate boundaryconditions.	2.5	2.8	2.56	2.2	-0.36	Attained	Tutorial questions to begiven
		CO5	Apply analogies among momentum, heat and mass transfer.	2.7	2.8	2.72	2.2	-0.52	Attained	Practical Problems to be discussed
		CO6	Describe mechanisms of transport phenomena, present in given isothermal and non- isothermal, laminar and turbulent flow systems.	2.6	2.7	2.62	2.2	-0.42	Attained	More practice problemsto be given
		CO1	Analyze the origin of hazards and fundamental principles of safety	2.7	2.8	2.72	2.6	-0.12	Attained	Mini project & presentation to be given
		CO2	Analyze the issues related to toxicants andminimize the toxicants dose	2.6	3	2.68	2.6	-0.08	Attained	Case studies can begiven
19	Industrial Safety & Hazards (910215)	CO3	Explain the fire & explosion hazard and the controlling measurement techniques used in chemical industries	2.8	2.7	2.78	2.6	-0.18	Attained	Practical illustrationswith explanation to be given
		CO4	Evaluate the professional obligations related to the plant management and maintenance to reduce energy hazard	2.6	2.8	2.64	2.6	-0.04	Attained	Practical illustrations with explanation to begiven
		CO5	Analyze the risk analysis and plant reliability to reduce the hazard	2.7	3	2.76	2.6	-0.16	Attained	Case studies can begiven
		CO6	Formulate the HAZOP study, event treeanalysis and fault treeanalysis	2.8	2.9	2.82	2.6	-0.22	Attained	Assignments & tutorials to be given
		CO1	Operate and program in MS Excel	2.3	2.8	2.4	2.3	-0.1	Attained	More simulation exercises be given
20	Process Computation	CO2	Construct the flowsheets of chemical process unit.	2.5	2.6	2.52	2.3	-0.22	Attained	More simulation exercises be given
20	Lab (170715)	CO3	Apply mass balance for a process situationusing excel.	2.6	2.8	2.64	2.3	-0.34	Attained	More simulation exercises be given
	1		· ·		•	•				

		CO4	Apply energy balance for a process situation using excel.	2.6	2.8	2.64	2.3	-0.34	Attained	More simulation exercises be given
		CO5	Construct various time changing plots forparameters involved in a process.	2.7	3	2.76	2.3	-0.46	Attained	More simulation exercises be given
		C06	Carry out data validation and consolidation in excel.	2.4	2.6	2.44	2.3	-0.14	Attained	More simulation exercises be given
		CO1	Become more aware of their surroundings, society, social problems and their sustainable solutions.	2.7	3	2.76	2.5	-0.18	Attained	Mini project & presentation to be given
21	Universal Human	CO2	Become sensitive to their commitment towards what they believe in (humane values, humane relationships and humanesociety).	2.8	3	2.84	2.5	-0.34	Attained	Case studies can begiven
21	Values & Professional Ethics (1000008)	CO3	Apply what they have learnt to theirown self in different day-to-day settings in real life.		2.7	2.86	2.5	-0.36	Attained	Practical illustrations with explanation to begiven
		CO4	Sustain human relationships andhuman nature in mind.	2.7	2.6	2.68	2.5	-0.18	Attained	Practical illustrations with explanation to be given
		CO5	Develop better critical ability.	2.7	3	2.76	2.5	-0.26	Attained	Case studies can begiven
		CO6	Negotiate living in harmony with self and others.	2.8	3	2.84	2.5	-0.34	Attained	Assignments & tutorialsto be given
		CO1	Interpret about contemporary issues in chemical engineering & its allied areas through literature survey.	2.6	2.7	2.62	2.7	0.08	Not Attained	Case studies & relevanttopics can be given
		CO2	Distinguish state of art & relevance of thetopic in national & international arena	2.9	2.8	2.88	2.7	-0.18	Attained	Assignment tobe given
22	Creative Problem Solving(170716)	CO3	Demonstrate written communication skills	2.9	2.7	2.86	2.7	-0.16	Attained	Case studies can begiven
		CO4	Practice in lifelong learning	3	2.8	2.96	2.7	-0.26	Attained	Case studies can begiven
		CO5	Simplify complex problems in Chemical Engineering	2.7	2.8	2.72	2.7	-0.02	Attained	Case studies canbe given
		CO6	Summarize different aspectsinvolved in aparticular field of study	2.8	2.9	2.82	2.7	-0.12	Attained	Case studies canbe given

Total No. of COs	No. of Cos Attained	No. of Cos not Attained	% Cos Attained	% Cos Not Attained
131	119	12	90.84%	9.16%

Madhav Institute of Technology & Science, Gwalior

(Deemed to be University)

NAAC Accredited with A++ Grade

ITEM -20

To review the PO attainments levels and suggest the actions to be taken forimprovement in PO attainment

Madhav Institute of Technology & Science, Gwalior

(Deemed to be University)
NAAC Accredited with A++ Grade

100001: Engineering Mathematics II

170304 (Material & Energy Balance)

170304 (Material & Energy Balance

170305 (Fluid Particle Mechanics

170305 (Fluid Particle Mechanics

170306 (Chemical Synthesis Lab) 170308 (Summer Internship Project -

170402 (Heat Transfer)

170402 (Heat Transfer Lab)

170403 (Mass Transfer - I)

170403 (Mass Transfer - I Lab)

170405 (Mechanical Design of

170407 (Process Control Lab)

170501 (Chemical Engineering

170502 (Mass Transfer II Lab)

170502 (Mass Transfer II)

Process Equipment)

Thermodynamics.)

Cyber Security (100004)

170404 (Instrumentation & Process

170303 (Fluid Mechanics)

170303 (Fluid Mechanics Lab)

170302 (Organic Process Technology) 2.71

2

3

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Lab)

Lab)

Control)

Madhav Institute of Technology & Science Gwalior-5 Department: CHEMICAL ENGG. Year 2019-2023 S.No. Course Name PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS0 2

2.30

2.74

2.62

2.84 | 2.73

2.68 2.72

2.65

2.86 2.88

2.68 2.72

2.51

2.84 | 2.76 | 2.79 |

3.00

2.91 | 2.94 | 2.88 |

2.44

2.59

2.54 | 2.57 | 2.55

2.53 | 2.61

2.72

2.57

3.00

2.48

2.71

2.69

2.54

2.66

2.96

2.61

2.72

2.49

2.71

2.46

3.00

2.59

2.62

2.85

3.00

2.63

2.54

2.52

3.00

2.56

2.71

2.44

2.76

2.53

2.42

2.64

2.95

2.79

2.29 | 2.29 | 2.30 | 2.30 | 2.29

2.50 | 2.56 | 2.57 | 2.57

2.88 | 2.88 | 2.88 | 2.88

2.93 | 2.93 | 2.93

2.62

2.97 | 2.96

2.54 | 2.54 | 2.39

2.75 | 2.75 | 2.75 | 2.52

2.65 | 2.65 | 2.63 | 2.67 | 2.68 | 2.57 |

2.54 | 2.54 | 2.54 | 2.54 | 2.53 | 2.56

2.63 | 2.63 | 2.61 | 2.58 | 2.58 | 2.65 |

2.89 | 2.88 | 2.88 | 2.89 | 2.86 | 2.84 | 2.91

2.71

2.52 | 2.52 | 2.49 | 2.51 | 2.51 |

2.72 | 2.72 | 2.71 | 2.72 | 2.71 | 2.79 |

3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00

2.85 | 2.84 | 2.86 | 2.85 | 2.85 | 2.94 |

2.54 | 2.53 | 2.53 | 2.55 | 2.53

2.96 | 2.96 | 2.95 | 2.96 | 2.95 | 2.94 | 2.94 | 2.87 | 2.90

2.50 | 2.48 | 2.49 | 2.45 | 2.49 | 2.40 | 2.40 | 2.56 | 2.43 |

2.63 | 2.59 | 2.60 | 2.60 | 2.76 | 2.57 | 2.61 | 2.62 | 2.68 |

2.61 | 2.61 | 2.62 | 2.59 | 2.70 | 2.69 | 2.65 | 2.65 |

2.57

2.29

2.72

2.69

2.56

2.54

2.60

2.93

2.96

2.59

2.50

2.97

2.75

2.49

3.00

2.54

2.50

2.64

2.85

2.29

2.76

2.63

2.54

2.88

2.49

2.93

2.95

2.88

2.59

2.72

2.50

2.88

2.60

2.47

3.00

3.00

2.48

2.58

2.85

2.37

2.73

2.65

2.54

2.64

2.96

2.61

2.51

2.96

2.72

2.50

3.00

2.39

2.58

2.62

2.85

22	170503 (Chemical Reaction Engg. I)	2.70	2.77	2.67	2.60	2.48	2.44	2.48		2.44	2.68	3.00	2.71	3.00	2.50
22	170503 (Chemical Reaction Engg. I	• • •	• • • •	• • •	• • • •	• • •	2 00	2 00		• • •	• • • •		• • •	2 0 =	• • • •
23	Lab)	2.98	2.98	2.98	2.98	2.98	3.00	3.00		2.90	2.98		2.98	2.97	2.98
24	170504 (Computational Methods in Chemical Engg.)	2 72	2.72	2 73	2 64	2 73	2 82	2.82	2.82	2.86	2.68	2.82	2.72	2.71	2.72
									2.02	2.00					
25	170506(Minor Project I)		2.97		2.94		2.97	2.98			2.96	3.00	2.97	2.96	2.97
26	170508 (SWAYAM/NPTEL)	2.85	2.85	2.85		2.84		3.00		2.85		3.00		2.85	
27	170507 (Summer Internship - II)	2.94	2.94	2.94	2.92	2.84	2.96	2.92	2.90	2.94	2.92	2.92	2.95	2.94	
	100005 (Ethics, Economics,														
28	Entrepreneurship & Management)	2.76		2.92	3.00	3.00	2.87	2.84	2.79	2.89	3.00	2.87			2.88
29	170602 (Process Modeling & Simulation)														
29	170602 (Process Modeling &														
30	Simulation Lab)	2.89	2.88	2.91					2.98				2.91	2.88	2.95
	DE 1: Process Equipment Design														
31	(170611)	2.63	2.64	2.65	2.64	2.65		2.60		2.57	2.59	2.68	2.59	2.65	2.63
32	DE 1: Polymer Technology (170614)	2.66	2.60	2.64	2.66	3.00	2.64	2.68	2.63	2.65	2.67	2.40	2.65	2.38	2.59
33															
34	OC 1: Fuels & Combustion (900109)	2.44	2.36	2.00	2.63		3.00	3.00	3.00		2.50		2.50		1.00
	Industrial Pollution Prevention &														
35	Control (170713)	2.69	2.71	2.71	2.70	2.69	2.76	2.76	2.76	2.76	2.69		2.69	2.71	2.68
36	Petrochemical Technology (170714)	2.73	2.73	2.74	2.74	2.73	2.68	2.68	2.68	2.68	2.72	2.68	2.72	2.74	2.68
	Petroleum Processing Technology														
37	(900211)	2.37	2.30	2.84	2.58	2.84		2.96			2.85		2.85	2.86	2.35
38	Industrial Safety & Hazards (900223)	2.83	2.81	2.83	2.82	2.83	2.77	2.77		2.79	2.83		2.82	2.83	2.82
39	Process Computation Lab (170706)	2.99	2.99	3.00	2.98		3.00	3.00		3.00	3.00		2.99	3.00	2.99
40	Creative Problem Solving (170708)	2.97	2.95	2.96	3.00	3.00	3.00	2.96			2.96		2.96	2.96	2.96
41	Intellectual Property Rights (100008)	2.87	2.87	2.87	2.87	2.86	2.88	2.82	2.76	2.84	2.87		2.87		2.88
44	Internship/Project (170801)	2.91	2.90	2.90	2.92	2.90	3.00	3.00	3.00	3.00	2.91	2.89	2.91	3.00	2.87
45	Professional Development (170802)	2.99	2.99	3.00	3.00								2.98	3.00	2.98
10	22.000m 22.00pment (17002)												,, 0	2.00	,, 0

	INDIRECT PO ATTAINMENT	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Survey 1	(Exit Survey)		d wit			<u>de</u> 2.36	2.54	2.51	2.47	2.51	2.44	2.26	2.4	2.4	1.34
Survey 2	(Alumni Survey)	2.06	2.10	2.05	2.15	2.04	2.08	2.11	2.17	2.17	2.22	2.21	2.32	2.14	2.10
Survey 3	(Employer Survey)	1.88	1.94	1.91	1.79	1.65	1.68	1.87	1.89	1.82	1.90	1.68	1.42	1.70	1.63
	Indirect PO Attainment	2.04	2.08	2.09	2.09	1.99	2.03	2.12	2.16	2.10	2.14	2.06	1.99	2.03	2.08
	Madhav Ins	STITU	ite (OT I	ecn	SOIC	gy &	SCIE	SUCE	, GM	allo	r-5			
	Madhav Ins	Stitl	ite (OT I	ecno	SOIC	gy &	SCIE	Suce	; GW	allo	r-5			
	Madhav In: Department:		ите (ear			/alio)- 202 3				
	Department :		CHEM	ICAL	ENGG		Ye	ear		2019		3	PO12	PSO 1	PSO 2
		PO1	PO2	PO3	PO4	PO5	Y6	PO7	PO8	2019 PO9	PO10	PO11	PO12		2
	Department : PO ATTAINMENT	PO1	PO2	PO3	PO4	PO5	Y6	PO7	PO8	PO9	PO10	PO11	2.77	2.77	2

Madhav Institute of Technology & Science, Gwalior (Deemed to be University)

NAAC Accredited with A++ Grade

Chemical Engineering

Program Outcomes (PO) Attainment, Gap Analysis & ATR for 2022 -23

		Direct Attainment	Indirect Attainment	Overall Attainment	Target	Gap	Action to be taken
PO1	Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.	2.77	2.04	2.62	2.6	-0.02	PO is achieved. Visit to core process Industries to boost the technical knowledge/skills. More focus on discussions related to approaching a problem, using foundational engineering knowledge for solving problem is included.
PO2	Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.	2.77	2.08	2.63	2.6	-0.03	PO is achieved. Students to be motivated to learn on their own & give presentations. Emphasis on solution of complex engineering problems of visiting industries
PO3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations	2.76	2.09	2.63	2.6	-0.03	PO is achieved. Students to be encouraged to include all standard parameters within the constraints of safety& sustainability, while designing a chemical process. Design products with special emphasis on environmental concerns
PO4	Use research-based knowledge and research methods including design of experiments, analysis	2.77	2.09	2.63	2.6	-0.03	PO is achieved. Technical events/workshops/STC's /Online Courses to be utilized to impart more

Madhav Institute of Technology & Science, Gwalior

(Deemed to be University)
NAAC Accredited with A++ Grade

	1	<u>NAAC</u>	Accredited wi	tn A++ Grade	2	1	1
	and interpretation of data, and synthesis of the information to provide valid conclusions.						knowledge & research methods to formulate innovative solutions to complex Chemical Engineering Problems.
PO5	Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2.76	1.99	2.61	2.6	-0.01	PO is achieved. Labs to be modernized & developed to inculcate modern analytical & computational tools like TGA, FTIR, CHNS Analyser, FLUENT, MATLAB, ASPEN etc.
PO6	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice	2.80	2.03	2.65	2.6	-0.05	PO is achieved. Course delivery to be oriented towards the relevant practical applications of concepts. To understand the safety, environmental & Social aspects of process Industries & take up collaborative projects for their professional growth.
PO7	Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate knowledge of, and need for sustainable development.	2.79	2.12	2.66	2.6	-0.06	PO is achieved. Projects addressing the global energy & environmental issues to be taken up by the students with a focus on consumption, utilization & proper management of energy. Students to be motivated to attend technical workshops related to environmental issues & utilization of renewable energy resource

Madhav Institute of Technology & Science, Gwalior (Deemed to be University)

NAAC Accredited with A++ Grade

		NAAC	Accredited wi	THE OTAGE		1	1
PO8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2.78	2.16	2.66	2.6	-0.06	PO is achieved. Motivational talks, cooperative lectures & programmes on mutual & ethical practices to be arranged in order to inculcate professional ethics & sense of honesty in students
PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings.	2.76	2.10	2.63	2.6	-0.03	PO is achieved. Various programmes and counseling sessions to be organized to help the students to groom the skills like leadership, team work, coordination, commitment and being an effective team member.
PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	2.77	2.14	2.64	2.6	-0.04	PO is achieved. Group discussions, seminars, presentations and soft skills training programmes to be organized to enhance the aspects of communication/skills. Students to be motivated to take related Novel Engaging Courses to groom themselves.
PO11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage	2.75	2.06	2.61	2.6	-0.01	PO is achieved. Awareness to be generated in students regarding managerial principles and projects through some core courses related to management, economics and organization of

Madhav Institute of Technology & Science, Gwalior

(Deemed to be University)
NAAC Accredited with A++ Grade

		<u>NAAC</u>	<u>Accredited wi</u>	<u>th A++ Grade</u>			
	projects and in multidisciplinary environments.						process industries. Industrial Internships to be encouraged
PO12	Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.	2.77	1.99	2.62	2.6	-0.02	PO is achieved. Use of ICT facilities like PPT's, live demonstrations, NPTEL lectures to be encouraged. Course delivery to be oriented towards linking the fundamental concepts to practical usage.
PSO1	Apply computational and simulation tools to design, solve & optimize chemical processes.	2.77	2.03	2.64	2.6	-0.04	PO is achieved. Lab to be developed equipped with software such as ANSYS, ASPEN, PRO2, etc
PSO2	Design unit operations & unit processes to solve engineering problems using basic principles and methods & exhibit proficiency in applying technology to industry, society & environmental concerns.	2.68	2.08	2.58	2.6	0.02	PO is not achieved. Course delivery to be focused on extension of concepts to real world applications. Students to be motivated to take design projects & internships.

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(Deemed to be University)
NAAC Accredited with A++ Grade
ITEM -21

To review and finalize the CO-PO mapping matrix for all the courses to be taught in July-Dec 2024.

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (Deemed to be University) NAAC Accredited with A++ Grade Department of Chemical Engineering

	Department of Chemical Engineering CO - PO Manning Matrix for courses to be taught during July - Dec 2024																
	CO - PO Mapping Matrix for courses to be taught during July - Dec 2024																
1	CO-PO Matrix Course Outcome PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO 1 PSO 2																
		CO1	statics & fluid flow.	3	3	2	1	2					3		2		1
			Estimate pressure drops, forces acting on			_	_	_									_
			bodies & power and head requirements of														
		CO2	pumps.	3	3	3	1		1		1	1	2	1	2	2	2
	3170311:		Apply equations of change to various fluid														
	Fluid	CO3	flow systems.	3	2	2	2	2	1	1		1	2	1	2	2	2
ı	Mechanics		Formulate the inter-dependency of various														
1		CO4	parameters using dimensional analysis.	3	2	2	2	2	1	1			1	1	1	1	2
			Determine the flow rate through different	-					_				-	-	-	_	
		CO5	flow measuring devices.	3	3	2	1	1	1				1	1	2	1	
			Examine the losses due to friction in pipes														
		CO6	and other fluid machinery.	3	3	1	2	2				1	2	1	2	1	1
			Analyze the effects of flow measurement by														
		CO1	flow measuring devices.	3	3												2
		CO2	Calculate the degree of error in discharge rate of rotameter.	3	3	3	3										2
	3170311:	COZ	Calculate the coefficient of discharge for	3	3	3	3										
	Fluid	соз	venturimeter and orifice meter.	3	3	3	3										2
	Mechanics		Calculate the coefficient of discharge for														
	Lab	CO4	rectangular notch.		3		3										2
			Calculate the coefficient of discharge for														
		CO5	triangular notch.		3	3	3										2
		CO6	Calibrate the flow measuring instruments.	3	3	2	3										2
		C06	Cambrate the now measuring instruments.	3	3		3										2
		CO1	Explain the processing of natural products	3	1	2	1	1	1	2	1	1	2		2		1
			Describe about microbial processes and														
		CO2	edible oil refining process	2	2	2	1		1	2	2	2	1	1	2		1
	3170312		Elaborate the processes for producing														
	(Organic	CO3	petrochemicals	2	2	2	2		2	3	1		2		2		
	Process	CO4	Characterize polymers and elaborate its	3	3	2	1		1	1			2		2	1	2
	Technology)	C04	production processes.	3	3												
		CO5	Describe the production processes of fibers	3	2	1	1			2		2	2		2		1
			Evaluate the different processes from														
		CO6	economical aspects	3	2	1	1			2		2	2		2		1
			Infer the fundamental concepts of														
			thermodynamics to chemical engineering		_	_							_			_	
		CO1	applications.	3	2	2	2	2					2		2	1	1
			Explain the first and second laws of thermodynamics with their practical														
		CO2	implications.	2	2	1	2					1	2		2		
	3170313 (Chamical		Analyze the processes involving														
	(Chemical Engineering	CO3	refrigeration and compression.	3	2	2	2	1		1			2		2	1	2
	Thermodyna		Classify the thermodynamic properties of														
=	mics.)	CO4	solutions with their relationships.	3	3	2	2	1					1		1	2	1
Semester III			Infer the detail of vapour liquid equilibria and its use in practical situations.														
ste		CO5	and its use in practical situations.	3	3	3	2	2		1		1	1	1	2	2	2
Je			Analyze the chemical equilibrium with														
en			thermodynamics for predicting behavior of														
S		CO6	reacting systems.	3	2	2	2	1					1		1	1	1
			Apply the principles of different modes of												_		
		CO1	heat transfer and heat transfer equipments.	2	3	2	2	2	2	2	1	1	2		2	2	2
		CO2	Analyze the heat transfer problems involving phase change.	1	2	2	1	1					2		2	2	2
	3170314		Illustrate the use of dimensionless numbers													_	
	(HeatTransfe	CO3	and various theoretical concepts.	3	3	2	2	2		1			2		2	3	3
	r)		Interpret the physical systems involving heat														
		CO4	transfer.	2	1	2	1			1		1	2		2	1	1
		CO5	Solve practical heat transfer problems.	3	1	2	2	2	1	1	1	2	2	1	2	2	2
		CO6	Estimate the design parameters of various heat transfer equipments.	3	1	2	2	2	1	1	1	2	2	1	2	2	2
		200	Analyze the various modes of heat transfer		_	_							_	-		_	_
		CO1	in chemical industries				2			3		2	2	2			

	CO2	Analyze the application of various experimental heat transfer correlations in engineering applications				2			3	2	2	2	2		3
3170314		Evaluate the thermal analysis and sizing of													
(HeatTransfe	CO3	heat exchanger				_			_	_	_	_	_		_
r Lab)	CO4	Evaluate the emissivity of materials				2			2	3	2	2	2		3
_	CO5	Study the thermal conduction in metal rod				2				2	3	3	2		3
	CO6	Analyze the application of heat exchanging equipment in chemical process industries				2				2	3	3	2		3
	CO1	Research a specific compound, or a family of compounds, to propose a synthetic route for isolation of this compound.				2			3		2	2	2		
	CO2	Perform advanced manipulations of apparatus relevant to a synthetic chemistry laboratory, use a Schlenk line to synthesize oxygen- and moisture-sensitive products.				2			3	2	2	2	2		3
3170315 (Chemical	соз	Characterize chemical compounds using modern spectroscopic techniques.													
Synthesis Lab)	CO4	Maintain a laboratory notebook following scientific best practices.				2			2	3	2	2	2		3
	CO5	Communicate findings in a format consistent with the scholarly standards of the chemical sciences.				2				2	3	3	2		3
		Articulate and follow ethical principles in a scientific context, including professional standards of laboratory practice, the communication of literature research without plagiarism, and the crediting of													
	CO6	collaborators				2				2	3	3	2		3
	CO1	Define different Data Science techniques.	3	3	2		3	1	1					2	
	CO2	Illustrate various tools used for Data Science technique.	2	2	2	2	3							2	3
2170511	СОЗ	Apply data visualization techniques to solve real world problems.	2	2	2		3								
(Data Science)	CO4	Build exploratory data analysis for Data Science methods.	3	2	. 2	2								2	2
	CO5	Apply Data Science techniques for solving real world problems.	3	3	2	2	3							3	2
	CO6	Evaluate the performance of algorithms in data science.	2	3	2	2	2							2	2
		Explain the basics of adsorption, leaching, distillation, liquid-liquid extraction & the principle of diffusion underlying them.	_						_	_	_	_			
_	CO1	Infer the necessary information useful in	3	1	2	2	2	1	2	1	2	2		2	
2170512	CO2	design of mass transfer equipment. Analyze the different contacting patterns &	2	2	2	1		1	2	2	2	1	1	2	
(Mass Transfer - II)	CO3	Analogies in transfer process. Apply the theoretical concepts to practical	2	2	2	2		2	3	1		2		2	
	CO4	problems. Interpret the equilibrium data obtained in	3	3	2	1		2	2			2		2	1
	CO5	various mass transfer operations Propose favourable conditions for a	3	3	2	2			2		2	2		2	
	CO6	Propose favourable conditions for a separation to be carried out.	3	2	1	1			2		2	2		2	
	CO1	Design calculation of distillation column	3	3	2	2	2	1	2	1	2	2		2	3
		Estimation of number of theoretical stages						_	-					_	,
2170512	CO2	and composition of each plate Analyze the separation by adsorption and	2	2	2	2	2				2	2	1	2	2
(Mass Transfer - II	CO3	design of adsorber Design the spray and packed tower	3	3	2	2	2					2		2	2
Lab)	CO4	separation by liquid liquid extraction	3	3	3	2	2	1	2	1	2	2		2	3
Lasj	CO5	Analyze the separation by leaching	3	3	2	2	2	_	_		2	2		2	3
		Analyze the industrial application of						2	2	2	2	2	2		2
	CO6	separation equipments in process plant	3	2	2										
	CO6	separation equipments in process plant Explain the basic concepts in the analysis of	3	2	3	2	2	2	2				2	2	3

		Develop Batch, CSTR, and PFR performance														
2170513		equations from general material balances.														
(Chemical	CO3		3	2	3	2						2		3		3
Reaction Engineering -	CO4	Analyze Non-Isothermal operation in industrial Reactors	3		3		2	2	3		2			2		2
I)		Determine conversion, selectivity & yield for	_				_									
	CO5	Multiple chemical reactions.	2		3	2	2		3		2			2		
	CO6	Discuss the Non-Ideal Behaviour for any flow reactor.	2	3	3						2			2		3
		Analyze the chemical reactors and reaction														
-	CO1	systems	3	3	2	2	2	1	1			2		2	2	3
		Examine the designing experiments involving chemical reactors, and analyzing														
	CO2	and interpreting data	3	2	2	2	2					2		2	1	1
		Analyze the problems solving ability to mass														
2170513	соз	transfer with reaction in solid catalyzed reactions	3	3	2	2	3				2	2		2	3	3
(Chemical - Reaction																
Engineering -	CO4	Examine the experimental analysis of batch reactor, plug flow reactor and CSTR	3	3	2	2	2	1	1			2		2	2	3
I Lab)		Examine the design and sizing of industrial	3	,				_	_						2	,
		scale reactor on the basis of kinetic data														
-	CO5	obtained at lab scale	3	2	2	2	2					2		2		1
		Analyze the design of the bioreactor,														
		functions of the different part of bioreactor														
	CO6	and its application in industry. Explain mathematical problems as applied	3	2	2	2	3					2		2	2	2
	CO1	to Chemical Engineering.	3	3	2	2	2	1	1			2		2	2	3
		Interpret the engineering data & the														
2170514	CO2	features of different numerical methods. Illustrate the use of numerical methods in	3	2	2	2	2					2		2	1	1
(Computatio	соз	Chemical Engineering scenario.	3	3	2	2	3				2	2		2	3	3
nal Methods		Outline the scope of optimization in														
in Chemical	CO4	chemical processes & use of numerical	3	3	2	2	2	1	1			2		2	2	3
Engineering)	C04	solution of the ODEs. Simplify the solution of engineering	3	3				_							2	3
	CO5	problems using PDEs & ODEs.	3	2	2	2	2					2		2		1
	CO6	Solve PDEs & ODEs in various physico- chemical systems.	3	2	2	2	3					2		2	2	2
		Choose between various computational	J		_	_									_	_
	CO1	methods to solve a process problem.	3	3	2	2	3	1	1	1	2	2	1	2	1	2
	CO2	Present a contrast between analytical & numerical solutions.	3	3	2		2				2			2	2	2
2170514		Construct functions & codes for different														
(Computatio	CO3	numerical methods.	3	2	2		2					2		2	1	1
nal Methods in Chemical	CO4	Solve ordinary & partial differential equations using the solvers in MATLAB.	2	3	2	2	2					2		2	2	1
Engineering		Analyze the solution of engineering														
Lab)	CO5	problems using ordinary differential equations.	3	3	2	2	2					2		2	2	2
	COS	Make use of numerical integration &	3	3											2	<u> </u>
		interpolation while solving chemical														
	CO6	engineering problems Choose between various computational	3	3	1	1	2					2		2	2	2
	CO1	methods to solve a process problem.	3	3	2	2	3	1	1	1	2	2	1	2	1	2
		Present a contrast between analytical &														
2170514	CO2	numerical solutions. Construct functions & codes for different	3	3	2		2				2			2	2	2
(Computatio	соз	numerical methods.	3	2	2		2					2		2	1	1
nal Methods		Solve ordinary & partial differential														
in Chemical Engineering	CO4	equations using the solvers in MATLAB. Analyze the solution of engineering	2	3	2	2	2					2		2	2	1
Lab)		problems using ordinary differential														
,	CO5	equations.	3	3	2	2	2					2		2	2	2
		Make use of numerical integration & interpolation while solving chemical														
	CO6	engineering problems	3	3	1	1	2					2		2	2	2
		Explain the flowsheet and synthesis of														
-	CO1	process.	2	3	3	2	1	1					2	2		2
	CO2	Compare the alternate methods of investments.	3	2	2		2						2	2		2
2170515		Illustrate the methods of depreciation and												_		
(Process	CO3	its impact.	3		2		2						2	2		

			Analyze the rate of return, venture profit,													
	Engineering		payout time, break even point for any													
	& Costing)	CO4	investment.	3				2					2	2		
			Describe the capital cost and manufacturing													
		CO5	cost estimation methods. Analyze R&D investment and technological	2									2	2		
		CO6	forecasting for the process industries.		2		2									
			Identify disaster prevention and mitigation													
		CO1	approaches.	3	2		2		2	2	1	2		2		
		CO2	Classify global and national disasters, their trends and profiles.	3	2		2					2		2		
	1000006	CO3	Determine the impacts of various disasters	2	2	2	1					2		2		1
	(Disaster Managemen	CO4	management	3	3	1	1			2		2		2		
	t)		Infer the linkage between disasters,													
		CO5	environment and development Identify Roles and responsibilities of	3	3	2	1	2				2		2	1	2
			government, community, local institutions,													
		CO6	NGOs and other stakeholders	2	2	1	1		2	2		2		2		
			Explain the basic terminology of													
		CO1	Transport phenomena. Apply shell balance to mass, momentum	3	2	2	1							2		
		CO2	and heat transfer.	3	3	2								2		2
	-		Solve the appropriate equations of			_								_		_
			change to obtain desired profiles for													
	170721	CO3	velocity, temperature and concentration	3	3	3								2		2
	(Transport Phenomena)	CO4	Analyze industrial problems along with appropriate boundary conditions.	2	2	3								2		
	i iiciioiiiciiu,		Apply analogies among momentum, heat	-										_		
		CO5	and mass transfer.	3	2	2								2		
			Describe mechanisms of transport													
			phenomena, present in given isothermal and non- isothermal, laminar and													
		CO6	turbulent flow systems.	3	3	3								2		
			Describe the fundamentals of													
		CO1	separation operation.	3	2	2								2		
			Describe the approximation technique													
			and its algorithms for multicomponent													
	170722	CO2	multistage separations	3	3	2								2		2
	(Equilibrium		Analyze the equilibrium data obtained in		,											
	Staged	CO3	the various separation operation	3	3	3								2		2
	Operations)		Analyze industrial problems along													
		CO4	with appropriate boundary conditions.	2	2	3								2		
			Apply the knowledge of kinetics and													
	-	CO5	transport. Apply the mechanisms of industrial	3	2	2								2		
		CO6	equilibrium separation operation	3	3	3								2		2
																_
		CO1	Analyze the heterogeneous processes.	3	2	2								2		
			Examine the various catalytic processes and catalytic poisoning	,	,	,								,		_
	170723	CO2	Examine the effect of various parameters	3	2	2								2		2
	(Heterogene		like yield selectivity etc. on catalytic													
	ous Reaction	CO3	reaction	3	3	2								2		2
	Systems)	CO4	Design the multiple phase reactors	2	2	3								2		3
		CO5	Design the model for solid fluid non catalytic reaction	3	2	2								2		3
	-		Describe the models for fluid-fluid			_								_		
		CO6	catalytic reaction	3	3	3								2		2
I		CO1	Select key component	3	2	2								2		
Semester VII			Solve number of theoretical and actual													
er			stages required for multi component													
este		CO2	distillation by using various methods.	3	2	2								2		2
l me	170724		Examine how to break azeotrope using	_												
Se	(Multi-	CO3	azeotropic and extractive distillation. Estimate reflux ratio required for the	3	3	2								2		2
	Component	CO4	distillation operation.	2	2	3								2		3
	Distillation)															
		_	Estimate tower diameter and operating													
		CO5	pressure for multi distillation column.	3	2	2								2		3

	CO6	Analyze various design options for energy conservation in the distillation column.	3	3	3							2		2
	CO1	Analyze the origin of hazards and fundamental principles of safety	3	3	2	1	2		1	1	2	2	2	2
	CO2	Analyze the issues related to toxicants and minimize the toxicants dose	3	3	3	2	3			2	2	2	3	3
910215 (Industrial	CO3	Explain the fire & explosion hazard and the controlling measurement techniques used in chemical industries	3	2	2	1	2				2	2	2	2
Safety and Hazards)	CO4	Evaluate the professional obligations related to the plant management and maintenance to reduce energy hazard	2	2	1	1	1	1	1		1	2	1	2
	CO5	Analyze the risk analysis and plant reliability to reduce the hazard	3	2	2	1	2				2	2	2	2
	CO6	Formulate the HAZOP study, event tree analysis and fault tree analysis	2	3	2	1	2	1	2		2	2	2	2
	CO1	Operate and program in MS Excel	3	2					2	3			3	3
	CO2	Construct the flowsheets of chemical process unit.	3	3								3	3	3
170715	соз	Apply mass balance for a process situation using excel.	3	3								3		3
(Process Computatio	CO4	Apply energy balance for a process situation using excel.	2	3		2							2	3
n Lab)	CO5	Construct various time changing plots for parameters involved in a process.	3	3	2						3	3	3	3
	CO6	Carry out data validation and consolidation in excel.	3	2				3		3	3	3	2	2
	CO1	Interpret about contemporary issues in chemical engineering & its allied areas through literature survey.	3	3	2		3		2		2	3	3	3
170716	CO2	Distinguish state of art & relevance of the topic in national & international arena	2	3	2				2		2	2	2	3
(Creative	CO3	Demonstrate written communication	3	3	3	2		2	3		3	3	3	3
Problem	CO4	Practice in lifelong learning	2	2				2	2		2	2		3
Solving)	CO5	Simplify complex problems in Chemical Engineering	2		2									2
	CO6	Summarize different aspects involved in a particular field of study	3	2							2	2	2	2

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(Deemed to be University)
NAAC Accredited with A++ Grade
ITEM -22

To review curricula feedback from various stakeholders, its analysis and impact

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

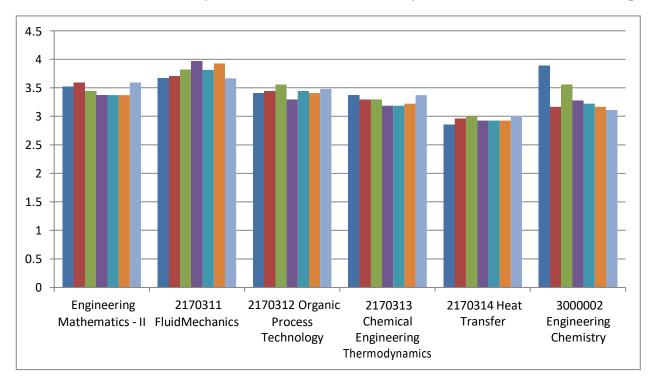
Department of Chemical Engineering Feedback Analysis & Action Taken Report

ITEM NO. 23 To review curricula	Feedback	Feedback Comments	Feedback Action Taken
feedback from various stakeholders, its analysis and impact	Students Feedback	 The curriculum is up to date Much theoretical things should be excluded from Thermodynamics IPT, OPT can be merged as Chemical Technology 	 Scope of improvement is being explored Same will be put up before concerned authorities Same will be put up before concerned authorities
	Faculty Feedback	Yes, the environment allows for a free exchange of ideas, thoughts and skills among the facilitators and learners	We commit to maintain the consistency
	Parents Feedback	 There will be some more concern about student's future job opportunities 	It has been informed to placement cell.
	Alumni Feedback	 Revision of syllabus is required Need to particularly focus on practical application rather than teaching theories. Availability of Books in Library Department should have a regular industrial visits. 	 Already discussed and changed in BoS accordingly All the faculty members have been instructed to discuss the theory with some practical applications in their respective courses. The Library officer has been informed about the situation and also shared

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

			 the list of Books. Department is exploring opportunity related to conduction of industrial visit.
--	--	--	--

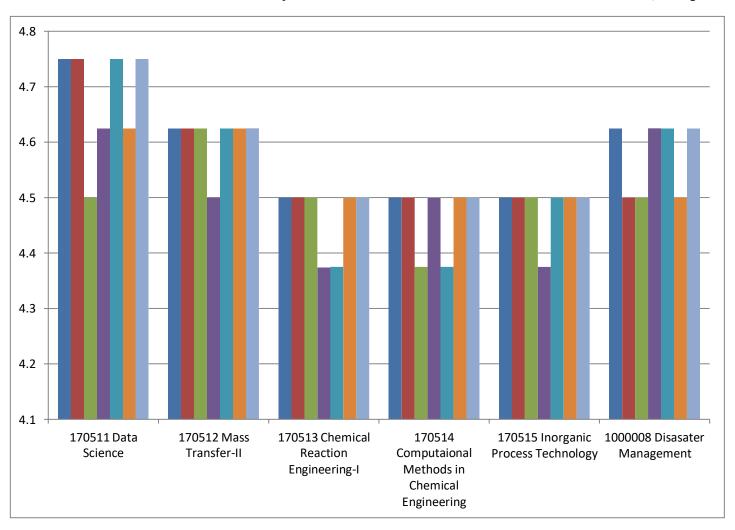
Employer Feedback	•	They must focus on the core rather making aware about other subjects The courses offered are only relevant upto a certain level there should be a proper commencement of newly technologies introduced in the industries then only we can make graduates ready for an industry. They must taught about the ethics and principles which one	•	Courses are offered according NEP New Technology and Industry related course already offered in flexible curriculum. Some Such courses are offered on NPTEL platform under DE Regarding this
	•	should follow while working inside the chemical industries. Must include an optional course on chemical/industrial operations which are practiced in different process industries.	•	Provision is there in open category courses. Students get industrial (1 month) visit after 6 th sem and during 8 th sem most of the students are
	•	Need some courses on finance as well. Data science is an emerging field an exposure of that will be beneficial.		engaged with industrial internship (4-6months)
	•	If possible, addition of 2-3 months of internship or practising of students in multiple industries to get contemporary knowledge in industrial operations.		


Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Students Feedback on Course Curriculum

Comments	Action Taken
 The curriculum is up to date Much theoretical things should be excluded from Thermodynamics IPT, OPT can be merged as Chemical Technology 	 Scope of improvement is being explored Same will be put up before concerned authorities Same will be put up before concerned authorities

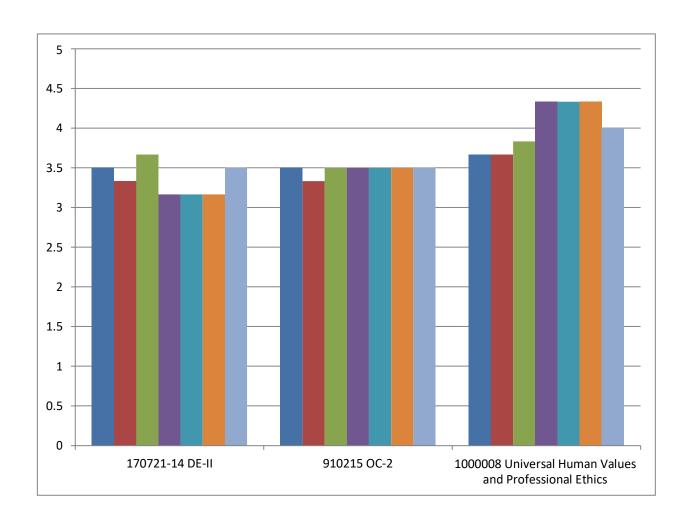
Course Curriculum Feedback (by students on MOODLE): (July – Dec 2023) III Semester, Sample Size: 6



SUMMARY SHEET (Course Curriculum Feedback by Students on MOODLE) III Semester, Sample Size: 6

Parameter (Average Grading)	1. The course is well designed	2. The syllabus units are balanced	3. The course will be useful for you in future	4. The learning material was available to you	5. The content was clear and easy to understand	6. The course meets your expectations	7. The course was relevant and updated for present needs	CSI
Engineering Mathematics - II	3.51	3.59	3.44	3.370	3.370	3.37	3.59	3.5
2170311 Fluid Mechanics	3.66	3.70	3.81	3.96	3.81	3.92	3.66	3.79
2170312 Organic Process Technology	3.40	3.44	3.55	3.29	3.44	3.40	3.48	3.434
2170313 Chemical Engineering Thermodynamics	3.37	3.29	3.29	3.18	3.185	3.22	3.370	3.23
2170314 Heat Transfer	2.85	2.96	3	2.92	2.92	2.92	3	2.989
3000002 Engineering Chemistry	3.88	3.16	3.55	3.27	3.22	3.16	3.11	3.38

Course Curriculum Feedback (by students on MOODLE): (Jul – Dec 2023) V Semester, Sample Size: 10


SUMMARY SHEET (Course Curriculum Feedback by Students on MOODLE) V Semester, Sample Size: 10

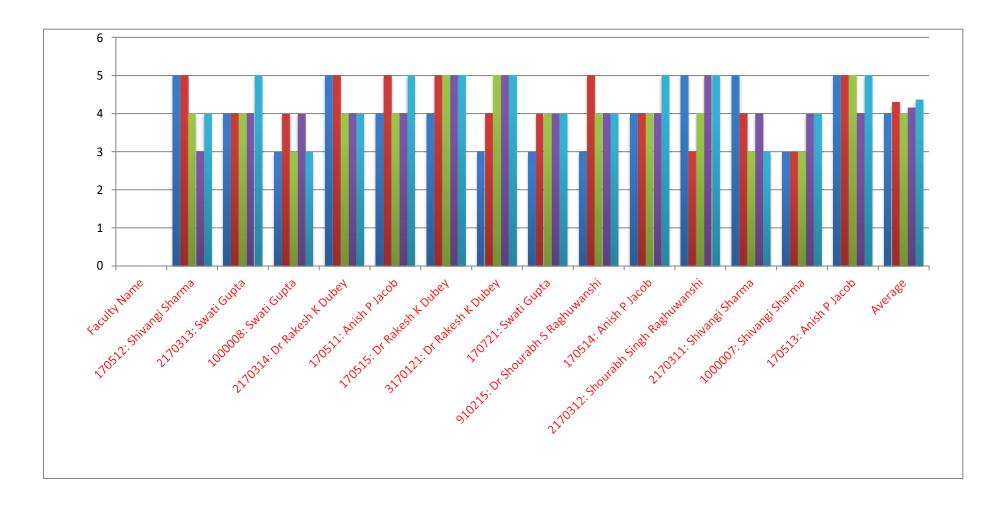
Parameter (Average Grading)	1.The course is well designed	2. The syllabus units are balanced	3. The course will be useful for you in future	4. The learning material was available to you	5. The content was clear and easy to understand	6. The course meets your expectations	7. The course was relevant and updated for present needs	CSI
170511 Data Science	4.75	4.75	4.5	4.625	4.75	4.625	4.75	4.67
170512 Mass Transfer-II	4.625	4.625	4.625	4.5	4.625	4.625	4.625	4.60
170513 Chemical Reaction Engineering-I	4.5	4.5	4.5	4.374	4.375	4.5	4.5	4.46
170514 Computaional Methods in Chemical Engineering	4.5	4.5	4.375	4.5	4.375	4.5	4.5	4.47
3 3	4.5	4.5	4.5	4.375	4.5	4.5	4.5	
170515 Inorganic Process Technology								4.49
1000008 Disasater Management	4.625	4.5	4.5	4.625	4.625	4.5	4.625	4.57

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Course Curriculum Feedback (by students on MOODLE): (Jul – Dec 2023) VII Semester, Sample Size: 9

SUMMARY SHEET (Course Curriculum Feedback by Students on MOODLE) VII Semester, Sample Size: 9

Parameter (Average Grading)	1 .The course is well designed	2. The syllabus units are balanced	3. The course will be useful for you in future	4. The learning material was available to you	5. The content was clear and easy to understand	6. The course meets your expectations	7. The course was relevant and updated for present needs	CSI
	3.5	3.33	3.67	3.17	3.16	3.16	3.5	
170721-14 DE-II								3.35
910215 OC-2	3.5	3.33	3.5	3.5	3.5	3.5	3.5	3.47
1000008 Universal Human Values and Professional	3.67	3.67	3.83	4.33	4.33	4.33	4	
Ethics								4.02


(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

FACULTY FEEDBACK ON COURSE CURRICULUM

S.No	Comments	Action Taken
1.	Yes, the environment allows for a free exchange of ideas, thoughts and skills among the facilitators and learners	Team work is appreciated, department will try to maintain the consistency

TEACHERS' COURSE CURRICULUM FEEDBACK (by teacher on MOODLE): (Jul – Dec 2023)

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

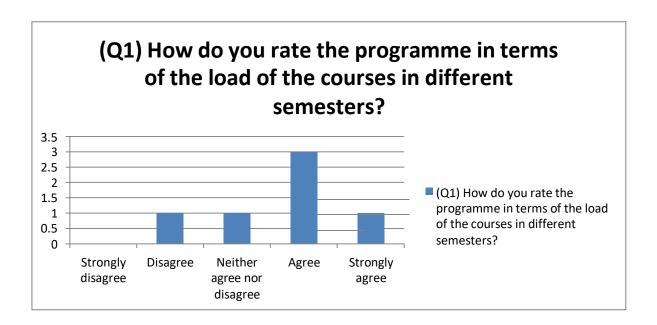
SUMMARY SHEET (Teachers Course Curriculum Feedback by Teacher on MOODLE)

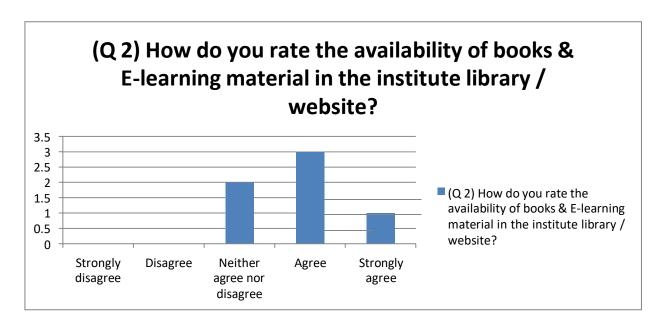
Parameter (Average Grading)	1. The availability of books & E-learning material in the institute is good. (Please give your opinion)	2. The Courses and content are up to date. Please suggest if you feel any new course(s) need to be introduced to meet current needs & technological changes?	3. The course curriculum/syllabi are helpful in meeting the higher studies/placement requirements according to present global trends. (Please give suggestions if any)	4. The course / contents in your domain/area are well designed and frequently updated, hence need no changes at present.[If you feel some changes (new content to be added or outdated content to be removed) are needed, please suggest]	5. The curriculum is capable of inculcating life-long learning abilities in students. (Any suggestions, please give below)
	5	5	4	3	4
170512: Mass Transfer-II					
2170313: Chemical Engineering Thermodynamics	4	4	4	4	5
1000008: Universal Human Values and Professional Ethics	3	4	3	4	3
2170314: Heat Transfer	5	5	4	4	4
170511: Data Science	4	5	4	4	5
170515: Inorganic Process Technology	4	5	5	5	5

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

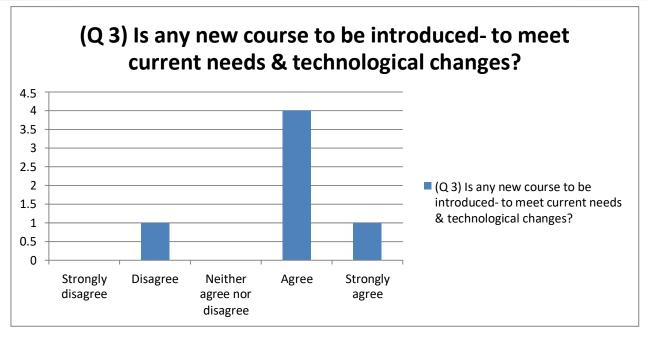
	Satisfactory	Good	Good	Good	Good
Average	4	4.29	4	4.14	4.36
170513: Chemical Reaction Engineering - I	5	5	5	4	5
1000007: Disaster Management	3	3	3	4	4
2170311: Fluid Mechanics	5	4	3	4	3
2170312: Organic Process Technology	5	3	4	5	5
170514: Computational Methods in Chemical Engineering	4	4	4	4	5
910215: Industrial Safety and Hazards	3	5	4	4	4
170721: Transport Phenomena	3	4	4	4	4
3170121: Fuel Technology	3	4	5	5	5

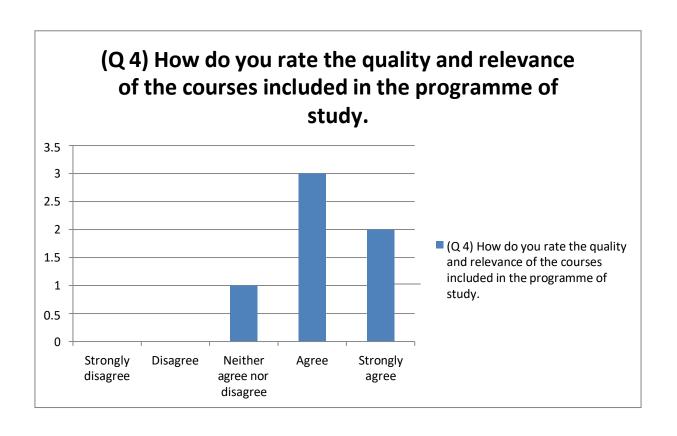
Teacher Course Satisfaction Index (TSI) (on a scale of 5) (5: Excellent, 4: Very Good, 3: Good, 2: Average, 1: Below Average)

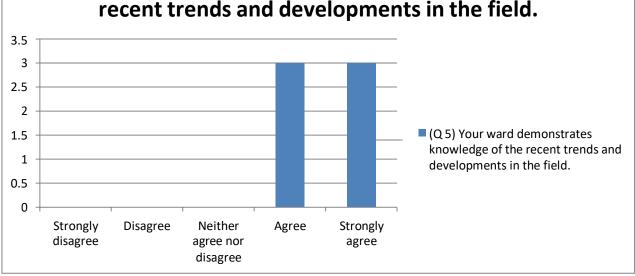

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

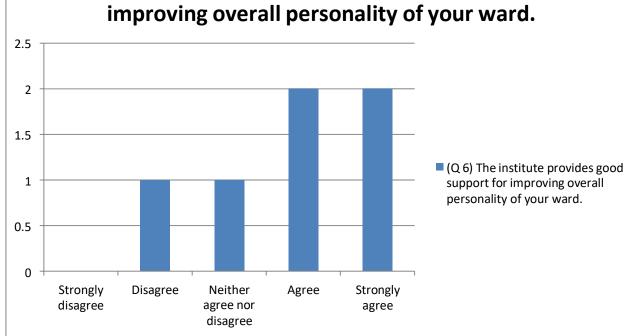


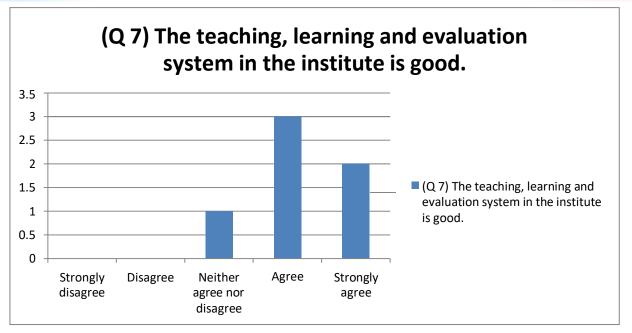
Parent Feedback

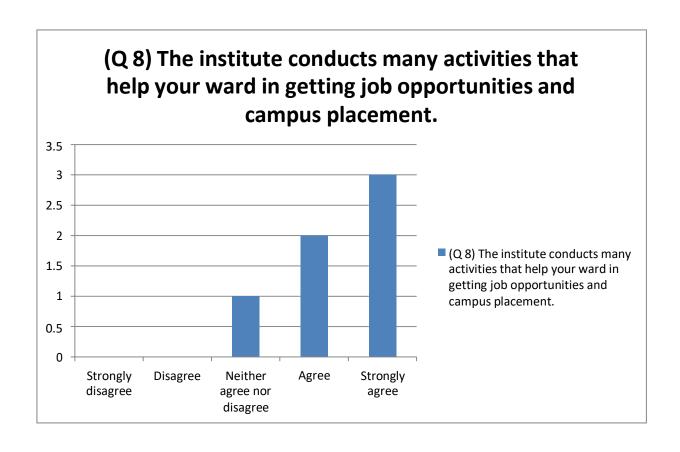

S. No.	Comments	Action Taken
1.	 There will be some more concern about student's future job opportunities 	It has been informed to placement cell.

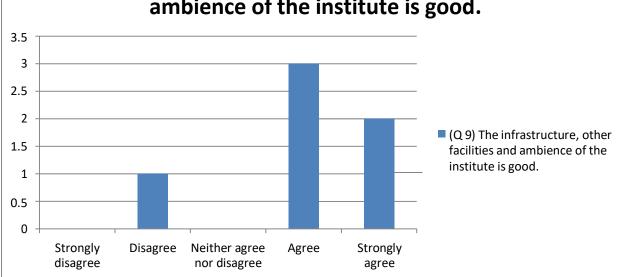

Parent Satisfaction Survey 2nd year 2023 – 24) Sample Size: 06



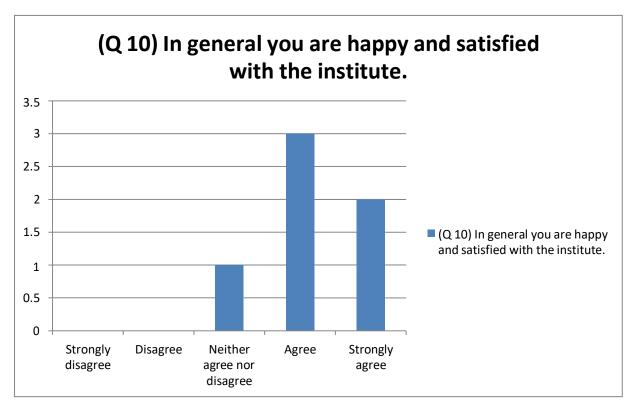




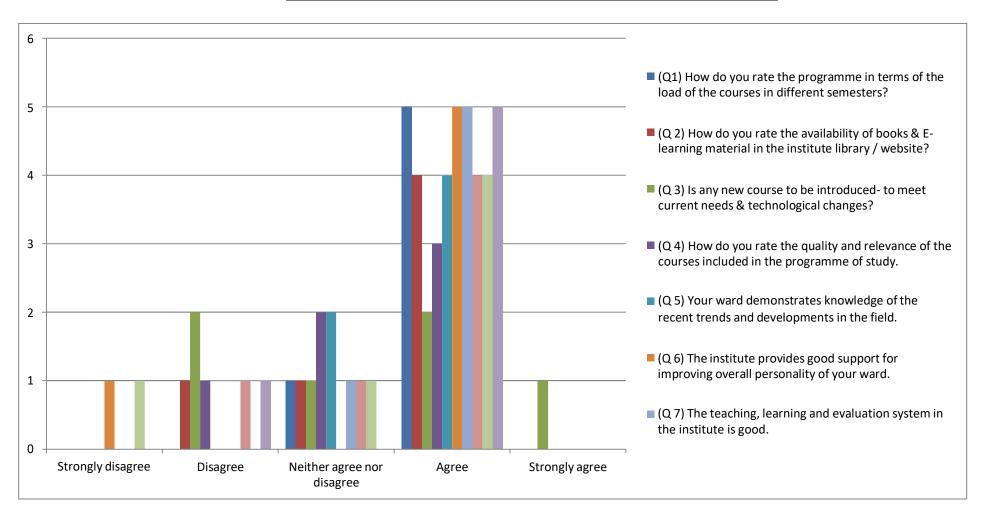




Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE



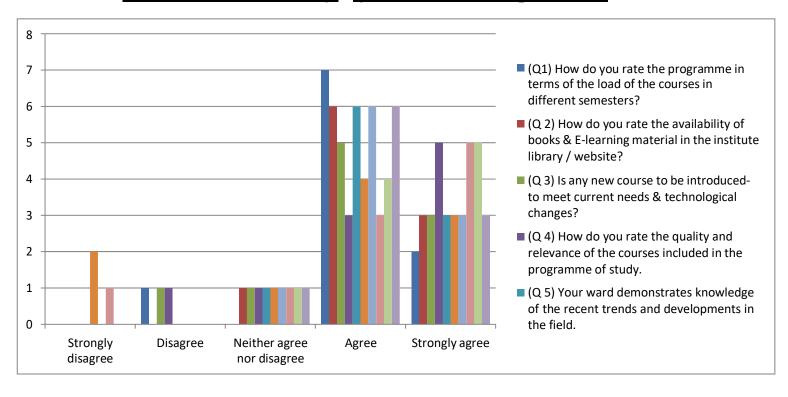
(Q 9) The infrastructure, other facilities and ambience of the institute is good.



Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Parent Satisfaction Survey 2nd year 2023 – 24) Sample Size: 06

Summary Sheet Parent Satisfaction survey 2^{nd} year (2023–24) Sample Size: 6


	(Q1) How do you rate the programme in terms of the load of the courses in different semesters?	(Q 2) How do you rate the availability of books & E-learning material in the institute library / website?	(Q 3) Is any new course to be introduced- to meet current needs & technological changes?	(Q 4) How do you rate the quality and relevance of the courses included in the programme of study.	(Q 5) Your ward demonstrates knowledge of the recent trends and developments in the field.	(Q 6) The institute provides good support for improving overall personality of your ward.	(Q 7) The teaching, learning and evaluation system in the institute is good.	(Q 8) The institute conducts many activities that help your ward in getting job opportunities and campus placement.	(Q 9) The infrastructure, other facilities and ambience of the institute is good.	(Q 10) In general you are happy and satisfied with the institute.
Strongly disagree	0	0	0	0	0	0	0	0	1	0
Disagree	0	0	0	0	0	1	1	0	1	1
Neither agree nor disagree	1	3	3	3	1	2	2	4	1	2
Agree	10	5	7	7	7	6	3	6	7	5
Strongly agree	2	5	3	3	5	4	7	3	3	5
Parent Satisfaction Index (PSI)	4.08	4.15	4.00	4.00	4.31	4.00	4.23	3.92	3.77	4.08

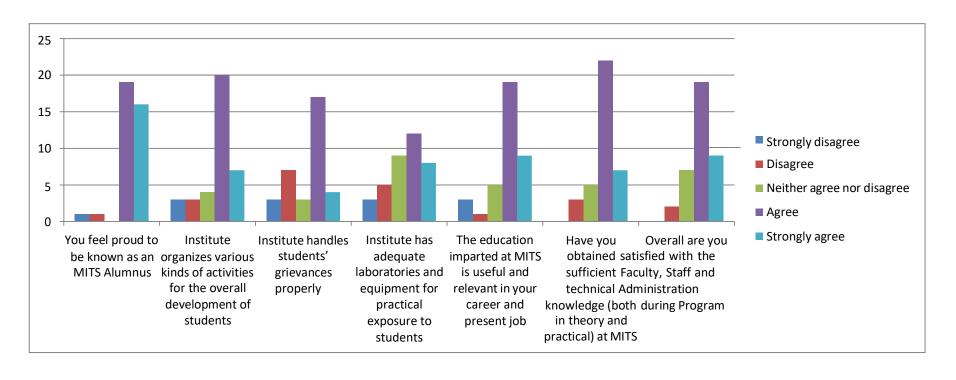
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Parent Satisfaction Survey 3rd year 2023 – 24) Sample Size: 10

Summary Sheet Parent Satisfaction survey 3^{rd} year (2023 - 24) Sample Size: 10

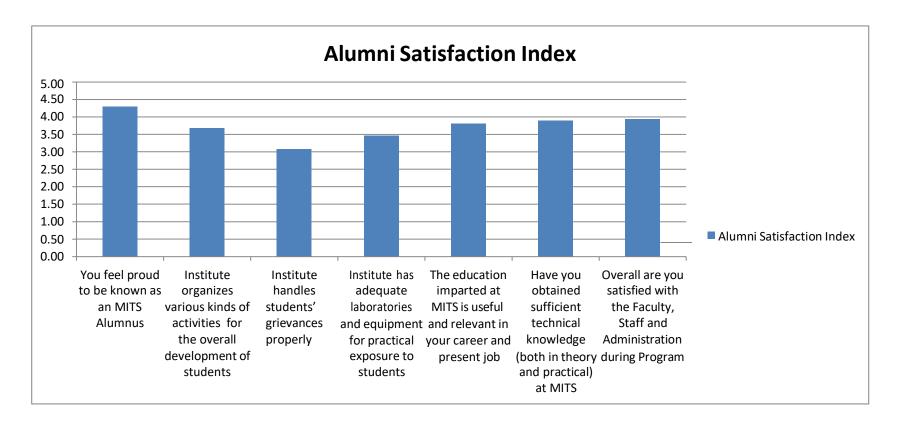
	(Q1) How do you rate the programme in terms of the load of the courses in different semesters?	(Q 2) How do you rate the availability of books & E- learning material in the institute library / website?	(Q 3) Is any new course to be introduced- to meet current needs & technological changes?	(Q 4) How do you rate the quality and relevance of the courses included in the programme of study.	(Q 5) Your ward demonstrates knowledge of the recent trends and developments in the field.	(Q 6) The institute provides good support for improving overall personality of your ward.	(Q 7) The teaching, learning and evaluation system in the institute is good.	(Q 8) The institute conducts many activities that help your ward in getting job opportunities and campus placement.	(Q 9) The infrastructure, other facilities and ambience of the institute is good.	(Q 10) In general you are happy and satisfied with the institute.
Strongly disagree	0	0	0	0	0	2	0	1	0	0
Disagree	1	0	1	1	0	0	0	0	0	0
Neither agree nor disagree	0	1	1	1	1	1	1	1	1	1
Agree	7	6	5	3	6	4	6	3	4	6
Strongly agree	2	3	3	5	3	3	3	5	5	3
Parent Satisfaction Index (PSI)	4.00	4.20	4.00	4.20	4.20	3.60	4.20	4.10	4.40	4.20

(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE



(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Alumni Feedback


S. No.	Comments	Action Taken
1	Revision of syllabus is required	Already discussed and changed in BoS accordingly
2 .	Need to particularly focus on practical application rather than teaching theories.	All the faculty members have been instructed to discuss the theory with some practical applications in their respective courses.
3	Availability of Books in Library	The Library officer has been informed about the situation and also shared the list of Books.
4	Department should have a regular industrial visits.	Department is exploring opportunity related to conduction of industrial visit.

ALUMNI SATISFACTION SURVEY: (2023-2024): Sample Size: 37

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

SUMMARY SHEET (Alumni Satisfaction Survey) Sample Size: 37

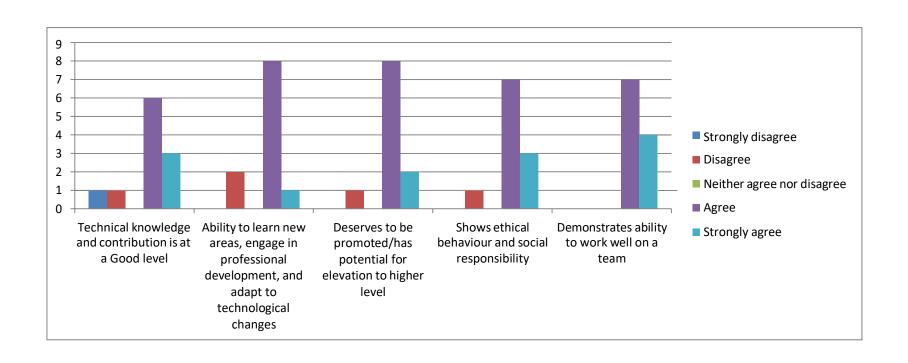
Parameter (Average grading)	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree	Alumni Satisfaction Index
You feel proud to be known as an MITS Alumnus	1	1	0	19	16	4.30
Institute organizes various kinds of activities for the overall development of students	3	3	4	20	7	3.68
Institute handles students' grievances properly	3	7	3	17	4	3.08
Institute has adequate laboratories and equipment for practical exposure to students	3	5	9	12	8	3.46
The education imparted at MITS is useful and relevant in your career and present job	3	1	5	19	9	3.81
Have you obtained sufficient technical knowledge (both in theory and practical) at MITS	0	3	5	22	7	3.89
Overall are you satisfied with the Faculty, Staff and Administration during Program	0	2 Index (ASI) (on a scale of 5) (5	7	19	9	3.95

Alumni Satisfaction Index (ASI) (on a scale of 5) (5: Excellent, 4: Very Good, 3: Good, 2: Fair, 1: Poor)

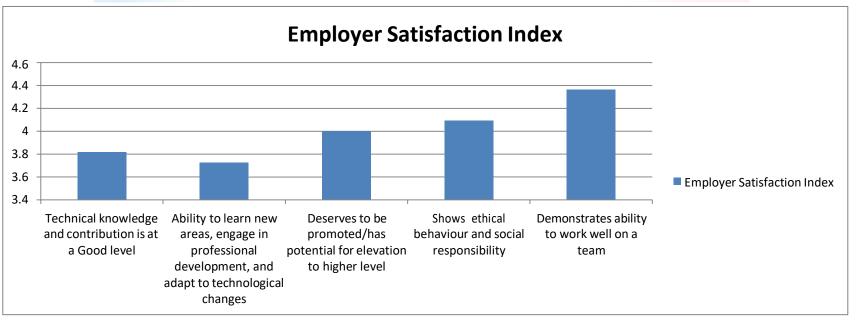
Details of Alumni who gave Feedback

S. No.	Name	Organization	Mail id	Phone No.
1.	Udit Singh Rajput	Pulsus Healthcare Pvt. Ltd.	rajputudit25sep@gmail.com	7999886247
2.	Kakul Joshi	DCM Shriram Rayons	skakul374@gmail.com	8109860434
3.	Vivek Singh	Lupin Limited	Vivek.singh0797@gmail.com	8153043120
4.	Sourabh Kumar Shrivastava	GACL-NALCO Alkalies And Chemicals	subh.mits88@gmail.com	-
5.	Indraneel Nandi	KBR technology	indraneel.nandi@gmail.com	9911345984
6.	Radhika Paliwal	Streamingo.ai	paliwalradhika162@gmail.com	8963914208
7.	Soniya Markam	CSIR-NML jamshedpur	Soniyamarkam397@gmail.com	9425993239
8.	Akshar Pandey	SRF Ltd	aksharpandey88@gmail.com	7814687561
9.	Lokesh Singh kisroliya	Industry	Lokeshsinghkisroliya@gmail.com	7987484361
10.	Kunjbihari Katare	Orient cement limited	kunjkatare@yahoo.co.in	7000310430
11.	Hemang Mahajani	Accenture Solutions	Hemangmahajani09@gmail.com	9039633225
12.	Mukesh Sharma	Ginni International Limited	mukesh9867436784@gmail.com	9920750749
13.	Manish Gupta	(Veolia Water)	Manishgptind@gmail.com	7047292846
14.	Shahid mansoori	Industry	shahidcool7786@gmail.com	7869266446
15.	Rahul Gosavi	Limited, Panipat Refinery	rahul_goswami5@rediffmail.com	9729397138
16.	Aditya Rao	Great Ganeon ventures Ltd.	adityarao2575@gmail.com	8770262082
17.	Ritu Ranjan	Dishman carbogen ameis ltd	ritu.ranjan.che16@gmail.com	9304162778
18.	Gajendra Kushwah	National fertilizer limited	gd.kushwah03@gmail.com	7772954279
19.	Imrat bihuniya	-	noddyy24@gmail.com	8839907713
20.	Abhishek Gupta	Ion Exchange	abhishek40122@gmail.com	9630882244
21.	Shivangi Sharma	Jiwaji university	shivangi887@gmail.com	8370039690
22.	Tushar Maheshwari	BORL	tshrmaheshwari@gmail.com	8109692396
23.	Himanshu Jain	LUPIN limited	himanshujain046@gmail.com	9770261004

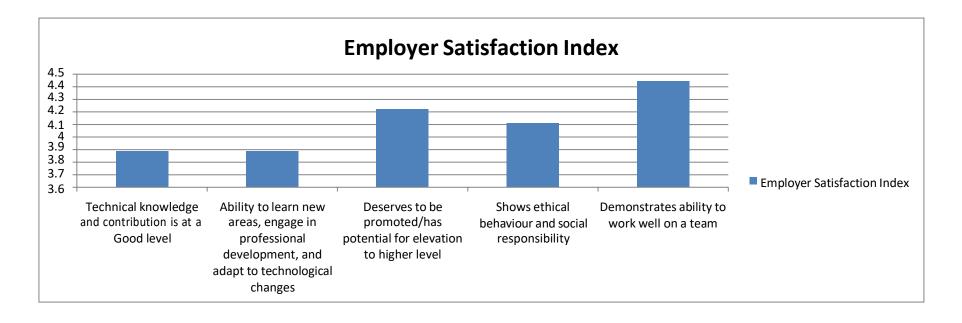
Employer Feedback


S. No.	Comments	Action Taken
1 .	They must focus on the core rather making aware about other subjects	Courses are offered according NEP
2 .	The courses offered are only relevant upto a certain level there should be a proper commencement of newly technologies introduced in the industries then only we can make graduates ready for an industry. They must taught about the ethics and principles which one should follow while working inside the chemical industries.	New Technology and Industry related course already offered in flexible curriculum.
3	Must include an optional course on chemical/industrial operations which are practiced in different process industries.	Some Such courses are offered on NPTEL platform under DE
4	Need some courses on finance as well. Data science is an emerging field an exposure of that will be beneficial.	Regarding this Provision is there in open category courses.
5 .	If possible, addition of 2-3 months of internship or practising of students in multiple industries to get contemporary knowledge in industrial operations.	Students get industrial (1 month) visit after 6 th sem and during 8 th sem most of the students are engaged with industrial internship (4-6months)

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE



EMPLOYER SATISFACTION SURVEY: (2023-2024): Sample Size: 11


SUMMARY SHEET (Employer Satisfaction Survey) Sample Size: 11

Parameter (Average grading)	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree	Employer Satisfaction Index
Technical knowledge and contribution is at a Good level	1	1	0	6	3	3.82
Ability to learn new areas, engage in professional development, and adapt to technological changes	0	2	0	8	1	3.73
Deserves to be promoted/has potential for elevation to higher level	0	1	0	8	2	4.00
Shows ethical behaviour and social responsibility	0	1	0	7	3	4.09
Demonstrates ability to work well on a team	0	0	0	7	4	4.36

Parameter (Average grading)	Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree	Employer Satisfaction Index	
Technical knowledge and contribution is at a Good level	1	0	0	6	2	3.89	
Ability to learn new areas, engage in professional development, and adapt to technological changes	0	1	0	7	1	3.89	
Deserves to be promoted/has potential for elevation to higher level	0	0	0	7	2	4.22	
Shows ethical behaviour and social responsibility	0	1	0	5	3	4.11	
Demonstrates ability to work well on a team	0	0	0	5	4	4.44	
Employer Satisfaction Index (ESI) (on a scale of 5) (5: Excellent, 4: Very Good, 3: Good, 2: Fair, 1: Poor)							

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(Deemed to be University)
NAAC Accredited with A++ Grade
ITEM -23

Any other matter

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(Deemed to be University)
NAAC Accredited with A++ Grade

As per the instructions received from the Dean (Academics), the SWAYAM-NPTEL course on "Natural Hazards" was included as an Open course (OC-3) in the B. Tech. VIII Semester, Chemical Engineering scheme for the 2020 admitted students only for B. Tech Civil Engg students during the Jan – June 2024 semester.