Chemical Engineering

Course Outcomes (COs) of theory & lab courses under Flexible Curriculum of 2017 admitted batch:

III Semester

	CO1	Explain the processing of natural products
ocess	CO2	Describe about microbial processes and edible oil refining process
anic Pr ology)	CO3	Elaborate the processes for producing petrochemicals
170302 (Organic Process Technology)	CO4	Characterize polymers and elaborate its production processes.
030,	CO5	Describe the production processes of fibers
17	CO6	Evaluate the different processes from economical aspects

170303 (Fluid Mechanics)	CO1	Explain the basic fundamentals of fluid statics & fluid flow.
	CO2	Estimate pressure drops, forces acting on bodies & power and head requirements of pumps.
	CO3	Apply equations of change to various fluid flow systems.
	CO4	Formulate the inter-dependency of various parameters using dimensional analysis.
	CO5	Determine the flow rate through different flow measuring devices.
	CO6	Examine the losses due to friction in pipes and other fluid machinery.

Huid Mech	Analyze the effects of flow measurement by flow measuring devices.
-----------	--

CO2	Calculate the degree of error in discharge rate of rotameter.
CO3	Calculate the coefficient of discharge for venturimeter and orifice meter.
CO4	Calculate the coefficient of discharge for rectangular notch.
CO5	Calculate the coefficient of discharge for triangular notch.
CO ₆	Calibrate the flow measuring instruments.

ance)	CO1	Explain different unit system, basic mass volume relationship, conversion of units
Bal	CO2	Classify ideal and non -ideal gases
rgy	CO3	Solve energy balance problems
170304 (Material & Energy Balance)	CO4	Analyze the recycle, bypass, and purge calculation
	CO5	Estimate the raw material requirement for synthesis of a chemical product based on stoichiometry
	CO6	Estimate the performance of chemical equipment using material and energy balance

e Lab)	CO1	Explain the boiling point variation with concentration of solute.
Balance	CO2	Infer the relation of dry and wet bulb Thermometer with humidity
170304 (Material & Energy Balance Lab)	CO3	Interpret the humidity charts to find the psychrometric properties and energy balance
rial	CO4	Apply the material balance of urea solution
4 (Mate	CO5	Apply the material balance in the Crystallization of copper sulphate solution
17030	CO6	Perform the material balance by Combustion analysis coal

170305 (Fluid Particle Mechanics	CO1	Rephrase the application of Screen Analysis in Industry.
	CO2	Describe the various methods of size reduction and to list the various principles.
	CO3	Explain the separation techniques and equipments.
	CO4	Illustrate the various process like sedimentation, filtration etc.
	CO5	Compare the various conveying devices.
	CO6	Illustrate the fluidization and fluid catalytic process.

ab)	CO1	Analyse the effectiveness of a given screen.
170305 (Fluid Particle Mechanics Lab)	CO2	Apply separation technique (sedimentation) to separate a mixture.
e Meck	CO3	Design size reduction ratio, grindability index using ball mill and jaw crusher.
articl	CO4	Compute Bond crushing laws using hammer mill.
(Fluid P	CO5	Design the plate and frame filter press, and thickener.
170305	CO6	Design, formulate, analyse and solve mathematical descriptions of mixing processes.

6 (Chemical Synthesis Lab)	CO1	Research a specific compound, or a family of compounds, to propose a synthetic route for isolation of this compound.
	CO2	Perform advanced manipulations of apparatus relevant to a synthetic chemistry laboratory, use a Schlenk line to synthesize oxygen- and moisture-sensitive products.
170306	CO3	Characterize chemical compounds using modern spectroscopic techniques.

CO4	Maintain a laboratory notebook following scientific best practices.
CO5	Communicate findings in a format consistent with the scholarly standards of the chemical sciences.
CO6	Articulate and follow ethical principles in a scientific context, including professional standards of laboratory practice, the communication of literature research without plagiarism, and the crediting of collaborators

170307 (SWAYAM/NPTEL/ MOOC)	CO1	Refer various technical resources available from multiple fields
	CO2	Adhere to deadlines and commitment to complete the assignment
	CO3	Improve his/her performance in the self learning domain
	CO4	Acquire additional knowledge helpful for competitive examinations
	CO5	Demonstrate understanding of various interdisciplinary & allied areas.

IV Semester

170402 (Heat Transfer)	CO1	Apply the principles of different modes of heat transfer and heat transfer equipments.
	CO2	Analyze the heat transfer problems involving phase change.
	CO3	Illustrate the use of dimensionless numbers and various theoretical concepts.
	CO4	Interpret the physical systems involving heat transfer.
	CO5	Solve practical heat transfer problems.
	CO6	Estimate the design parameters of various heat transfer equipments.

ab)	CO1	Analyze the various modes of heat transfer in chemical industries
Transfer Lab)	CO2	Analyze the application of various experimental heat transfer correlations in engineering applications
(Heat Ti	CO3	Evaluate the thermal analysis and sizing of heat exchanger
2 (1	CO4	Evaluate the emissivity of materials
170402	CO5	Study the thermal conduction in metal rod
17	CO6	Analyze the application of heat exchanging equipment in chemical process industries

170403 (Mass Transfer - I)	CO1	Explain the basics of absorption, humidification, drying, crystallization & the principle of diffusion underlying them.
	CO2	Infer the necessary information useful in design of mass transfer equipment.
	CO3	Analyze the different cases of diffusion phenomena.
	CO4	Apply the theoretical concepts for solving practical problems.
	CO5	Interpret psychometric charts & equilibrium data.
	CO6	Propose favorable conditions for a separation to be carried out.

170403 (Mass Transfer - I Lab)	CO1	Analyze the various applications of modern separation technique
	CO2	Design novel drying equipments for intended application.
	CO3	Evaluate the diffusion application in chemical industries
	CO4	Analyze the ability to know the application of humidification operation in chemical industry
	CO5	Evaluate the appropriate application equipment in a process

CO6	Analyze the design of the mass transfer equipments used in crystallization processes
-----	--

170404 (Instrumentation & Process Control)	CO1	Explain the basic principles & importance of process control in industrial process plants.
	CO2	Explain the use of block diagrams & the mathematical basis for the design of control systems.
	CO3	Identify controller that can be used for specific problems in chemical industry.
	CO4	Analyze the Dynamic behavior of first and second order control system.
	CO5	Compare the Linear open loop and Closed loop system.
	CO6	Analyze the stability of a given system & the transient and frequency response of systems.

170407 (Process Control Lab)	CO1	Tell the importance of process control in industrial process plants
	CO2	Explain the working of a flow control trainer and its applications
	CO3	Explain the working of a level control trainer and its applications
	CO4	Identify controller that can be used for specific problems in chemical industry
	CO5	Analyze the Dynamic behavior of first and second order control system
	CO6	Differentiate between interaction and non- interacting systems

170405 (Mechanical Design of Process Equipment)	CO1	Relate basics of Mechanical Design to industrial problems.
	CO2	Experiment with different heads, closures and other accessories involved doing design.
	CO3	Decide on general design considerations.
	CO4	Make use of IS Codes in design of Pressure vessel.

CO5	Distinguish between design procedures for Tall Vertical & Horizontal Vessels.
CO6	Outline the design of bolted flanges

V Semester

170501 (Chemical Engineering Thermodynamics)	CO1	Infer the fundamental concepts of thermodynamics to chemical engineering applications.
	CO2	Explain the first and second laws of thermodynamics with their practical implications.
	CO3	Analyze the processes involving refrigeration and compression.
	CO4	Classify the thermodynamic properties of solutions with their relationships.
	CO5	Infer the detail of vapour liquid equilibria and its use in practical situations.
	CO6	Analyze the chemical equilibrium with thermodynamics for predicting behavior of reacting systems.

		Examine the basics of adsorption, leaching,
	CO1	distillation, liquid-liquid extraction & the principle
<u> </u>		of diffusion underlying them.
ısfe	000	Infer the necessary information useful in design of
Transfer	CO2	mass transfer equipment.
	CO3	Analyze the different contacting patterns &
170502 (Mass		Analogies in transfer process.
	CO4	Apply the theoretical concepts for solving practical
		problems.
	~~-	Interpret the equilibrium data obtained in various
	CO5	mass transfer operations.

		Propose favourable conditions for a separation to
		be carried out.

ıss Transfer - II Lab)	CO1	Design calculation of distillation column
	CO2	Estimation of number of theoretical stages and composition of each plate
	CO3	Analyze the separation by adsorption and design of adsorber
	CO4	Design the spray and packed tower separation by liquid liquid extraction
(Mass	CO5	Analyze the separation by leaching
170503	CO6	Analyze the industrial application of separation equipments in process plant

170503 (Chemical Reaction Engineering - I)	CO1	Apply the basic concepts in the analysis of homogenous system and deviation from ideal behavior.
	CO2	Infer the necessary information useful in design of mass transfer equipment.
	CO3	Analyze the different contacting patterns & Analogies in transfer process.
	CO4	Apply the theoretical concepts for solving practical problems.
	CO5	Interpret the equilibrium data obtained in various mass transfer operations.
	CO6	Propose favourable conditions for a separation to be carried out.

al Reaction - I Lab)	CO1	Analyze the chemical reactors and reaction systems.
	CO2	Examine the design of experiments involving chemical reactors.
mic	CO3	Analyze non ideality in real reactors.
170503 (Chemical Engineering –	CO4	Examine the experimental analysis of batch reactor, plug flow reactor and CSTR.
	CO5	Examine the design and sizing of industrial scale reactor on the basis of kinetic data obtained at lab scale.

CO6	Interpret the experimental data for useful
000	purposes.

170504 (Computational Methods in Chemical Engg.)	CO1	Explain mathematical problems as applied to Chemical Engineering.
	CO2	Interpret the engineering data & the features of different numerical methods.
	CO3	Illustrate the use of numerical methods in Chemical Engineering scenario.
	CO4	Outline the scope of optimization in chemical processes & use of numerical solution of the ODEs.
	CO5	Simplify the solution of engineering problems using PDEs & ODEs.
	CO6	Solve PDEs & ODEs in various physico-chemical systems.

170504(Computational Methods in Chemical Engg. Lab)	CO1	Choose between various computational methods to solve a process problem.
	CO2	Present a contrast between analytical & numerical solutions.
ional I	CO3	Construct functions & codes for different numerical methods.
ıputati ıical E	CO4	Solve ordinary & partial differential equations using the solvers in MATLAB.
)4(Con Chen	CO5	Analyze the solution of engineering problems using ordinary differential equations.
17050		Make use of numerical integration & interpolation while solving chemical engineering
	CO6	problems

70505 (Inorganic Process Technology)	CO1	Explain the basics of heavy and inorganic chemical industry
	CO2	Relate the importance of different unit operation and different unit processes involved in heavy and inorganic chemical industry
17(CO3	Develop process flow diagram

	CO4	Analyze the major engineering problems involved in the process
	CO5	Evaluate different types of processes based on the conversion and yield of desireable products
	CO6	Importance of Fertilizer and cement technology

oject - I)	CO1	Tell the basics of various unit operations & unit processes.
	CO2	Outline the necessary features to be utilized in undergoing any project work.
nor Pro	CO3	Choose among experimental work, modeling & a combination of both for any problem statement.
170506 (Minor Project -	CO4	Choose among experimental work, modeling & a combination of both for any problem statement.
1705(CO5	Justify the background for selecting a suitable project title.
	CO6	Plan the work in phases for accomplishment of the project objective.

170508 (SWAYAM/NPTEL/ MOOC)	CO1	Refer various technical resources available from multiple fields
	CO2	Adhere to deadlines and commitment to complete the assignment
	CO3	Improve his/her performance in the self learning domain
	CO4	Acquire additional knowledge helpful for competitive examinations
17050	CO5	Demonstrate understanding of various interdisciplinary & allied areas.

VI Semester

170602(Process Modeling & Simulation)	CO1	Explain the basic concepts involved in process analysis & simulation.
	CO2	Formulate a chemical engineering problem as a mathematical model from basic engineering principles.
	CO3	Apply the conservation equations in various physio – chemical systems.
	CO4	Examine the experimental data for further processing.
	CO5	Compare various iterative convergence methods and numerical solution of ODEs.
	CO6	Analyze different approaches involved in dynamic modelling of process systems.

		·
170602 (Process Modeling & Simulation Lab)	CO1	Develop fundamental understanding of chemical engineering problems
	CO2	Develop dynamic model equations of chemical engineering systems
	CO3	Solve the differential equations by using different convergence methods
	CO4	Develop matlab code to solve dynamic model equations
	CO5	Analyze the plotted data generated by matlab code
	CO6	Analyze the variation of state variable with respect to time

1 (Process Equipment Design)	CO1	Interpret the parameters in design problem statement.
	CO2	Apply the concepts of unit operations to design various process equipments.
	CO3	Find the property values at various process conditions.
170611	CO4	Justify the final design parameters in any process design.

CO5	Distinguish between different methods employed in design calculations & designs available for specific equipment.
CO6	Formulate certain rules of thumb to decide on some parameters encountered in process design.

170612 (Fluidization Engg.)	CO1	Explain the basics of fluidization
	CO2	Describe the various industrial application of fluidization
	CO3	Explain the various fluidization regimes, classification of particles
	CO4	Analyse Heat and Mass Transfer between fluid and solid
	CO5	Estimate Voidage, TDH, size distribution with height, viscosity, fluidity
	CO6	Evaluate Heat transfer coefficients in fluidized beds

170613 (Multi – Component Distillation	CO1	Select key component
	CO2	Solve number of theoretical and actual stages required for multi component distillation by usingvarious methods.
	CO3	Examine how to break azeotrope using azeotropic and extractive distillation.
	CO4	Estimate reflux ratio required for the distillation operation.
	CO5	Estimate tower diameter and operating pressure for multi distillation columns.
	CO6	Analyze various design options for energy conservation in distillation column.

170614 (Polymer Technology)	CO1	Analyze the classification of polymers, identification of their physical properties and establishing structure-property relations.
	CO2	Describe polymerization methods, emulsion and suspension techniques of polymerization.

	CO3	Apply governing equations for a polymerization process modeling.
	CO4	Analyze of polymer processing operations and choice of operation depending on the material and final product requirements.
	CO5	Estimate copolymerization and its kinematics along with its range and applicability.
	CO6	Examine various reactors for carrying out polymerization reactions.

	CO1	Explain the origin of fossil fuels
uels & Combustion)	CO2	Classify fossil fuels and their reserves in India
	CO3	Analyze various alternate energy options available in earth.
	CO4	Explain various fuel-processing techniques used in solid, liquid and gaseous fuels
900109 (Fuels &	CO5	Examine characterization techniques for fuels
006	CO6	Examine quality of fuels based on its properties and possible utilization

900110 (Nanotechnology)	CO1	Analyze the nanostructures and their properties.
	CO2	Examine the principles of processing, manufacturing of nanomaterials.
	CO3	Examine the nanomaterials and nanostructurescharacterization techniques.
	CO4	Examine the mechanical properties of bulk nanostructured metals, alloys, nanocomposites and carbon nanotubes
	CO5	Analyze the structure of materials down to the nanometer (atomic) level, with particular emphasis on crystal structure, nano-defects and their kinetics

CO6	Analyze the application of nanomaterial and nanostructure.
-----	--

170607(Minor Project - II)	CO1	Tell the basics of various unit operations & unit processes.
	CO2	Outline the necessary features to be utilized in undergoing any project work.
	CO3	Choose among experimental work, modeling & a combination of both for any problem statement.
	CO4	Choose among experimental work, modeling & a combination of both for any problem statement.
	CO5	Justify the background for selecting a suitable project title.
	CO6	Plan the work in phases for accomplishment of the project objective.

ment	CO1	Identify disaster prevention and mitigation approaches.
	CO2	Classify global and national disasters, their trends and profiles.
age 7)	CO3	Determine the impacts of various disasters
[an	CO4	Apply Disaster Risk Reduction in management
Disaster Management (100007)	CO5	Infer the linkage between disasters, environment and development
	CO6	Identify Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders

VII Semester

1(Trans oort oomena)	CO1	Explain the basic terminology of Transport phenomena.
170711 po Pheno	CO2	Apply shell balance to mass, momentum and heat transfer.

	CO3	Solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration
	CO4	Analyze industrial problems along with appropriate boundary conditions.
	CO5	Apply analogies among momentum, heat and mass transfer.
	CO6	Describe mechanisms of transport phenomena; present in given isothermal and non-isothermal, laminar and turbulent flow systems.

170712(Equilibrium Staged Operations)	CO1	Describe the fundamentals of separation operation.
	CO2	Describe the approximation technique and its algorithms for multi-component multistage separations.
	CO3	Interpret the equilibrium data obtained in the various separation operations.
	CO4	Analyze industrial problems along with equilibrium staged operations.
12(Equi	CO5	Apply the knowledge of kinetics & transport
17071	CO6	Apply the mechanisms of industrial equilibrium separation operations.

170713(Industrial Pollution Prevention & Control)	CO1	Describe the industrial activities and fates of industrial contaminants.
	CO2	Describe the concept of pollution prevention, control and sustainability development
	CO3	Identify the laws and regulations pertained to pollution prevention and control

	CO4	Analyze the significance of different industrial pollution
	CO5	Identify the concepts of air pollution and methods
	CO6	Apply the principles of industrial water treatment methods

170714(Petrochemical Technology)	CO1	Identify the suitable feedstock and predict potential growth of petrochemical industries
	CO2	Describe the various aspects of production of olefin containing gases
	CO3	Identify the various aspects of important intermediate material for petrochemical industries
	CO4	Analyze the various aspects of cracking and polymerization processes.
	CO5	Identify the manufacturing methods of importance for petrochemical industries
	CO6	Identify the concepts of quality and environmental pollution control in petrochemical industries

ology)	CO1	Explain the chemistry of petroleum and its characterization.
[echne	CO2	Analyze the petroleum refining and petrochemical processing and current scenario.
Ssing	CO3	Analyze the improvement for the profitability of refining and petrochemical complexes.
900211(Petroleum Processing Technology)	CO4	Evaluate the application of advance technologies for petroleum exploration, production and economics of energy sector.
Petrole	CO5	Analyze the systems for ensuring safe, reliable design and operation of process unit.
900211(CO6	Design the parameters for safe, healthy environment in petrochemical industries.

900223 (Industrial Safety & Hazards)	CO1	Analyze the origin of hazards and fundamental principles of safety
	CO2	Analyze the issues related to toxicants and minimize the toxicants dose
	CO3	Explain the fire & explosion hazard and the controlling measurement techniques used in chemical industries
	CO4	Evaluate the professional obligations related to the plant management and maintenance to reduce energy hazard
	CO5	Analyze the risk analysis and plant reliability to reduce the hazard
	CO6	Formulate the HAZOP study, event tree analysis and fault tree analysis

VIII Semester

(1		Identify the problem after reviewing the Literature or
80	CO1	field survey
(170801)		Develop non conventional prototypes for different
	CO2	chemical systems
ojec	CO3	Execute experiments as per the target objectives
Prc		Compose observations and results by using appropriate
/dii	CO4	statistical tools or software
Internship/Project	CO5	Develop leadership and team work ability
ter		Communicate effectively by means of oral, written and
드	CO6	graphical presentation

pment	CO1	Demonstrate technical & non technical skills in in-house activities.
Jevelo _l 802)	CO2	Demonstrate good oral & written communication skills
rofessional Developme (170802)	CO3	Acquire knowledge of new areas & emerging fields through MOOCs
Profes	CO4	Develop leadership and team work ability

	Take positions of responsibility in professional
CO5	organizations