Chemical Engineering

Course Outcomes (COs) of theory & lab courses under Flexible Curriculum of 2020 admitted batch:

II Semester

After the completion of this course, Students will be able to

(11)	CO1	Explain different unit system, basic mass volume relationship, conversion of units
emical Process Calculations (1702	CO2	Classify ideal and non –ideal gases
	CO3	Solve energy balance problems
	CO4	Analyze the recycle, bypass, and purge calculations
	CO5	Estimate the raw material requirement for synthesis of a chemical product based on stoichiometry
Che	CO6	Estimate the performance of chemical equipment using material and energy balance

Chemical Process Calculations Lab (170211)	CO1	Explain the boiling point variation with concentration of solute
	CO2	Infer the relation of dry and wet bulb Thermometer with humidity
	CO3	Interpret the humidity charts to find the psychrometric properties and energy balance
	CO4	Apply the material balance of urea solution
	CO5	Apply the material balance in the Crystallization of copper sulphate solution
	CO6	Perform the material balance by Combustion analysis coal

		Describe various energy resources, their
sty	CO1	conversion to electrical power and role in
Socie		technological & amp; economic development.
1 &		Update with national/international power status
gy, Environment, Ecology (100015)	CO2	and renewable power development targets & missions.
	CO3	Recognize the impact of pollution on the ecosystem and control policies adopted at national/international levels.
	CO4	Illustrate the concepts of ecosystems and their conservation.
	CO5	Solve practical problems of society in a sustainable and ethical manner.
Ener	CO6	Fulfill professional duties keeping in mind the environmental safety, health, and welfare of public.

III Semester

After the completion of this course, Students will be able to

170312 (Organic Process Technology)	CO1	Explain the processing of natural products
	CO2	Describe about microbial processes and edible oil refining process
	CO3	Elaborate the processes for producing petrochemicals
	CO4	Characterize polymers and elaborate its production processes.
	CO5	Describe the production processes of fibers
	CO6	Evaluate the different processes from economical aspects

)311 (Fluid lechanics)	CO1	Explain the basic fundamentals of fluid statics & fluid flow.
	CO2	Estimate pressure drops, forces acting on bodies & power and head requirements of pumps.
17(M	CO3	Apply equations of change to various fluid flow systems.

CO4	Formulate the inter-dependency of various parameters using dimensional analysis.
CO5	Determine the flow rate through different flow measuring devices.
CO6	Examine the losses due to friction in pipes and other fluid machinery.

170311 (Fluid Mechanics Lab)	CO1	Analyze the effects of flow measurement by flow measuring devices.
	CO2	Calculate the degree of error in discharge rate of rotameter.
	CO3	Calculate the coefficient of discharge for venturimeter and orifice meter.
	CO4	Calculate the coefficient of discharge for rectangular notch.
	CO5	Calculate the coefficient of discharge for triangular notch.
	CO6	Calibrate the flow measuring instruments.

Chemical Engineering Thermodynamics (170313)	CO1	Infer the fundamental concepts of thermodynamics to chemical engineering applications.
	CO2	Explain the first and second laws of thermodynamics with their practical implications.
	CO3	Analyze the processes involving refrigeration and compression.
	CO4	Classify the thermodynamic properties of solutions with their relationships.
	CO5	Infer the detail of vapour liquid equilibria and its use in practical situations.
	CO6	Analyze the chemical equilibrium with thermodynamics for predicting behavior of reacting systems.

Fluid Particle Mechanics (170314)	CO1	Rephrase the application of Screen Analysis in Industry.
	CO2	Describe the various methods of size reduction and to list the various principles.
	CO3	Explain the separation techniques and equipments.
	CO4	Illustrate the various process like sedimentation, filtration etc.
	CO5	Compare the various conveying devices.
	CO6	Illustrate the fluidization and fluid catalytic process.

Fluid Particle Mechanics Lab (170314)	CO1	Analyse the effectiveness of a given screen.
	CO2	Apply separation technique (sedimentation) to separate a mixture.
	CO3	Design size reduction ratio, grindability index using ball mill and jaw crusher.
	CO4	Compute Bond crushing laws using hammer mill.
	CO5	Design the plate and frame filter press, and thickener.
	CO6	Solve mathematical descriptions of mixing processes.

5)	CO1	Research a specific compound, or a family of compounds, to propose a synthetic route for
31		isolation of this compound.
120		Perform advanced manipulations of apparatus
0(1	CO^{2}	relevant to a synthetic chemistry laboratory, use a
al	02	Schlenk line to synthesize oxygen- and moisture-
I S		sensitive products.
lesi	CO^{2}	Characterize chemical compounds using modern
Chemical Synth	003	spectroscopic techniques.
	CO4	Maintain a laboratory notebook following
		scientific best practices.
	CO5	Communicate findings in a format consistent with
		the scholarly standards of the chemical sciences.
	CO6	Articulate and follow ethical principles in a

scientific context, including professional
standards of laboratory practice, the
communication of literature research without
plagiarism, and the crediting of collaborators

170316 (SWAYAM/NPTEL/ MOOC)	CO1	Refer various technical resources available from multiple fields
	CO2	Adhere to deadlines and commitment to complete the assignment
	CO3	Improve his/her performance in the self learning domain
	CO4	Acquire additional knowledge helpful for competitive examinations
	CO5	Demonstrate understanding of various interdisciplinary & allied areas.

IV Semester

After the completion of this course, Students will be able to

170411(Heat Transfer)	CO1	Apply the principles of different modes of heat transfer and heat transfer equipments.
	CO2	Analyze the heat transfer problems involving phase change.
	CO3	Illustrate the use of dimensionless numbers and various theoretical concepts.
	CO4	Interpret the physical systems involving heat transfer.
	CO5	Solve practical heat transfer problems.
	CO6	Estimate the design parameters of various heat transfer equipments.

1 (Heat Trans for)1	Analyze the various modes of heat transfer in chemical industries
----------------------------	----	---

CO2	Analyze the application of various experimental heat transfer correlations in engineering applications
CO3	Evaluate the thermal analysis and sizing of heat exchanger
CO4	Evaluate the emissivity of materials
CO5	Study the thermal conduction in metal rod
CO6	Analyze the application of heat exchanging equipment in chemical process industries

170414 (Mass Transfer - I)	CO1	Explain the basics of absorption, humidification, drying, crystallization & the principle of diffusion underlying them.
	CO2	Infer the necessary information useful in design of mass transfer equipment.
	CO3	Analyze the different cases of diffusion phenomena.
	CO4	Apply the theoretical concepts for solving practical problems.
	CO5	Interpret psychometric charts & equilibrium data.
	CO6	Propose favorable conditions for a separation to be carried out.

170414 (Mass Transfer - I Lab)	CO1	Analyze the various applications of modern separation technique
	CO2	Design novel drying equipments for intended application.
	CO3	Evaluate the diffusion application in chemical industries
	CO4	Analyze the ability to know the application of humidification operation in chemical industry
	CO5	Evaluate the appropriate application equipment in a process
	CO6	Analyze the design of the mass transfer equipments used in crystallization processes

170412(Instrumentation & Process Control)	CO1	Explain the basic principles & importance of process control in industrial process plants.
	CO2	Explain the use of block diagrams & the mathematical basis for the design of control systems.
	CO3	Identify controller that can be used for specific problems in chemical industry.
	CO4	Analyze the Dynamic behavior of first and second order control system.
	CO5	Compare the Linear open loop and Closed loop system.
	CO6	Analyze the stability of a given system & the transient and frequency response of systems.

170415 (Process Control Lab)	CO1	Tell the importance of process control in industrial process plants
	CO2	Explain the working of a flow control trainer and its applications
	CO3	Explain the working of a level control trainer and its applications
	CO4	Identify controller that can be used for specific problems in chemical industry
	CO5	Analyze the Dynamic behavior of first and second order control system
	CO6	Differentiate between interaction and non- interacting systems

hanical ign of ocess	CO1	Relate basics of Mechanical Design to industrial problems.
Mech Desi Dro	CO2	Experiment with different heads, closures and other accessories involved doing design.

CO3	Decide on general design considerations.
CO4	Make use of IS Codes in design of Pressure vessel.
CO5	Distinguish between design procedures for Tall Vertical & Horizontal Vessels.
CO6	Outline the design of bolted flanges
	· · · · · · · · · · · · · · · · · · ·