		Madhav Institute of Technology & Science Gwa	lior-5		
		Department : ELECTRICAL ENGINEERING	Y	Year 2023-202	24
		CO Attainment			
S.No	Course	Course Outcome	Direct	Indirect Attainment	Total Attainment
		CO1 Explain the fundamental concepts of Complex Variables, Linear Programming	2.10	2.03	2.09
	2100025:	CO2 Categorize the principles of Complex Variables, Linear Programming Problems,	2.14	2.02	2.12
1	Engineering	CO3 Solve complex engineering problems using Numerical methods & LPP.	2.23	2.15	2.21
	Mathematics II	CO4 Evaluate the application of Complex Variables, Linear Programming Problems, and	1.97	2.20	2.02
		CO5 Create innovative strategies using Numerical Methods and Linear Programming to	1.92	2.00	1.94
		CO1 interpret Maxwell's equations in differential and integral forms, both in time and	2.10	2.20	2.12
		CO2 Define complex permittivity, permeability, conductivity and perfect electric and	2.10	2.10	2.10
	130301: Electro	CO3 Derive Poyntings theorem from Maxwells equations and interpret the terms in the	2.30	2.41	2.32
	Magnetic Field Theory	CO4 Apply vector calculus to understand the behavior of static electric fields in standard	2.30	1.90	2.22
		CO5 Solve engineering problems of Electromagnetic, Electrostatic and Magnetic to	2.50	1.90	2.38
		CO6 Formulate and solve engineering problems of Electromagnetic.	2.25	1.90	2.18
		CO1 Explain the basic concepts of electrical and electronic measurement and measuring	2.30	2.03	2.25
		CO2 Determine errors in a measurement system.	2.30	2.02	2.24
2	130302:	CO3 Describe the construction and working of AC and DC bridges and their applications	2.20	2.15	2.19
3	Instrumentation	CO4 Select suitable measuring instrument, signal Generator, frequency counter, CRO	2.30	2.34	2.31
		CO5 Select appropriate passive, active transducers and A/D & D/A converters for	2.30	2.00	2.24
		CO6 Describe working principle of CT & PT and their applications	2.20	1.87	2.13
		CO1 Handle an instrument and perform basic calibration	2.10	2.30	2.14
	130302:	CO2 Estimate the deviations in measurements due to possible errors and measures to	2.20	2.20	2.20
4	Measurement & Instrumentation	CO3 Measure unknown resistance, inductance and capacitance	2.43	2.20	2.38
	(LAB)	CO4 Teamwork skills for working effectively in groups and develop analytical skills to	2.32	2.20	2.30
		CO5 Prepare and present an organized written engineering report on electronic testing of	2.30	2.00	2.24
		CO1 State different AC and DC networks laws & theorems.	2.20	2.40	2.24
		CO2 Apply the knowledge of basic circuital law and simplify the network using	2.20	2.40	2.24

S.No	Course	Course Outcome		Indirect	Total Attainment
5	130303: Network	CO3 Solve the complicated network using theorems	2.30	2.30	2.30
5	Analysis	CO4 Infer and evaluate transient response, steady state response and network functions.	2.30	2.30	2.30
		CO5 Analyze the series resonant and parallel resonant circuit,	2.51	2.39	2.49
		CO6 Evaluate two-port network parameters.	2.40	2.32	2.38
		CO1 Analyze the Thevenin's equivalent circuits and linear superposition and apply them	2.02	2.22	2.06
		CO2 Relate physical observations and measurements involving electrical circuits to	2.30	2.40	2.32
6	130303: Network Analysis (LAB)	CO3 Predict and measure the transient and sinusoidal steady-state responses of simple	2.37	2.18	2.33
		CO4 Teamwork skills for working effectively in groups and develop analytical skills to	2.42	2.49	2.43
		CO5 Prepare and present an organized written engineering report on electronic testing of	2.30	2.42	2.32
		CO1 Define working principles of electronic devices e.g. Diode, Zener Diode, LED,	2.19	2.31	2.21
	130304: Analog Electronics	CO2 Categorize the different types of Diode, Power Amplifier, Oscillators and Op-Amp	2.20	2.16	2.19
		CO3 Explain the different types of characteristic of Diode, Transistor, Power Amplifier	2.30	2.34	2.31
		CO4 Illustrate the various mathematical model of transistor eg. Hybrid model, re model.	2.30	2.26	2.29
		CO5 Develop an ability and skill to design different types of diode rectifier, transistor	2.30	2.00	2.24
		CO6 Apply the various principles of electronics to design different types of Analog	2.20	2.27	2.21
		CO1 Develop the understanding of diode biasing conditions.	2.20	2.22	2.20
		CO2 Investigate the operation of half-wave and full-wave rectifier, and find their	2.15	2.05	2.13
8	130304: Analog Electronics (LAB)	CO3 Compare transistor configurations on the basis of input-output characteristics.	2.34	1.98	2.27
	2	CO4 Implement transistor based circuits (Darlington pair, differential amplifier and two-	2.00	2.10	2.02
		CO5 Explain operation of operational amplifier (Op-amp), and design Op-amp based	1.97	1.88	1.95
		CO1 Design engineering problem and validate the results using MATLAB environment.	2.20	1.95	2.15
		CO2 Validate the concepts of network theorems by writing MATLAB codes	2.13	2.31	2.16
9	130305: Software Lab-I	CO3 Analyze the waveforms on parameter variation of PV Array module using	2.27	2.49	2.31
		CO4 Compare the performance of basic converters using MATLAB environment	2.02	2.52	2.12
		CO5 Prepare and present an organized written engineering report on electronic testing of	1.95	2.10	1.98
		CO1 Refer various technical recourses available from multiple field	2.30	2.22	2.28
10	130306 : Self	CO2 Adhere to deadlines and commitment to complete the assignment	2.50	2.05	2.41

S.No	Course	Course Outcome		Indirect	Total Attainment
10	learning	CO3 Improve performance in self learning domain	2.20	1.98	2.16
		CO4 Acquire additional knowledge for competitive examinations	2.50	2.10	2.42
		CO1 Relate the theoretical aspects learned in classes into practical world	2.20	2.20	2.20
		CO2 Apply the new skills and supplement knowledge other than curriculum	2.40	2.20	2.36
11	130309 : Summer Internship	CO3 Practice communication and teamwork skills	2.27	2.15	2.24
	internanip	CO4 Apply the knowledge for placement & higher education	2.02	2.08	2.03
		CO5 Troubleshoot the problems related to particular experiment	2.10	2.31	2.14
		CO1 Formulate Complex Variable Functions	2.20	2.20	2.20
		CO2 Solve the Complex Integral Problems	2.50	2.20	2.44
12	100003:Mathematic	CO3 Find the Optimal Solution using Various Methods of Linear Programming Problem.	2.10	1.95	2.07
	5 111	CO4 Apply different numerical methods in engineering problem	2.02	1.99	2.01
		CO5 Solve Ordinary Differential Equation by Numerical Techniques	1.95	2.00	1.96
	130402: Electrical	CO1 Comprehend the principles and construction of different AC and DC machines.	2.30	1.90	2.22
		CO2 Demonstrate an understanding of the fundamental control practices such as starting,	2.30	2.10	2.26
12		CO3 Distinguish between the application and performance of AC and DC machines.	2.05	1.79	2.00
15	Machines-I	CO4 Develop the equivalent circuits and compute the induced emf, torque, efficiency,	1.98	2.20	2.02
		CO5 Describe the different test conducted for testing the performance of different AC	2.10	1.88	2.06
		CO6 Formulate the various performance parameters of machines under different	2.30	2.10	2.26
		CO1 Estimate which apparatus at what rating is required for a particular experiment	2.42	2.20	2.38
		CO2 Utilise a DC machine for a specific purpose, requirement	2.39	2.20	2.35
14	130402: Electrical Machines-I (LAB)	CO3 Predetermine the efficiency of any transformer, regulation of any transformer	2.14	1.50	2.01
		CO4 Prepare and present an organized written engineering report on electronic testing of	2.20	1.80	2.12
		CO5 Develop the ability to work is team and learns professional ethics.	2.10	2.50	2.18
		CO1 Define Number systems and codes, Logic family, Digital circuits and	2.20	2.40	2.24
		CO2 Simplify the logic expressions using Boolean laws, map method and design them by	2.30	2.10	2.26
15	130401: Digital	CO3 Explain the concept of different number system, logic Families and Microprocessor.	2.50	2.30	2.46
	Microprocessor	CO4 Illustrate different types of Number system, Combinational circuits, sequential	2.30	2.26	2.29

S.No	Course	Course Outcome		Indirect Attainment	Total Attainment
		CO5 Develop an ability to design combinational and sequential circuits using Logic gates	2.10	2.10	2.10
		CO6 Apply the various principle of digital electronics and programming skill to develop	2.00	2.10	2.02
		CO1 Develop skill to build, and troubleshoot digital circuits	2.20	2.32	2.22
	130401: Digital	CO2 Correctly operate standard electronic test equipment such as oscilloscopes, signal	2.20	2.10	2.18
16	Electronics & Microprocessor	CO3 Apply troubleshooting techniques to test digital circuits.	2.00	2.14	2.03
	(LAB)	CO4 Prepare and present an organized written engineering report on electronic testing of	2.30	2.20	2.28
		CO5 Develop the ability to work is team and learns professional ethics.	2.40	2.10	2.34
		CO1 Develop mathematical models of mechanical system, electrical system and	2.30	2.28	2.30
		CO2 Represent the complex system into standard canonical form by signal flow graph	2.50	2.57	2.51
17	130403 : Control	CO3 Compute the time and frequency-domain responses of first and second-order	2.30	2.05	2.25
	Systems	CO4 Formulate control engineering problems in state-variable form	2.40	2.37	2.39
		CO5 Evaluate the stability of a closed-loop control system in time-domain as well as in	2.40	2.20	2.36
		CO6 Predict the nature of response for the given input	2.20	2.03	2.17
		CO1 Explain general structure of power systems.	2.30	2.43	2.33
		CO2 Develop the knowledge of generation of electricity based on conventional and	2.10	2.07	2.09
10	130404: Power	CO3 Determine the transmission line parameters.	2.60	2.46	2.57
10	System-I	CO4 Analyze the performance of overhead transmission line.	2.80	2.37	2.71
		CO5 Apply the concept of power plant economics.	2.10	2.00	2.08
		CO6 Compare different types of tariffs and power factor improvement methods	2.30	2.32	2.30
		CO1 Explain basic terminologies of cyber security.	1.90	2.18	1.96
		CO2 Explain the basic concept of networking and internet.	2.30	2.27	2.29
10	100004: Cyber	CO3 Apply various method used to protect data in the internet environment in real world	1.90	2.00	1.92
19	Security	CO4 Discover the concept of IP security and architecture.	2.20	2.03	2.17
		CO5 Compare various type of cyber security threats and vulnerabilities.	2.30	2.12	2.26
		CO6 Develop the understanding of cyber crime investigation and IT ACT 2000.	2.10	2.06	2.09
		CO1 Simulate the performance of DC motor using MATLAB Simulink environment	2.40	2.18	2.36
		CO2 Validate the concepts of Induction motor by writing MATLAB codes.	2.50	2.40	2.48

S.No	Course	Course Outcome		Indirect	Total Attainment
20	130405: Simulation	CO3 Analyze the waveforms on parameter variation of PV Array module using	2.30	2.00	2.24
	La0-11.	CO4 Compare the performance of renewable energy sources using MATLAB	2.40	2.03	2.33
		CO5 Design engineering problem and validate the results using MATLAB environment	2.40	2.12	2.34
		CO1 Impart knowledge and awareness regarding	2.20	2.18	2.20
01	100005. Ethica	CO2 Develop spoken ability in a student so that	2.20	2.27	2.21
	Economics,	CO3 Predict the situation and to be good decision	2.20	2.00	2.16
21	Entreprenership &	CO4 Develop a sound knowledge about economy and	2.30	2.03	2.25
	Management	CO5 Work out needs so as to develop a	2.10	2.12	2.10
		CO6 Find out ways of solving / overcoming hurdles that crop up while establishing /	2.10	2.06	2.09
		CO1 Explain the process of sampling and the effects of under sampling.	2.10	2.22	2.12
	130501: Signals & Systems	CO2 Classify systems based on their properties and determine the response of LSI system	2.40	2.05	2.33
		CO3 Apply the concepts of linear algebra to signals.	2.30	2.40	2.32
		CO4 Analyze the spectral characteristics of continuous-time periodic and a periodic	2.42	2.00	2.34
		CO5 Analyze system properties based on impulse response and Fourier analysis.	2.29	2.03	2.24
		CO6 Apply the Laplace transform and Z- transform for analysis of continuous-time and	2.34	2.12	2.30
		CO1 Explain the concepts of single line diagram and per unit system	2.45	2.07	2.37
		CO2 Apply different load flow techniques to solve load flow problem	2.30	2.26	2.29
22	130502: Power	CO3 Perform fault calculations for symmetrical and unsymmetrical faults	2.18	2.37	2.22
23	System II	CO4 Explain the theoretical and practical aspects of Power System Stability, and its	2.30	2.27	2.29
		CO5 Elucidate the automatic generation control reactive power, voltage control, series	2.60	2.32	2.54
		CO6 Discuss the insulation resistance, capacitance of various types of cables and the	2.15	2.20	2.16
		CO1 Demonstrate the performance EHVAC transmission on simulation panel.	2.20	2.43	2.25
		CO2 Determine transmission line parameters.	2.20	2.07	2.17
24	130502: Power System II (Lab)	CO3 Simulate the different types of faults in transmission line using MATLAB.	2.20	2.25	2.21
		CO4 Prepare report for presentation.	2.30	1.64	2.17
		CO5 Display team work.	2.20	2.00	2.16
		CO1 Analyze the performance of 3-phase induction and synchronous machines using	2.30	2.24	2.29

S.No	Course	Course Outcome		Direct	Indirect	Total Attainment
25		2 Explain the constructional detail	ils and working principle of three phase transformer	2.30	2.38	2.32
	130503: Electrical	3 Develop phasor diagram and de	termine voltage regulation of an alternator and its	2.30	2.28	2.30
	Machine-II	A Determine time constant, variou	as sequence reactance and equivalent circuit	2.30	2.14	2.27
		5 Analyze the behavior of synchr	onous machine connected to infinite bus and parallel	2.30	2.21	2.28
		6 Analyze the performance of 3-p	hase induction and synchronous machines using	2.30	2.24	2.29
		1 Demonstrate an understanding	of the fundamental control practices associated with	2.23	1.76	2.14
	130503:Electrical	¹⁰ 2 Use accepted national and inter	national standards (such as NEMA, IE Code) to	1.40	1.20	1.36
26	Machine-II (Lab)	3 Conduct testing and experiment	tal procedures on different types of electrical	1.90	1.24	1.77
		A Develop the ability to work is to	eam and learns professional ethics	2.30	1.76	2.19
		95 Prepare an organized written re	port	2.34	1.20	2.11
		1 Explain static & dynamic chara	cteristics of power electronics devices like Diode	2.20	2.20	2.20
	130504 : Power Electronics	$_{02}$ Explain the configuration of dif	ferent commutation methods.	2.40	2.17	2.35
27		Describe the configuration of A	C to DC converter, Dual converter, chopper, cyclo-	2.30	2.13	2.27
27		4 Classify converters and identify	their applications.	2.10	2.17	2.11
		5 Develop different model of diff	erent converters to calculate their performance	2.30	2.03	2.25
		6 Identify the problems/limitation	as of power electronics devices, converters and	2.25	2.10	2.22
		1 Demonstrate VI characteristics	of Semiconductor Devices and Various Firing	2.40	2.20	2.36
		Demonstrate the performance o	f various converters AC to DC and DC to AC	3.00	2.17	2.83
20	130504: Power	3 Compare the performance of sin	ngle and three phases VSI Inverter.	2.30	2.13	2.27
20	Electronics (Lab)	04 Demonstrate the performance o	f converters in its different modes of operation.	2.40	2.17	2.35
		95 Prepare an organized written re	port.	2.30	2.03	2.25
		$_{6}$ Develop the ability to work is to	eam and learns professional ethics.	2.25	2.10	2.22
		Formulate the real-world proble	ems.	2.40	2.24	2.37
20	130505: Minor	2 Express the technical ideas, stra	ategies and methodologies.	2.10	2.38	2.16
29	Project-I	3 Utilize the new tools, algorithm	s, techniques to obtain solution of the project.	2.30	2.28	2.30
		4 Prepare oral demonstrations.		2.00	2.14	2.03
		1 Know the characteristics of ind	ustrial environment.	2.53	2.20	2.46

S.No	Course		Course Outcome		Indirect	Total Attainment
20	130506: Summer	CO2	Apply the technical knowledge in real industrial situations.	2.64	2.17	2.55
30	Internship Project- II	CO3	Write the report in technical work/project.	2.30	2.13	2.27
		CO4	Show engineer's responsibilities & ethics.	2.53	2.17	2.46
		CO1	Refer various technical recourses available from multiple field.	2.40	2.08	2.34
31	130507:Seminar/Se	CO2	Adhere to deadlines and commitment to complete the assignment.	2.30	2.15	2.27
	lf Study	CO3	Improve his/her performance in self-learning domain.	1.98	2.23	2.03
		CO4	Acquire additional knowledge helpful for competitive examinations.	2.10	2.12	2.10
		CO1	Explain the concepts, theories and features associated with protective devices and	2.30	2.08	2.26
		CO2	Classify relays and circuit breakers based on criterion such as construction, type of	2.30	2.15	2.27
22	130601:	CO3	Select relays and circuit breakers for specific equipments and applications.	2.30	2.23	2.29
52	Protection	CO4	Design protection schemes for generators, motors, transformers and transmission line	2.30	2.12	2.26
		CO5	Analyze the behavior and performance of relays under different loading levels and	2.10	2.04	2.09
		CO6	Select the protective devices and their locations for protecting power systems	2.20	2.00	2.16
	130601	CO1	Operate the Over/Under voltage & over current relays and observe the performance	2.39	2.17	2.35
		CO2	Analyze the effect of time and current settings on the operating characteristics of an	2.30	2.13	2.27
33	Switchgear &	CO3	Validate the characteristics of percentage biased differential relay for different bias	2.74	2.17	2.63
	Protection Lab	CO4	Prepare an organized written report.	2.30	2.03	2.25
		CO5	Develop the ability to work is team and learns professional ethics.	2.25	2.10	2.22
		CO1	Describe properties and applications of conducting materials	2.30	2.12	2.26
	130602: Electrical	CO2	Explain behavior of semiconductor materials, their classification and applications.	2.50	2.08	2.42
34	Engineering	CO3	Explain application of magnetic materials, different terms, classification, hysteresis	2.45	2.15	2.39
	Materials	CO4	Explain dielectric materials, their behavior in different fields, polarization and	2.10	2.23	2.13
		CO5	Select appropriate material depending upon specific requirement	2.20	2.12	2.18
		CO1	Explain unit commitment and different methods for Solving UC problem	2.40	1.90	2.36
	130611 · Computer	CO2	Apply direct method and lamda iteration method for solving economic dispatch	2.10	2.17	2.83
35	Aided Power	CO3	Discuss the concept of reactive power, control of active power and reactive power	2.30	2.40	2.27
35	System Analysis	CO4	Solve the AGC problem in isolated and interconnected power systems	2.30	2.17	2.83

S.No	Course		Course Outcome		Indirect Attainment	Total Attainment
	(DE-1)	CO5	Illustrate Operations Control Centre functions, System monitoring and Contingency	2.30	2.40	2.25
		CO6	Describe various types of ANN and their applications to power system.	2.25	2.60	2.22
		CO1	Analyze architecture of industrial automation system	2.30	2.12	2.26
		CO2	Select appropriate sensors	2.63	2.24	2.55
26	130612:Industrial	CO3	Acquire PLC knowledge	2.10	2.38	2.16
30	Automation (DE1)	CO4	Acquire the knowledge of PID control technique	2.60	2.28	2.54
		CO5	Develop small application using PLC & transducer,	2.30	2.14	2.27
		CO6	Compare AC and DC drives for particular applications	2.30	2.12	2.26
		CO1	Formulate the real-world problems.	2.20	2.08	2.18
27	130603: Minor	CO2	Express the technical ideas, strategies and methodologies.	2.45	2.15	2.39
3/	Project-II	CO3	Utilize the new tools, algorithms, techniques to obtain solution of the project.	1.90	2.23	1.97
		CO4	Prepare oral demonstrations.	1.90	2.12	1.94
	130651: Non	CO1	Identify energy demand and relate with available energy resources	2.20	2.30	2.22
		CO2	Analyze harnessing of solar energy.	2.20	2.30	2.22
20	Conventional	CO3	Analyze harnessing of wind energy	2.20	2.30	2.22
30	DE2(SWAYAM/	CO4	Analyze harnessing of Biomass energy	2.20	2.30	2.22
	NPTEL)	CO5	Analyze harnessing of Geothermal and Ocean energies.	2.20	2.30	2.22
		CO6	Analyze Magneto hydrodynamics and Fuel cell technology	2.20	2.30	2.22
		CO1	Propose disaster prevention and mitigation approaches.	2.20	2.24	2.21
		CO2	Classify global and national disasters, their trends and profiles.	2.10	2.30	2.14
39	100007:Disaster Management	CO3	Appreciate the impacts of various disasters.	2.40	2.28	2.38
	inanagement	CO4	Apply Disaster Risk Reduction in management.	2.20	2.40	2.24
		CO5	Find the linkage between disasters, environment and development	2.30	2.12	2.26
		CO1	Explain the basic concepts of Energy Audit & its various terminologies, rules and	2.30	2.12	2.26
	900103: (OC1)	CO2	Acquire fundamental knowledge on the science of energy and on both the	2.30	2.08	2.26
40	Energy Conservation &	CO3	Describe different energy auditing methods and the implementation procedures	2.23	2.15	2.21
	Management	CO4	Identify present scenario of energy utilization, management and corresponding ACT	2.10	2.23	2.13

S.No	Course	Course Outcome		Indirect Attainment	Total Attainment
		CO5 Recognize process billing, energy tariff and power factor improvements to achieve	2.20	2.12	2.18
41		CO1 Describe various components of a drive system along with modes of operation,	2.20	2.20	2.20
		CO2 Explain various drives & loads, their characteristics and control methods under	2.40	2.17	2.35
	130711: Electrical	CO3 Explain performance analysis & control of dc drives	2.30	2.13	2.27
41	Drives (DE3)	CO4 Explain performance analysis & control of ac drives	2.20	2.17	2.19
		CO5 Employ the various static converters for speed control of different types of drives	2.30	2.03	2.25
		CO6 Illustrate the functioning of solar, battery powered and traction drives and explain	2.25	2.10	2.22
		CO1 Evaluate the environmental impacts of conventional energy sources and the need of	2.20	2.30	2.22
	130712: Renewable	CO2 Explain the process of PV generation, wind power generation	2.40	2.30	2.38
42	Energy System	CO3 Describe stand-alone and grid connected configuration	2.36	2.30	2.35
	(DE3)	CO4 Explain the process of fuel cell power generation and its applications.	2.28	2.30	2.28
		CO5 Identify the need of hybrid energy systems.	2.41	2.30	2.39
	130714: Intelligent	CO1 Describe transduction principle of sensor based on various energy forms.	2.20	2.20	2.20
		CO2 Explain Smart Sensor Technologies	2.30	2.00	2.24
43	Sensors and Instrumentation	CO3 Explain the MEMS, Intelligent and Network Sensors	2.20	2.10	2.18
	(DE3)	CO4 Identify the component of sensor networking	2.28	2.20	2.26
		CO5 Discuss Intelligent Instrumentation techniques	2.30	2.30	2.30
		CO1 Identify the role and significance of microgrid in future power systems	2.10	2.17	2.11
		CO2 Describe different types and modes of operation of Microgrids	2.20	2.13	2.19
44	130713: IoT in MicroGrid (DE3)	CO3 Explain the different control strategies available for Microgrid	2.30	2.17	2.27
		CO4 Select proper energy storage devices for smooth operation of microgrid	2.30	2.03	2.25
		CO5 Describe applications of IoT in Microgrid	2.20	2.10	2.18
	120751.	CO1 Apply advanced knowledge of electrical power system operations and control to	2.10	2.03	2.09
15	Introduction to	CO2 Conceptualize the design of smart grid by selecting appropriate communication	2.10	2.03	2.09
43	Smart Grid DE4)	CO3 Describe the principles and requirements of the next generation future power	2.10	2.03	2.09
	(NPIEL)	CO4 Describe the latest trends in IoT for power systems	2.10	2.03	2.09
		CO1 Discuss the various types of electrical equipments and their suitable applications.	2.20	2.00	2.16

S.No	Course	Course Outcome	Direct	Indirect Attainment	Total Attainment
	900201:Application	CO2 Describe the various schemes of AC, DC drives, traction schemes and different	2.10	2.28	2.14
46	s of Electrical Motor &	CO3 Explain the basics of lighting and illumination and its parameters and able to design	2.20	2.10	2.18
	Equipment	CO4 Apply the concepts of power electronics technology in efficient utilization of	2.32	2.20	2.30
		CO5 Identify the area for research in field of electric traction & utilization of Electric	2.20	2.13	2.19
		CO1 Discuss the need of MATLAB to illustrate modeling and simulation of any system	2.40	2.20	2.36
		CO2 Classify and evaluate the performance parameters of a system and then with	2.40	2.00	2.32
47	130701:Control System Lab	CO3 Prepare professionals in laboratory to compute or to predict the characteristics of a	2.23	2.17	2.22
	2920011 200	CO4 Evaluate possible causes of discrepancy in practical experimental observations in	2.30	1.80	2.20
		CO5 Demonstrate the ability to interact via team work	2.40	1.90	2.30
		CO1 Formulate the real world problems.	2.30	2.30	2.30
	130702: Summer Internship Project	CO2 Express the technical ideas, strategies & methodologies.	2.30	2.40	2.32
10		CO3 Utilize the new tools, algorithms, techniques to obtain solution of the project.	2.30	2.19	2.28
48		CO4 Test & validate the developed prototype/results.	2.20	2.30	2.22
		CO5 Write a project report.	2.30	2.40	2.32
		CO6 Prepare oral demonstrations.	2.50	2.50	2.50
		CO1 Identify real time problems	2.10	2.30	2.14
40	130703: Creative	CO2 Practice various methods to solve problems	2.10	2.40	2.16
49	Problem Solving	CO3 Produce solutions to various problems	2.10	2.30	2.14
		CO4 Demonstrate various problems solving skills	2.10	2.20	2.12
		CO1 Imbibe the knowledge of Intellectual Property and its protection through various	2.40	2.20	2.36
	100008:Intellectual	CO2 Apply the knowledge of IPR for professional development	2.45	2.15	2.39
50	Property	CO3 Develop a platform for protection and compliance of Intellectual Property Rights	2.10	2.23	2.13
	Rights(IPR)	CO4 Create awareness amidst academia and industry of IPR and Copyright compliance	2.20	2.12	2.18
		CO5 Deliver the purpose and function of IPR and patenting.	2.60	2.30	2.54
		CO 1 Formulate the real world problems.	2.30	2.42	2.32
		CO 2 Express the technical ideas, strategies & methodologies.	2.20	2.37	2.23
51	130801 :	CO 3 Utilize the new tools, algorithms, techniques to obtain solution of the project.	2.30	2.40	2.32

S No	Course	Course Outcome A		Indirect	Total
5.110	Course			Attainment	Attainment
51	Internship/ Project	CO 4 Test & validate the developed prototype/results.	2.50	2.25	2.45
		CO 5 Write a project report.	2.50	2.44	2.49
		CO 6 Prepare oral demonstrations.	2.20	2.51	2.26
52	130802 : Professional Development	CO 1 Develop intellectual curiosity, competency and skills	2.30	2.42	2.32
		CO 2 Develop critical thinking, creativity and effective communication	2.10	2.37	2.15
		CO 3 Display professionalism and ownership of professional growth and learning	2.40	2.40	2.40