(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Flexible Scheme & Syllabus

2017-2021

B.Tech.

in

Electrical Engineering

Electrical Engineering Department **Madhav Institute of Technology & Science** Gwalior-474005

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Electrical Engineering

[For batch admitted in Academic Session 2017-18]

Semester-Wise Scheme & Guidelines For Flexible Curriculum

Abbreviations used

L	Lecture
Т	Tutorial
Р	Practical
HSMC	Humanities and Social Sciences including Management Courses
BSC	Basic Science Courses
ESC	Engineering Science Courses
DC	Departmental Core
DE	Departmental Elective
OC	Open Category
DLC	Departmental Laboratory Courses
MC	Mandatory Course
MOOC	Massive Open Online Courses

Definition of Credit:

1 Hr. Lecture (L) per week	1 credit
1 Hr. Tutorial (T) per week	1 credit
2 Hours Practical(Lab)/week	1 credit

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Credit Requirements & Guidelines for MOOCs [For batch admitted in Academic Session 2017-18]

- For the award of Under Graduate (UG) degree in Engineering/Technology (without Honours / Minor Specialization), it is required to earn **170 Credits**. For the B. Architecture degree the total credit requirement is **260 credits**.
- Additional Credit requirement for getting an Honours or Minor Specialization in other interdisciplinary areas / fields of Engineering, Technology, Applied Science, Management etc, is 20 additional Credits for Engineering & 24 Credits for B. Architecture.
- Up to 34 Credits out of total 170 for Engineering/Technology students & 52 credits out of total 260 credits for B. Architecture students can be earned through SWAYAM /NPTEL / MOOC platform based learning for the award of UG degree in Engineering/Technology & Architecture respectively (without Honours / Minor Specialization).
- To obtain "Honours or Minor Specialization", 20 Credits additionally can be completed through SWAYAM /NPTEL / MOOC platform based learning. In this manner, students aspiring for minor specialization or Honours during the tenure of B. Tech programme can opt for a total of 54 (34+20) Credits and the students of the B. Architecture programme can earn up to 72 (52+20)credits through SWAYAM /NPTEL / MOOC platform based learning.
- The guidelines regarding "credit transfer from MOOCs" by All India Council of Technical Education (AICTE) and the affiliating university, i.e RGPV Bhopal, as issued from time to time will be binding on the institute.
- The list of courses which the students can opt from the SWAYAM /NPTEL / MOOC platform against DE & OC courses in the scheme will be displayed on the website well in advance, (in November & June) so that students can select the courses of their choice. Each such Course must be of minimum 2 credits.
- For the courses opted under MOOC, the equivalent credit weightage will be given to the students, for the credits earned in online examination on SWAYAM/NPTEL platform and other similar platforms as approved by the authorized bodies (BoS, AC etc), in the credit plan of the program w.e.f. 2017-18 admitted batch onwards.
- For matching the credit requirement with the curricular/scheme requirements, more than one MOOC course can also be selected against an Elective Course, provided that the collective credits are equal to or more than the credit requirement. Also, each such selected course must be of minimum 2 credits.
- The semester wise credit distribution from I-VIII semester for the 2017-18 admitted batch under the flexible scheme is 30, 30, 24, 25, 19, 15, 17, 10 respectively.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Proposed Structure of Undergraduate Engineering program (Electrical Engineering)

S.	Category	Suggested Breakup of	Component wise credit allotment
No		Credits	(To be calculated by the concerned Department)
110.		(Total 160) (as	
		proposed by AICTE)	
1	Humanities and Social Sciences including Management Courses (HSMC)	12**	14
2	Basic Science Courses (BSC)	25**	25
3	Engineering Science courses including workshop, drawing, basics of electrical/mechanical/computer etc. (ESC)	24**	31
4	Departmental Core Courses (DC)	48**	47
5	Departmental Elective Courses relevant to specialization/branch (DE)	18**	12
6	Open Category- Electives from other technical and /or emerging subjects (OC)	18**	12
7	Project work, seminar and internship in industry or appropriate work place/ academic and research institutions. (DLC/SWAYAM/NPTEL/MOOC-Practical Slot)	15**	20
8	Mandatory Course (MC) and Professional Development	-	9
	Total	160**	170

**Minor variation is allowed as per need of the respective disciplines. Please consult the AICTE model curriculum as a standard reference, if needed.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Scheme of Examination (B.Tech.)

GROUP A: I Semester & GROUPB: II Semester [For batch admitted in Academic Session 2017-18]

S.No.	Subject	Category	Subject Name		Max	imum Marks	Allotted		Total	Contac	t Hours pe	er week	Total Credite	
	Code				Theory S	lot	Pract	ical Slot	Marks				Credits	
				End	Mid	Quiz/	End	Lab work		L	Т	Р		
				Sem.	Sem	Assignme	Sem.	&						
					Exam.	nt		Sessional						
1.	100201	BSC	Engineering Physics (BSC-1)	70	20	10	30	20	150	4	1	2	6	
			Energy, Environment,											
2.	100202	HSMC	Ecology & Society	70	20	10	-	-	100	4	1	-	5	
-			(HSMC-1)											
3.	100203	ESC	Basic Computer Engineering (ESC-1)	70	20	10	30	20	150	4	1	2	6	
4.	100204	ESC	Basic Mechanical	70	20	10	30	20	150	4	1	2	6	
			Engineering(ESC-2)			_							_	
_	100205	FGG	Basic Civil	70	20	10	20	20	150	4	1	2	C	
5.	100205	ESC	Engineering& Mechanics(ESC-3)	/0	20	10	30	20	150	4	1	2	6	
6.	100206	HSMC	Language Lab. & Seminars(HSMC-2)	-	-	-	30	20	50	-		2	1	
		Total		350	100	50	150	100	750	20	5	10	30	
Induct	on nuoquo	mmo of first	three weeks (MC). Dhus		try Creative	Anta Ilminana	al II.	Volues Literes	w. Duoficionor	Madulaa	aatumaa hu	Eminant	Doomlo	

Induction programme of first three weeks (MC): Physical activity, Creative Arts, Universal Human Values, Literary, Proficiency Modules, Lectures by Eminent People, Visits to local Areas, Familiarization to Dept./Branch & Innovations

GROUP A: (Electrical, Electronics, Computer Science & Engineering, Information Technology, Electronics & Telecommunication) GROUP B: (Civil, Mechanical, Chemical, Biotech, Automobile) 01Theory Period=1 Credit; 02 Practical Periods =1 Credit

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Scheme of Examination (B.Tech.)

GROUP A: II Semester & GROUP B: I Semester [For batch admitted in Academic Session 2017-18]

S.No.	No. Subject Category Subject Name Maximum Marks Allotted Code Theory Slot Practical S								Total	Total Contact Hours p			Total
	Code				Theory Slo	ot	Pract	ical Slot	Marks				Credits
				End	Mid	Quiz/	End	Lab work		L	Т	Р	
				Sem.	Sem.	Assignme	Sem.	&					
						nt		Sessional					
1.	100101	BSC	Engineering Chemistry (BSC-2)	70	20	10	30	20	150	4	1	2	6
2.	100102	BSC	Mathematics-I (BSC-3)	70	20	10	-	-	100	4	1	-	5
3.	100103	HSMC	Technical English (HSMC-3)	70	20	10	30	20	150	4	1	2	6
4.	100104	ESC	Basic Electrical & Electronics Engineering(ESC-4)	70	20	10	30	20	150	4	1	2	6
5.	100105	ESC	Engineering Graphics(ESC-5)	70	20	10	30	20	150	4	1	2	6
6.	100106	ESC	Manufacturing Practices(ESC-6)	-	-	-	30	20	50	-	-	2	1
		Total		350	100	50	150	100	750	20	5	10	30
			Summer Internsh	nip Project	–I (Institute	e Level) (Qua	lifier): Mi	nimum two-v	week duratio	on			

GROUP A: (Electrical, Electronics, Computer Science & Engineering, Information Technology, Electronics & Telecommunication) GROUP B: (Civil, Mechanical, Chemical, Biotech, Automobile) 01Theory Period=1 Credit; 02 Practical Periods =1 Credit

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Scheme of Examination

B.Tech. III Semester (Electrical Engineering) [For batch admitted in Academic Session 2017-18]

S.No.	Subject Code	Category Code	Subject Name		N		Total Marks	Conta pe	act H r wee	ours ek	Total Credits		
					Theory S	Slot	Pr	actical Slot					
				End	Mid	Quiz/	End	Term work		L	Т	Р	
				Sem.	Sem.	Assignment	Sem						
					Exam.			Lab Work &					
								Sessional					
1.	100001	BSC	Mathematics-II (BSC-4)	70	20	10	-	-	100	3	1	-	4
2.	130301	DC	Electromagnetic Field Theory (DC-1)	70	20	10	-	-	100	3	1	-	4
3.	130302	DC	Measurement & Instrumentation (DC-2)	70	20	10	30	20	150	3	-	2	4
4.	130303	DC	Network Analysis (DC-3)	70	20	10	30	20	150	3	-	2	4
5.	130304	DC	Analog Electronics (DC-4)	70	20	10	30	20	150	3	-	2	4
6.	130305	DLC	Software Lab-I * (DLC-1)	-	-	-	30	20	50	-	-	2	1
7.	130306	SEMINAR/ SELF STUDY	Self-learning/Presentation (SWAYAM/NPTEL/MOOC) [#]	-	-	-	-	25	25	-	-	2	1
8.	130307	DLC	Summer Internship Project–I (Institute Level) (Evaluation) (DLC)	-	-	-	-	25	25	-	-	4	2
			Total	350	100	50	120	130	750	15	2	14	24
9.	100002 \$	мС	Biology for Engineers (Audit Course) (MC)	70	20	10	-	-	100	3		-	
		NSS/N	CC					Qualifier					

[#]Compulsory registration for one online course using SWAYAM/NPTEL/ MOOC, evaluation through attendance, assignments and presentation.

^{\$}Course will run for GroupA/B in III/IV semester respectively (Passing is optional, however a separate marksheet will be issued to those who qualify)

*Virtual Lab to be conducted along with the traditional lab

GROUP A: (Electrical, Electronics, Computer Science & Engineering, Information Technology, Electronics & Telecommunication) & GROUP B: (Civil, Mechanical, Chemical, Biotech, Automobile)

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Scheme of Examination (B.Tech.)

B.Tech. IV Semester (Electrical Engineering) [For batch admitted in Academic Session 2017-18]

S.	Subject	Category	Subject Name		Μ	aximum Mark	s Allotted	l	Total Marka		onta	ct	Tota
190.	Coue	Code			Theory S	lot	Pr	actical Slot	IVIAIKS		week	per	Cre
				End Sem.	Mid Sem. Exam.	Quiz/ Assignment	End Sem.	Term work		L	T	Р	dits
								Lab Work & Sessional					
1.	100003	BSC	Mathematics- III (BSC-5)	70	20	10	-	-	100	3	1	-	4
2.	130401	DC	Digital Electronics & Microprocessor (DC-5)	70	20	10	30	20	150	2	1	2	4
3.	130402	DC	Electrical Machines-I (DC-6)	70	20	10	30	20	150	2	1	2	4
4.	130403	DC	Control System (DC-7)	70 20 10				-	100	3	1	-	4
5.	130404	DC	Power System-I (DC-8)	70	20	10	-	-	100	3	1	-	4
6.	100004	MC	Cyber Security (MC)	70	20	10	-	-	100	2	1	-	3
7.	7. 130405 DLC Software Lab-II* (DLC-2)				-	-	30	20	50	-	-	4	2
			Total	420	120	60	90	60	750	15	7	8	25
		NSS/I	NCC		·			Qualifier					

Summer Internship Project-II (Soft Skills Based) for two weeks duration: Evaluation in V Semester

^{\$}This course will run for GroupA/ B in IV/III semester respectively.

*Virtual Lab to be conducted along with the traditional lab

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Scheme of Examination

B.Tech. V Semester (Electrical Engineering) [For batch admitted in Academic Session 2017-18]

S.	Subject	Category	Subject Name		Maxir	num Marks .	Allotted		Total	Contact	Hours pe	r week	Total
No.	Code	Code			Theory Sl	ot	Pra	ctical Slot	Marks				Credits
				End	Mid Sem	Quiz/	End	Lab work		L	Т	Р	
				Sem.	Exam.	Assignme	Sem.	&					
						nt		Sessional					
			Ethics, Economics,										
1.	100005*	HSMC	Entrepreneurship & Management	70	20	10	-	-	100	2	-	-	2
			(HSMC-4)										
2.	130501	DC	Signals & Systems (DC-9)	70	20	10	-	-	100	2	1	-	3
3.	130502	DC	Power System-II (DC-10)	70	20	10	30	20	150	2	-	2	3
4.	130503	DC	Electrical Machines-II (DC-11)	70	20	10	30	20	150	2	-	2	3
5.	130504	DC	Power Electron ics (DC-12)	70	20	10	30	20	150	2	-	2	3
6.	130505	DLC	Minor Project-I** (DLC-3)	-	-	-	30	20	50	-	-	4	2
7.	130506	DLC	Summer Internship Project-II	-	-	-	25	-	25	-	-	4	2
		DLC	(Evaluation) (DLC-4)										
8.	130507	SEMINAR/	Self-learning/Presentation	-	-	-	-	25	25	-	-	2	1
		SELF STUDY	(SWAYAM/NPTEL/ MOOC) [#]										
			Total	350	100	50	145	105	750	10	1	16	19
9.	100006 ^{\$}	MC	Indian Constitution & Traditional	70	20	10	-	-	100	3		-	-
		MC	Knowledge (Audit Course) (MC)										
Depar	rtment leve	l activity/works	hop/awareness programme to be co	onducte	d; certificat	te of compli	ance to	be submitted	by HoD to	the Exan	n Control	ler thro	ugh Dean
Academics													
Additional Course for													
Hono	urs or mine	or	Permitted to opt for	maxim	um two ado	ditional cou	<u>rses</u> for	the award of	Honours o	r Minor s	pecializa	tion	
Specialization													
Gro	*Group A/B programmes will offer this course in V/VI Semester respectively.												

^{*}Group A/B programmes will offer this course in V/VI Semester respectively. ((Passing is optional, however a separate marksheet will be issued to those who qualify) The minor project-I may be evaluated by an internal committee for awarding Sessional marks.

[#]Compulsory registration for one online course using SWAYAM/NPTEL/ MOOC, evaluation through attendance, assignments and presentation **GROUP A:** (Electrical, Electronics, Computer Science & Engineering, Information Technology, Electronics & Telecommunication) **GROUP B:** (Civil, Mechanical, Chemical, Biotech, Automobile)

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Scheme of Examination

B.Tech. VI Semester (Electrical Engineering)

S.	Subject	Cate	Subject Name		Maxim	um Mai	rks Allott	ed			Total	Conta	nct Hour	rs per	Total
No	Code	gory			Fheory Sl	ot	Pra	ctical Slot	MOO	С	Marks		week		Credi
		Code		End	Mid	Quiz/	End	Lab work	Assignment	Exam		L	Т	Р	ts
				Sem.	Sem	Assign	Sem.	&	_						
					Exam.	ment		Sessional							
1.	130601	DC	Switchgear &	70	20	10	30	20	-	-	150	2	-	2	3
	130001	DC	Protection (DC-13)												
2.			Electrical	70	20	10	-	-	-	-	100	2	-	-	2
	130602	DC	Engineering												
			Materials (DC-14)												
3.	130611/			70	20	10	-	-	-	-	100	2	-	-	2
	130612/	DE	DE (DE-1)												
	130613														
4.	130651/	0651/		-	-	-	-	-	25	75	100	2	-	-	2
	130652/	DE	DE* (DE-2)												
	130653														
5.			<mark>OC</mark> (OC-1)	70	20	10	-	-	-	-	100	2	-	-	2
	900103	OC	[Energy												
			Conservation &												
			Management] #		• •	1.0					100				
6.	40000-		Disaster	70	20	10	-	-	-	-	100	2	-	-	2
	100007	мс	Management												
-			(MC)								100				
7.	130603	DLC	Minor Project-II	-	-	-	50	50	-	-	100	-	-	4	2
			(DLC-5)		100	-						10			
			Total	450	100	50	80		25	75	750		-	6	15
		A 11'4'	Su	mmer II	nternship	III (On	Job Tran	ning) for Fou	ur weeks dura	tion: Eval	luation in V	II Semest	ter		
ohtai	ning Honours	Addition S/ Honours	ar Courses for s with Minor Snecialization h	v		Permittee	d to ont for	maximum two a	dditional courses	for the awa	rd of Honours	or Minor s	pecializati	on	
0.0.00	g	desirou	s students	5				••••••••••••••••••••••••••••••••							
		*This	course run through	SWAY	AM/NPT	EL/ M	EL/ MOOC platform # ECM is only opted by other department students								
			DE-1						DE-2	(SWAYA	M/NPTEL)				
13	0611	11 Computer Aided Power System Analysis						130654 Sensors and Actuators							
13	0612		Industrial Automatic		1 1	130654	The Joy of Co	mputing using	Python						
13	0613		Transducers & Senso	ors		1 1	130656 Renewable Energy Engineering: Solar, Wind and Biomass Energy Systems								

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Scheme of Examination

B.Tech. VII Semester (Electrical Engineering) [For batch admitted in Academic Session 2017-18]

S.	S.SubjectCategorySubject Name & TitleMaximum Marks AllottedTotalNo.CodeCodeTheory SlotPractical SlotMOOCMarks												tact H	ours	Total
No.	Code	Code			Theory S	Slot	Pr	actical Slot	MOO	С	Marks	p	er wee	k	Credits
				End	Mid Sem.	Quiz/	End	Lab Work &	Assignment	Exam					
				Sem.	Exam	Assignment	Sem.	Sessional	_			L	Т	Р	
1.	130711/ 130712/ 130713/ 130714	DE3	Electrical Drives Renewable Energy Systems IoT in Microgrid Intelligent Sensors and Instrumentation	70	20	10	-	-	-	-	100	2	-	-	2
2.	130751/ 130752/ 130753/ 130754	DE	DE * (DE -4)	-	_	-	-	-	25	75	100	2	-	-	2
3.	900205	OC	OC-2	70	20	10	-	-	-	-	100	2	1	-	3
4.	900216/ 900217	ос	OC-3	70	20	10	-	-	-	-	100	3	-	-	3
5.	100008	мс	Intellectual Property Rights (IPR)	70	20	10	-	-	-	-	100	2	-	-	2
6.	130701	DLC	Control Systems Lab (DLC-6)	-	-	-	50	50	-	-	100	-	-	4	2
7.	130702	DLC	Summer Internship Project- III (DLC-7) (04 weeks) Evaluation	-	-	-	50	50	-	-	100	-	-	4	2
8.	130703	DLC	Creative Problem Solving (DLC-8)	-	-	-	25	25	-	-	50	-	-	2	1
		•	Total	280	80	40	125	125	25	75	750	11	1	10	17
	Additiona	l Course f	or Honours or minor Specializati	on	Permitt	ed to opt for	maximum	two additional c	ourses for the a	ward of	Honours	or Mi	nor sp	ecializa	ation
*Th	is course	run throu	igh SWAYAM/NPTEL/ MOO	orm											
[DE-4 (SWAYAM/NPTEL)				<u>OC-2</u>	(For students o	of other b	oranches)				
ľ	130751	Introductio	on to SMART Grid (IITR)			900205 Applications of Electrical Equipment & Motors									

	130/51	Introduction to SMART Grid (IITR)	900205	Applications of Electrical Equipment & Motors
Γ	130752	Advances in UHV Transmission and Distribution, IISc BLR		<u>OC-3</u> (For students of other branches)
Γ	130753	Electrical Distribution system Analysis, IITR	900216	IoT in Microgrid
Γ	130754	Electrical Equipment and Machines: Finite Element Analysis, IITB	900217	Electric Vehicles

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Scheme of Examination

B.Tech. VIII Semester (Electrical Engineering)

S.	Subject	Categ	Subject Name		Maxii	num Mark	s Allotted				Total	Contact	Hours	per	Total
No.	Code	ory	&		Theory Sl	lot	Practi	cal Slot			Marks	V	veek		Credits
			Title	End	Mid	Quiz/	End	Term	Μ	00 C					
				Sem.	Sem.	Assign	Sem.	Work							
					Exam	ment		Lab Work & Sessional	Assign ment	Exam		L	Т	Р	
1.	130851			-	-	-	-	-	25	75	100	2	-	-	2
	to 130853	DE	DE * (DE-5)												
2.	900301			-	-	-	-	-	25	75	100	2	-	-	2
	to 900302	OC	OC * (OC-4)												
3.	900311			-	-	-	-	-	25	75	100	2	-	-	2
	to 900312	OC	OC* (OC-5)												
4.	130801	DLC	Internship/Project (DLC-9)	-	-	-	250	150	-	-	400	-	-	6	3
5.	130802	-	Professional Development [#]	-	-	-	-	50	-	-	50	-	-	2	1
			Total	-	-	-	250	200	75	225	750	6	-	8	10
H	Additional onours or des	Courses minor Sp irous stu	for obtaining pecialization by idents	Permit	tted to opt Honours	t for <u>maxin</u> s with Min	<u>num two a</u> or Speciali	dditional co zation in er	<u>ourses</u> f ngineeri	or the awing discip	vard of (i) line other	Honours i than the p	n parent parent d	t discij iscipli	pline or (ii) ne.
e course	es will run thr	ough SWA	YAM/ NPTEL/ MOOC			• .• •						6.0. 1	10	,	
n will he	based on nar	ticination/	aurels brought by the stu	idents to t	e institution in national/state level technical and othe					s duríng th	e comnlete te	nure of the l	IC nrogra	m (nar	ticination in nro

[#]Evaluation will be based on participation/laurels brought by the students to the institution in national/state level technical and other events during the complete tenure of the UG program (participation in professional chapter activities, club activities, cultural events, sports, personality development activities, collaborative events, MOOCs & technical events)

	DE-5 *(SWAYAM/NPTEL)	(<u>DC-4* (For students of other branches)</u>	OC-5* (For students of other branches)		
130851	Fuzzy Logic and Neural Networks		Waste to Energy Conversion	900311	Renewable Energy Engineering: Solar, Wind and Biomass	
			waste to Energy Conversion		Energy Systems	
130852	Waste to Energy Conversion	900302	Fuzzy Logic and Neural Networks	900312	Non-Conventional Energy Resources	
130853	Renewable Energy Engineering: Solar, Wind and		-		-	
	Biomass Energy Systems					

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Syllabi First Year (B.Tech.)

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical	Engineering	Department
------------	-------------	------------

1	00202:	: Energy, Ecolog	gy, Enviror	nment & So	ociety (EEES)
L	Т	Total Credits	End Sem	Mid Sem	Ouiz/Assignment

L	Т	Total Credits	End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objectives: To create awareness about global energy status, climate issues and sustainable development for development of society using new rand renewable energy resources for power needs, to generate an understanding of human relationships, perceptions and policies towards environment and focus on design and technology for improving environmental quality and to develop moral values and morals to conduct efficiently and ethically in society.

Unit –I: Sources of energy: Renewable and non renewable energy, current Indian and global scenario of energy, state wise energy consumption, role of energy in economic and social development and social transformation. **Energy Polices:** National level and State level policy and International policy of G-8, G-20, OPEC and European countries, solar energy policy of India, National Solar mission energy policy issues. Energy securities and challenges in Indian context.

Unit 2: Energy conversion: Solar Energy, sun-earth angle, solar water heating, concentrated solar power, PV power: roof top; off Grid and on grid, Hydro, wind, biomass, geothermal, tidal and nuclear energy, Fossil fuels, thermal power station basic concepts. Per kilowatt hr cost of energy produced from various energy sources and its future prospects, business opportunities in various non conventional sources.

Unit –3: Ecology: Ecosystems, concept, components, types, Atmosphere, hydrosphere, lithosphere, biosphere, cycles in Ecosystem, Water, Carbon, Nitrogen. Biodiversity, threats and conservation, Producers, composers and decomposers, Energy and matter flow, Ecological succession, Food chains webs and ecological pyramids, Characteristics, structures and functions of ecosystems such as Forest, Grassland, Desert, Aquatic ecosystems. Community ecology- Characteristics, frequency, life forms, and biological spectrum, Ecosystem structure, Biotic and a-biotic factors, food chain, food web, ecological pyramids; Population ecology

Unit- 4:Environment: Air pollution, causes, classifications, adverse effects, Green house gases and effect, their major concerns, present status, emission from automobile, power, infrastructure, agriculture and transportation, environmental security. Global warming causes and effects, acid rain, ozone layer depletion, climate change, its model, impact on human health, national and international impact of climate change, Kyoto protocol, national and additional measures; flexible mechanism for reduction of carbon, clean development mission, joint implementation programme, carbon credit, carbon trading, emission trading, Voluntary Emission Rights (VER), Certified Emission Reductions (CER), and emission reduction unit (ERU), Indian initiatives of reduction in green house gases. Environmental ethics.

Unit -5: Values and ethics: Definition, Sources, and approaches to ethics, Social values and individual attitudes, Work ethics and work values, philosophical and Social ethics, human values and morals, business ethics, self concept and Johari Window, emotional intelligence, social intelligence, self development, character strengths and virtues, Impact of waste on society, management of e-waste.

Reference Books:

- 1. Cunninghan WP and MA; Principles of Environment Sciences; Tata McGraw Hill (TMH)
- 2. Pandey, S.N. & Mishra, S.P. Environment & Ecology, 2011, Ane Books, Pvt.Ltd, New Delhi
- 3. Svakumar; Energy Environment & Ethics in Society; TMH
- 4. Bukhootsow, B., Energy Policy and Planning, Prentice Hall of India, New Delhi, 2003.
- Jose Goldenberg, Thomas Johanson, and Reddy, A.K.N., Energy for Sustainable World, WileyEastern, 2005.
- 6. Charles E. Brown, World Energy Resources, Springer Publication, New York, 2002.
- 7. Culp, A.W., Principles of Energy Conversion, McGraw Hill New York, 2004.
- 8. Bala Krishnamoorthy; "Environmental management"; PHI
- 9. Gerard Kiely, "Environmental Engineering" ;TMH
- 10. Bharucha Erach, Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmadabad, 2002.
- 11. Chakraborty, S.K., Values and Ethics for Organizations, Theory and Practice, Oxford University Press, New Delhi, 2001.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

- 12. Leary M.R., "The Curse of Self: Self-awareness, Egotism and the Quality of Human Life", Oxford University Press. 2004
- 13. Louis P. P., "The Moral Life: An Introductory Reader in Ethics and Literature", Oxford Univ.Press. 2007

Course outcomes: After successfully completing this course the students will be able to

- **CO 1.Describe** various energy resources, their conversion to electrical power and role in technological & economic development.
- **CO 2. Update** with national/international power status and renewable power development targets & missions.
- **CO 3. Recognize** the impact of pollution on the ecosystem and control policies adopted at national/international levels.
- CO 4. Illustrate the concepts of ecosystems and their conservation.
- CO 5. Solve practical problems of society in a sustainable and ethical manner.
- **CO 6. Fulfill** professional duties keeping in mind the environmental safety, health, and welfare of public.

100104: Basic Electrical & Electronics Engineering

 L
 T
 P
 Total Credits
 End Sem
 Mid Sem
 Quiz/Assignment

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

				0	<u> </u>	-
03	-	2	04	70	20	10

COURSE OBJECTIVES:

- To impart the basic knowledge about the D.C circuits and its applications.
- To inculcate the understanding about the AC fundamentals.
- To convey the basic knowledge of magnetic circuits and its terminology.
- Highlight the importance of transformers in transmission and distribution of electric power.
- To understand the working of D C Machine.
- To know about various electronic circuits and its importance.

Unit I - D.C. Circuits Analysis:

Voltage and Current Sources: Dependent and independent source, Source conversion, Kirchhoff's Law, Mesh and Nodal analysis. Network theorems: Superposition theorem, Thevenin's theorem & Norton's theorem and their applications.

Unit II – Single-phase AC Circuits:

Generation of sinusoidal AC voltage, definitions: Average value, R.M.S. value, Form factor and Peak factor of AC quantity, Concept of Phasor, analysis of R-L, R-C, R-L-C Series and Parallel circuit, Power and importance of Power factor.

Unit III- Magnetic Circuits:

Basic definitions, AC excitation in magnetic circuits, self inductance and mutual inductance, Induced voltage, laws of electromagnetic Induction, direction of induced E.M.F. Flux, MMF and their relation, analysis of magnetic circuits.

Unit IV- Single-phase Transformer & Rotating Electrical Machines:

Single phase transformer, Basic concepts, construction and working principal, Ideal Transformer and its phasor diagram at No Load, Voltage, current and impedance transformation, Equivalent circuits and its Phasor diagram, voltage regulation, losses and efficiency, testing of transformers, Construction & working principle of DC and AC machine.

Unit V - Digital Electronics, Devices & Circuits:

Number systems used in digital electronics, decimal, binary, octal, hexadecimal, their complements, operation and conversion, Demorgan's theorem, Logic gates- symbolic representation and their truth table, Introduction to semiconductors, Diodes, V-I characteristic, Bipolar junction transistors and their working, Introduction to CB, CE & CC transistor configurations

Text Book

1. Basic Electrical and Electronics Engineering, Tata McGraw Hill - D.P. Kothari & I.J. Nagrath

Reference Books:

- 2. Basic Electrical and Electronics Engineering, Tata McGraw Hill V N Mittle & Arvind Mittal
- 3. Electrical Machinery- A.E. Fitzgerald, C. Kingsley and Umans TMH
- 4. Principles of Electrical Engineering- Vincdent Del Toro- Prentice Hall.
- 5. Basic Electrical engineering -A,E. Fitzgerald, Higginbotham and Grabel -TMH
- 6. Integrated Electronics- Millmann & Halkias

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

- 7. Electronics Devices & circuits- Sanjeev Gupta, Dhanpat Rai Publication
- 8. Basic Electrical and Electronics Engineering, Tata McGraw Hill D.C Kulshreshtha

COURSE OUTCOMES

After the completion of the course, the student will be able to –

- CO 1. Solve DC & AC circuits by applying fundamental laws & theorems
- CO 2. Analyze the response of linear electrical and magnetic circuits for given input
- **CO 3.** Explain the working principle, construction, applications of rotating electrical machines
- **CO 4.** Explain the working principle, constructional details, losses & applications of single phase transformer.
- CO 5. Select the logic gates for various applications in digital electronic circuits.
- CO 6. Explain characteristics of Diode and Transistor.

Basic Electrical & Electronics Engineering Lab (100104)

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department LIST OF EXPERIMENT

- 1. Verification of Kirchhoff's Current Law & Kirchhoff's Voltage Law.
- 2. Verification of Superposition Theorem.
- 3. To determine resistance & inductance of a choke coil.
- 4. To determine active & reactive power in a single phase A.C circuit.
- 5. To determine voltage ratio & current ratio of a single phase transformer.
- **6.** To determine the polarity of a single phase transformer.
- 7. To perform open circuit & short circuit test on a single phase transformer.
- 8. Measurement of various Electrical Quantities using multimeter.
- 9. Study of construction details of D.C machine.
- 10.To determine the volt –ampere characteristics of diode in forward bias & reverse bias

condition.

Course Outcomes:

After the completion of the lab, the student will be able to -

- **CO 1.** Verify circuit theorems.
- CO 2. Perform tests on transformer for determination of losses, efficiency & polarity.
- CO 3. Demonstrate the constructional features of electrical machines
- **CO 4.** Acquire teamwork skills for working effectively in groups
- **CO 5. Prepare** an organized technical report on experiments conducted in the laboratory.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Syllabi Third Semester & Fourth Semester (B.Tech.)

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Electromagnetic Field Theory: 130301

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	1	-	04	70	20	10

Course Objectives:

- To provide the knowledge of electromagnetic fields and its use in understanding the working principles of various power apparatus and machines.
- To lay the foundations of electromagnetism and its practice in modern communications such as wireless, guided wave principles etc.
- To provide the basic concepts of vectors and fields, electrostatics, electric current flow, magnetic fields, Maxwell's equations, electromagnetic wave propagation.

Unit I Electrostatics – I:

Sources and effects of electromagnetic fields – Coordinate Systems –Vector fields –Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity –Field due to discrete and continuous charges – Gauss 's law and applications.

Unit II Electrostatics – II:

Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Dielectric polarization-Dielectric strength- Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, Energy density, Applications.

Unit III Magnetostatics:

Lorentz force, magnetic field intensity (H) – Biot Savart's Law -Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media – Boundary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications.'

Unit IV Electrodynamic Fields

Magnetic Circuits - Faraday's law – Transformer and motional EMF –Displacement current Maxwell's equations (differential and integral form) – Relation between field theory and circuit theory – Applications.

Unit V Electromagnetic Waves

Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance, propagation constant – Waves in free space, lossy and lossless dielectrics, conductors- skin depth – Pointing vector – Plane wave reflection and refraction – Standing Wave –Applications.

Recommended Books:

- 1. Elements of Electromagnetic by Mathew N.O Sadiku, Oxford.
- 2. Electromagnetic Fields by P.V. Gupta, Dhanpat Rai.
- 3. Element of Engineering Electromagnetic by N.N. Rao, PHI.
- 4. Engineering Electromagnetic by William H. Hayt; TMH.
- 5. Electromagnetic by John D. Kraus, TMH.
- 6. Electromagnetic wave & Radiating System by Jordan Balmian, PHI.
- 7. Fields and Wave Electromagnetic by David K. Cheng, Addison Wesley.
- 8. Electromagnetic Field by S.P. Seth, Dhanpat Rai & Sons

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

- **CO 1. Interpret** Maxwell's equations in differential and integral forms, both in time and frequency domains.
- **CO 2. Define** complex permittivity, permeability, conductivity and perfect electric and perfect magnetic conductors.
- **CO 3. Derive** Poyntings theorem from Maxwells equations and interpret the terms in the theorem physically.
- **CO 4.** Apply vector calculus to understand the behavior of static electric fields in standard configurations
- **CO 5.** Formulate engineering problems of Electromagnetic, Electrostatic and Magnetic to Static circuits using Basic relations
- CO 6. Solve engineering problems of Electromagnetic.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

	Measurement & Instrumentation: 150502												
L T P Total Theory Mid Quiz/ Practical End L													
			Credite	End Som	Som	Assignment	Som	Soccional					
			Creats	End Sem	Sem	Assignment	Sem	Sessional					

Electrical Engineering Department

Course Objectives:

To develop an understanding of different instruments for measuring various electrical/ electronic parameters, their suitability, and the importance of their accuracy and need for calibration.

Unit I Basic Measurement Concepts:

Static and dynamic characteristics, units and standards of measurements, error analysis, Statistical evaluation of measurement data, Standards and calibration, Principle and types of analog voltmeters and ammeters. Single and three phase wattmeters and energy meters, Cathode ray oscilloscopes- block schematic, applications and special oscilloscope.

Unit II Measurement of Resistance:

Measurement of Resistance: low resistance, medium resistance and high resistance by Voltmeter, Ammeter, Kelvin's Double Bridge, Wheatstone bridge method, Direct Deflection method Loss of charge method and Ohmmeter. Measurement of Earth Resistance.

Unit III Measurement of Inductance, capacitance and frequency by A.C. Bridges:

Measurement of Self Inductance: Maxwell inductance bridge, Maxwell inductance-capacitance bridge, Hay's bridge, Anderson bridge and Owen's bridge.

Measurement of capacitance: De Sauty's bridge and Schering bridge, High voltage Schering bridge, Measurement of Relative Permittivity with Schering bridge

Measurement of Mutual Inductance: Heaviside mutual inductance bridge Cambell's modification of Heaviside Bridge.

Measurement of Frequency: Wien's Bridge.

Unit IV Instrument Transformers:

Instrument Transformer, ratio & Phase angle error, Design consideration construction and characteristics, Effect of variation of PF, secondary burden & frequency, Precaution in using CT and PT, Magnetizing & Demagnetizing of Instrument transformers, Absolute method of testing of CT and PT, Phantom loading.

Unit V Data Acquisition Systems and Transducers:

Elements of data acquisition system, digital voltmeters, A/D, D/A converters, interfacing of transducers frequency counter, measurement of frequency and time interval digital counter, timer digital frequency counter. Wave analyzer, Distortion analyzer, Distortion meters and Spectrum analyzer.

Transducers: Basic concepts of transducers, Selection criteria for particular application & classification, Study of various types of transducers: Resistance, Inductance, Capacitance, Piezoelectric, Thermocouple, RTD, Photocell, optical and digital transducers.

Text and Reference Books:

- 1. A.K. Sawhney, "A Course in Electrical & Electronic Measurements & Instrumentation", Dhanpat Rai & Sons, 2004.
- 2. J.B. Gupta, "A Course in Electronics & Electrical Measurements & Instrumentation", S.K. Kataria & Sons, 2003.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

- 3. Albert D.Helfrick and William D.Cooper, "Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 2003.
- 4. Joseph J.Carr, "Elements of Electronics Instrumentation and Measurement", Pearson education, 2003.
- 5. Alan. S. Morris, "Principles of Measurements and Instrumentation", Prentice Hall of India, 2nd edn., 2003.
- 6. Ernest O. Doebelin, "Measurement Systems- Application and Design", Tata McGraw-Hill-2004.
- 7. Modern Electronic Instrumentation & Measurement Techniques-A.D. Helfrick & W.D.Cooper, Prentice Hall
- 8. Electrical Measurement & Measuring Instruments by E.W. Golding, PHI.

Course Outcomes:

At the end of the course student will be able to:

- CO 1. Explain the basic concepts of electrical and electronic measurement and measuring instruments.
- CO 2. Determine errors in a measurement system.
- CO 3. Describe the construction and working of AC and DC bridges and their applications
- **CO 4. Select** suitable measuring instrument, signal Generator, frequency counter, CRO and digital IC tester for appropriate measurement
- **CO 5.** Select appropriate passive, active transducers and A/D & D/A converters for measurement of physical quantity.
- CO 6. Describe working principle of CT & PT and their applications

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department Measurement & Instrumentation Lab: 130302

List of Experiments:

- 1. Study of different types of multimeters and measurements of various electrical quantities using them.
- 2. Handling of CRO and function generator & measurements of frequency and voltage of different types of signals.
- 3. Medium resistance measurements using Wheatstone's Bridge.
- 4. Measurement of Inductance using Hay's Bridge.
- 5. Measurement of capacitance using De-Sauty's Bridge.
- 6. Calibration and characteristics study of RTD and Thermister.
- 7. Calibration of single phase AC Energy meter by direct loading method.
- 8. Measurement of Frequency using Wein's Bridge.
- 9. Component testing using CRO.
- 10. Study of Owen's Bridge and measurement of unknown Inductance.

Course Outcomes:

At the end of the course student will be able to:

- CO 1. Handle an instrument and perform basic calibration
- **CO 2.** Estimate the deviations in measurements due to possible errors and measures to minimize them based on their characteristics.
- CO 3. Measure unknown resistance, inductance and capacitance
- CO 4. Acquire teamwork skills for working effectively in groups
- CO 5. Prepare technical report on experiments conducted in the lab.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Network Analysis: 130303

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment	Practical End Sem	Lab Work & Sessional
03	-	02	4	70	20	10	30	20

Course Objectives:

To make the students capable of analyzing any given electrical network, the balanced and unbalanced three phase circuits, understand the graph theory for solving various electrical circuits, understand the concepts of transients and relate two port parameters.

Unit I

Overview of DC and AC Circuits: Kirchhoff's voltage and current laws, network theorems viz. Thevenin's, Norton's, Superposition, Maximum power Transfer, Reciprocity, Substitution, Compensation, Miliman's and Tellegen's Theorem.

Unit II

Coupled Circuit and Resonance: Magnetic coupling, mutual inductance and its sign convention, coefficient of mutual inductance, transformer as a coupled circuit, singly and doubly tuned circuit, critical coupling, series and parallel resonance, bandwidth selectivity and half power points, Analysis of series and parallel circuit.

Unit III

Two Port Network: The concept of complex frequency, Concept of Ports. Two port parameters e.g. z-parameter, y-parameters., ABCD and inverse ABCD parameters, h and g parameters and their determination, Ladder network, condition for reciprocity and Symmetry in two port parameter representation, Inter-relationships between parameters of two port network, Interconnections of two port networks.

Unit IV

Three Phase Circuit: Unbalanced 3 phase circuit, balanced and unbalanced star (with or without neutral) and delta connected load.

Introduction to Graph theory: Concept of Network graph, Tree, Tree branch & link, Incidence matrix, cut set and tie set matrix.

Unit V

Transient: Initial condition, Laplace analysis, Theorem shifting, scaling, initial and final value and convolution theorem. Transient response of RL, RC and RLC circuit, time constant, Equivalents of charged inductor and capacitor, discharge of condenser, damped and oscillatory circuit Response of the network with impulse, Unit step and Ramp excitation, wave form synthesis, AC transients (RLC circuit response to sinusoidal voltage)

Recommended Books:

- 1. Network Analysis by ME Van Valkenburg, PHI Publication.
- 2. Circuit Analysis by A. Chakrawarti , Dhanpat Rai Publication.
- 3. Network Analysis and Synthesis by C.L. Wadhwa, New Age International Publication.
- 4. Network Analysis and Synthesis Pankaj Swarnkar, Tech India Publication.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Course Outcomes:

After the completion of this course students will be able to:

- **CO 1.** Apply different AC and DC networks laws & theorems for solving electric network.
- CO 2. Analyze the series/parallel resonant and magnetically coupled circuits
- CO 3. Solve three-phase circuits under balanced & unbalanced conditions
- **CO 4. Evaluate** transient response, Steady-state response, network functions
- CO 5. Analyze the circuit behavior with initial conditions
- **CO 6. Compute** the two-port parameters

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department Network Analysis Lab: 130303

List of Experiments:

- 1. Verification of Milliman's theorem.
- 2. Verification of Maximum power transfer theorem.
- 3. Verification of Thevenin's theorem.
- 4. Verification of Superposition theorem.
- 5. Verification of Reciprocity theorem.
- 6. To verify the series resonance in RLC circuit.
- 7. Determination of cut off frequency of given low pass & high pass filter.
- 8. Determination of ABCD constants of two port network.
- 9. Determination of short circuit parameters (Y parameter) of two port network.
- 10. Determination of open circuit parameters (Z parameter) of two port network.

Course Outcomes:

On the successful completion of the lab experiments students will be able to:

- **CO 1. Design** simple networks by exploring circuit theorems.
- CO 2. Analyze transient behavior of RL, RC & RLC circuit using the appropriate instruments
- **CO 3. Develop** teamwork skills for working effectively in groups
- **CO 4. Prepare** technical report on experiments conducted in the lab.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department Analog Electronics: 130304

	L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment	Practical End Sem	Lab Work & Sessional
(03	-	02	4	70	20	10	30	20

Course Objectives:

The course intends to provide an understanding of the principles, operation and application of the analog building blocks like diodes, BJT, FET etc. for performing various functions, use of simple models and equations to illustrate the concepts involved, an overview of different amplifiers and oscillators and the knowledge about practical analog circuits.

Unit I

Special Diodes: LED, Varactor diode, Photo diode, Schottky diode, Tunnel diode; their characteristics and applications. Rectifiers, Characteristics of diodes, BJT, MOSFET.

Unit II

Transistor Biasing: CE, CB and CC configuration, Input output characteristics, Operating point Transistor load line, Transistors as a switch. Frequency Response: Amplifier transfer function, low and high frequency response of common emitter and common base configuration.

Unit III

Transistors Amplifier: Small Signal BJT amplifiers: AC equivalent circuit, hybrid model and their use in amplifier design. Multistage amplifiers, frequency response of basic & compound configuration, Power amplifiers; Class A, B, AB, & C Amplifier.

Unit IV

Feedback & Oscillator Circuits: Effect of positive and negative feedbacks, basic feedback & their properties, Analysis of practical feedback amplifiers, Sinusodial Oscillators, Crystal Oscillators, tuned oscillators- Collpits and Hartley, Multivibrators, 555 timer.

Unit V

Operational Amplifiers: Op-Amp Basics, Op-amp parameters characteristics ideal and practical Op-Amp circuits, differential and Common mode operation, Inverting & Non Inverting operational Amplifier, Log and Antilog Op-Amp, Op-Amp applications.

Recommended Books:

- 1. Microelectronics Circuits by A.S. Sedra & K.C. Smith, Oxford University Press (1997)
- 2. Electronic Principles by A.P. Malvino, Tata Mcgraw Hill Publications
- 3. Electronic Devices & Circuit Theory by Robert L. Boylestad & Louis Nashelsky,
- 4. Digital Electronics by William Kleitz, Prentice Hall International Inc.
- 5. Introduction to Semiconductor Materials and Devices by M. S. Tyagi, , John Wiley & Sons Inc
- 6. Introduction to Electronic Devices Michael Shur by John Wiley & Sons Inc., 2000.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

After the completion of this course students will be able to:

- **CO 1. Explain** working principles of electronic devices e.g. Diode, Zener Diode, LED, Rectifiers, Transistor, Power Amplifier, Oscillator and Op-Amp.
- **CO 2. Categorize** the different types of Diode, Power Amplifier, Oscillators and Op-Amp and transistor Biasing.
- CO 3. Explain the different types of characteristic of Diode, Transistor, Power Amplifier and Op-amp.
- CO 4. Describe the various mathematical model of transistor e.g. Hybrid model, re model.
- **CO 5. Develop** an ability and skill to design different types of diode rectifier, transistor biasing, oscillators and timer circuit.
- **CO 6. Apply** the various principles of electronics to design different types of Analog Electronics circuits for various applications.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department Analog Electronics Lab: 130304

List of Experiments:

- 1. To observe the characteristics of diode in forward and reverse biased condition.
- 2. To construct the half wave rectifier using semiconductor diode and to find its performance curve.
- 3. To construct the half wave rectifier using semiconductor diode and to find its performance curve.
- 4. To determine the (i) Input characteristics and (ii) Output characteristics of the given transistor in common emitter configuration.
- 5. To verify the operation of Darlington Pair.
- 6. To Construct Wien bridge oscillator using 741 Op- amp and to measure the frequency of oscillation.
- 7. To analyze the operation of differential Amplifier using Transistor.
- 8. To observe and verify the amplification and voltage gain of a two stage RC coupled Amplifier.
- 9. To verify the operation of push pull Amplifier.
- 10. To observe the characteristics of SCR.

Course Outcomes:

On the successful completion of the lab experiments students will be able to:

- CO 1. Develop the understanding of diode biasing conditions.
- CO 2. Investigate the operation of half-wave and full wave rectifier and find their performance curves.
- **CO 3. Examine** transistor configurations and investigate common emitter configuration input-output characteristics.
- CO 4. Develop teamwork skills for working effectively in groups
- CO 5. Prepare technical report on experiments conducted in the lab

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department Software Lab-I: 130305

L	Т	Р	Total Credits	Practical End Sem	Lab Work & Sessional
-	-	02	1	30	20

List of Experiments:

- 1. To draw the V and I curve for RL Circuit using Matlab code.
- 2. To draw the V and I curve with varying time constant for RL Circuit using Matlab code.
- 3. To draw the V and I curve for RL Circuit using Matlab Simulink.
- 4. To draw the V and I curve for RC Circuit using Matlab code
- 5. To draw the V and I curve with varying time constant for RC Circuit using Matlab code.
- 6. To draw the V and I curve for RC Circuit using Matlab Simulink.
- 7. To Analyze the performance of series & parallel RLC circuit using MATLAB code
- To Analyze the performance of series & parallel RLC circuit using MATLAB Simulink
- 9. To model second order differential equation using Matlab Simulink
- 10 To model third order differential equation using Matlab Simulink

Course Outcomes:

After the completion of this course students will be able to: **CO 1. Design** Series & Parallel RL,RC, RLC circuit

- CO 2. Simulate the performance of second order systems using MATLAB Simulink environment.
- CO 3. Validate the theoretical concepts by writing MATLAB codes.
- CO 4. Design engineering problem in MATLAB environment
- CO 5. Develop teamwork skills for working effectively in groups

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Digital Electronics & Microprocessor: 130401

]	Ĺ	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment	Practical End Sem	Lab Work & Sessional
0	2	01	02	4	70	20	10	30	20

Course Objectives:

- To introduce the concepts and techniques associated with the number systems and codes, basic idea about microprocessor and its programming.
- To minimize the logical expressions using Boolean postulates and to apply the techniques and mathematics used in microprocessors for various control applications.
- To design various combinational and sequential circuits.

Unit- I

Number System and Binary Codes: Various number systems-decimal, Binary, Hexadecimal and Octal with mutual conversion, binary arithmetic in computers, addition, subtraction, multiplication and division, subtraction using 1's and 2's compliment, Excess 3, Gray code.

Unit- II

Minimization of Logic Function: AND, OR, NOT, NAND, NOR, EXOR, operations and gates, laws of Boolean algebra, deduction of Boolean expression, logic diagram, universal building blocks, negative logic, Minterms and Maxterms, Truth table and Karnaugh mapping, reduction of Boolean expression with SOP, POS and mixed terms.

Unit- III

Logic Hardware: Diode as switch, Bipolar transistor as switch, FET as switch, logic families (RTL, DTL, TTL, ECL, HTL, TSL, CMOS & Schottky logic).

Unit- IV

Combinational Logic Circuits: Encoders, Decoders, Multiplexers, Demultiplexer, Code Convectors, Parity Checker Generator, Arithmetic Circuit like Adder etc. Sequential circuits: State tables and diagrams, Flip Flop and its various types – JK, RS, T,D pulse and edge triggered flip flops transition and excitation tables, timing diagrams, Shift Registers, Series and Parallel Data Transfer, Ripple Counters, Synchronous Counters, Modulo N counter design, Up Down Counters Ring counter. Types and characteristics of semi conductor memories, static and dynamics memory.

Unit- V

Intel 8085 Microprocessor: Introduction to 8-bit 8085 microprocessor, Architecture of 8085 microprocessor, Pin Configuration, instruction set and Addressing modes, General application program.

Recommended Books:

- 1. Digital Systems by Tocci, Tata Mograw Hills Publishing company
- 2. Digital Computer and Electronics by Malvino, brown, TMH Publishing company
- 3. Digital Design by Morris Mano, Pearson Education
- 4. Digital computer Fundamentals by T.C. Bratee, 6th Edn. McGraw Hill.
- 5. An Introduction to Digital Computer Design by V. Rajaraman, and Radhakrishnan, 3rd

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Edn. PHI.

- 6. Digital Principles and Applications by A.P. Malvino and B.P. Leach 4th Edn McGraw Hill.
- 7. Microprocessor & Interfacing by D.V. Hall, McGraw Hill International Edition.
- 8. Microprocessor Architecture, Programming and Applications by Gaonkar, Wiley Eastern Ltd.
- 9. Introduction to Microprocessors by A.P. Mathur, McGraw Hill International Edition.

Course Outcomes:

After the completion of this course students will be able to:

- **CO 1.** Explain the concept of different Number systems, logic family and Microprocessor.
- CO 2. Design the logic expressions using logic gates after simplifying the expression using Boolean laws and K-map method.
- **CO 3. Design** different types of logic circuits such as combinational circuits, sequential circuits.
- **CO 4. Describe** the working of logic families such (RTL, DTL, TTL, ECL, HTL, TSL, C-MOS & Schottky logic).
- **CO 5. Describe** an 8 bit microprocessor architecture & explain the concepts of memory and I/O interfacing with microprocessor

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Digital Electronics & Microprocessor Lab: 130401

List of Experiments:

- 1. Verification of truth tables of
 - (a) OR, AND, NOT gates (By using 7400-series)
 - (b) NAND & NOR gates.
 - (c) EX-NOR & EX-OR gates.
- 2. Verification of De-Morgan's Theorem using ICs.
- 3. Implementations of Multiplexer & Demultiplexer using logic gates (ICs) and verify truth table.
- 4. Implementations of Encoder & Decoder using logic gates (ICs) and verify truth table.
- 5. Implementations of Half Adder & Full Adder using logic gates (ICs) and verify truth table.
- 6. Implementations of Half Subtractor & Full Subtractor using logic gates (ICs) and verify truth table.
- 7. Implementation of Binary to Gray Code & Excess- 3 to BCD Converter using logic gates.
- 8. Operation and verifying truth tables of flip- flops- RS, D, and JK using ICs.
- 9. To perform addition & subtraction of two 8 bit numbers using 8085.
- 10. To perform the multiplication & division of two 8 bit numbers using 8085.

Course Outcomes:

On completion of this lab course the students will be able to:

- **CO 1. Develop** skill to build, and troubleshoot digital circuits.
- **CO 2.Correctly** operate standard electronic test equipment such as oscilloscopes, signal analyzers, digital multi-meters, power supplies, frequency meters, and programmable memories programmers to analyze, test, and implement digital circuits.
- **CO 3**. Apply troubleshooting techniques to test digital circuits.
- **CO 4. Prepare** and present an organized written engineering report on electronic testing of digital circuits.
- **CO 5**. **Develop** the ability to work is team and learns professional ethics.
- CO 6. Identify the importance for verification & testing of digital circuits.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department Electrical Machines-I: 130402

]	L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment	Practical End Sem	Lab Work & Sessional
C)2	01	02	4	70	20	10	30	20

Course Objectives:

To develop basic concepts of AC and DC machines, their constructional details and working principles and to understand the practical applications and operational issues of transformer, induction motor and DC machines.

Unit- I

Basic Concepts of Rotating Electrical Machines: Physical concepts of torque production. Electromagnetic and reluctance torque, Constructional features of rotating machines i.e, DC machine. Induction machine and synchronous machine.EMF generation in dc and ac machines, MMF production on a distributed winding, Production of rotating magnetic field. AC & DC windings short pitching and distribution of winding. Fractional slot winding. Winding factors & harmonic elimination, Ratings and loss dissipation.

Unit- II

D.C. Machines I: Construction of DC Machines, Armature winding, EMF and torque equations, Armature reaction, Commutation, Interpoles and compensating windings, Performance characteristics of DC generators.

Unit- III

D.C. Machines II: Performance characteristics of DC motors, Starting of DC motors; 3 point and 4 point starters, Speed control of DC motors; Field control, Armature control and Voltage control (Ward Lenonard method); Efficiency and Testing of D.C. machines (Hopkinson's and Swinburn's Test).

Unit- IV

Single Phase Transformer: Phasor diagram, Efficiency and voltage regulation, All day efficiency. Testing of Transformers- O.C. and S.C. tests, Sumpner's test, and Polarity test. Auto Transformer- Single phase and three phase auto transformers, Volt-amp relation, Efficiency, Merits & demerits and applications.

Unit- V

Three Phase Induction Motor I: Review of constructional details. Principle of operation, Slip. Production of torque, Steady state analysis. Phasor diagram, equivalent circuit. Power flow diagram and Torque speed characteristics. Starting methods

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Recommended Books:

- 1. Electric Machines by D.P. Kothari & I.J. Nagrath, Tata McGraw Hill
- 2. Electric Machines by Ashfaq Hussain, Dhanpat Rai & Company
- 3. Electric Machinery by A.E Fitzerald, Kingsley and S.D. Umans, McGraw Hill.
- 4. Electrical Machinery by P.S. Bimbhra, Khanna Publisher
- 5. Generalized Theory of Electrical Machines by P.S. Bimbhra, Khanna Publishers
- 6. Alternating Current Machines by M.G.Say, Pitman & Sons

Course Outcomes:

After completing this course the student will be able to:

- **CO 1. Explain** the principles and construction of different AC and DC machines.
- **CO 2. Discuss** the fundamental control practices such as starting, reversing, braking, plugging etc. associated with AC and DC machines.
- **CO 3. Analyze** the performance of AC and DC machines.
- **CO 4. Develop** the equivalent circuits and compute the induced emf, torque, efficiency, losses etc.
- **CO 5. Describe** various tests conducted for evaluating the performance of AC and DC machines.
- **CO 6.** Evaluate the performance of machines under different operating conditions.
(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department Electrical Machines-I Lab: 130402

List of Experiments:

- 1. To perform parallel operation of single phase transformer.
- 2. To determine the efficiency of a Single Phase Transformer by direct loading.
- 3. To perform Scott connection for conversion of 3 phase into 2 phase and vice-versa.
- 4. To determine the external characteristics of DC Compound generator.
- 5. To control the speed of DC shunt motor by armature resistance and field control resistance.
- 6. Methods of starting of three phase induction motor.
- 7. To perform No Load and Block Rotor test on three phase induction motor.
- 8. To determine the speed torque characteristics of three phase induction motor.
- 9. To determine the efficiency of three phase induction motor.
- 10. To perform the Hopkinson's test on DC Compound motor.

Course Outcomes:

At the end of the Laboratory work the students will be able to

- **CO 1. Estimate** which apparatus at what rating is required for a particular experiment.
- **CO 2. Draw** characteristics of electric machine for a specific purpose requirement.
- **CO 3. Determine** the efficiency of any transformer, regulation of any transformer.
- **CO 4. Conduct** Load sharing by two or more machines
- **CO 5. Develop** the ability to work in team and learns professional ethics

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

-										
	L	L T P Total Credits		Theory End Sem	Mid Sem	Quiz/ Assignment				
				Creatis	bem	bem	rissignment			
	03	01	-	4	70	20	10			

Control System: 130403

Course Objective:

- To study the fundamental concepts of control system problems and their solution possibilities,
- To study the mathematical modeling of the various physical systems,
- To understand the concept of time-domain response (transient and steady-state response) and frequency-domain analysis of the systems,
- To learn the basics of stability analysis of the systems, specifications of controller and compensator design and its implementations.

Unit-I

Modeling of Physical Systems: Translational & Rotational Transfer Function of Electrical and Mechanical systems. Feedback characteristics of control systems, Open loop and closed loop systems, effect of feedback sensitivity to parameter variations, Block diagram representation and reduction techniques, Signal flow graphs, Mason's rule. Control systems and its components, error sensing devices: Potentiometers, Tacho generators and Synchros, A.C. & D.C. servomotor.

Unit-II

Time Response Analysis:Transient Response Analysis: Transient and steady-state response analysis for first and second order systems and their qualitative analysis; error analysis and error constants., Derivative and Integral error compensation, P, PI, PD, PID Controller.

Unit-III

Frequency Response Analysis: Frequency domain specifications of second order system, Polar plot, Bode plots, M Circles, N Circles. Compensator Design: Lead, lag and lag-lead compensation using frequency response methods.

Unit-IV

State Variable Analysis: Concept of state, state variables and state models, state equations and state transition matrix, relationship between transfer function and state equations, control system with state variable feedback, controllability & observability.

Unit-V

Stability: Stability, Absolute and relative stability, Routh Hurwitz stability criteria, Root Locus Analysis: Development of root loci, effects of pole/zero on loci, Nyquist plot & Nyquist stability criterion

Text Books:

- 1. Control System Engineering by I.J. Nagrath and M. Gopal, New Age International Publication.
- 2. Control Systems by U. A. Bakkshi, Technical Publication, Pune.
- 3. Linear Control Systems by B. S. Manke, Khanna Publishers
- 4. Automatic Control System by S.C. Gupta, New Age International Publication.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Reference Books:

- 1. Control System Engineering by Norman Wiley Publication.
- 2. Automatic Control System by B.C. Kuo, Oxford University Press & Pearson Education.
- 3. Modern Control Engineering by K. Ogata, Pearson Education, Asia.

Course Outcomes

After the completion of this course students will be able to:

- **CO1. Develop** mathematical models of mechanical system, electrical system and electromechanical system
- **CO 2. Represent** the complex system into standard canonical form by signal flow graph and block diagrams reduction rules
- **CO 3. Compute** the time and frequency-domain responses of first and second-order systems to standard inputs.
- CO 4. Formulate control engineering problems in state-variable form
- **CO 5. Evaluate** the stability of a closed-loop control system in time-domain as well as in frequency-domain
- **CO 6. Predict** the nature of response for the given input

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Power System -I: 130404

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment	
03	01	-	04	70	20	10	

Course objectives

- To Familiarize the students with conventional and Non-Conventional energy sources and their use in electrical power generation.
- To expose the students with Transmission and distribution system, line parameters, performance of transmission lines, power plant economics and different types of tariffs.

Unit 1:

Energy Resources and Electrical Power Generation: Introduction to Conventional and non-conventional energy resources; Availability of resources; National and International energy trends; Global warming and greenhouse effects. Generation of electrical power, Conventional power generation - Hydro, Thermal, Nuclear and Gas Power; Renewable energy generation.

Unit 2:

Transmission and Distribution Systems: Introduction, electrical supply system, comparison of AC and DC systems, overhead versus underground systems, choice of working voltages for transmission and distribution, transmission and distribution system architecture. Overhead line insulators, types of insulators pin, suspension and strain insulators, insulator materials, insulator string; Calculation of voltage distribution and string efficiency, methods of equalizing voltages, use of guard rings. Corona.

Unit 3:

Line Parameters: Types of conductor, Inductance of a conductor due to internal flux, Inductance of a single phase & three phase transmission line, Self & mutual G.M.D., Inductance of three phase symmetrical and unsymmetrical spaced lines, transposed lines. Bundle conductors, skin effect, capacitance of single & three phase transmission line, effect of earth and charging current, transmission line communication and line interference.

Unit 4:

Performance of Overhead Transmission Line: Single line diagram of power system, ABCD constant and equivalent circuits of short, medium and long transmission line, regulation and efficiency of short, medium, transmission line, Ferranti effect, surge impedance loading. Long transmission line, Generalized circuit equation relation between generalized circuit constant for simple network

Unit-5

Power plants Economics and Tariff: Size and number of generating units. Effect of load factor on cost of generation, Load curves, Maximum demand, Load factor, diversity factor, Plant capacity and plant use factor, type of tariffs and economics of power factor improvements.

Recommended Books:

- 1. Electric Power Generation, Transmission and Distribution by S.N. Singh, Prentice Hall of India, 2nd Edition.
- 2. Power system Analysis by A. Husain A, CBS Pub & Distributor.
- 3. Power System Analysis by B.R. Gupta B.R, S Chand & Co.
- 4. Electrical Power by S.L. Uppal, Khanna Publishers Limited, New Delhi.
- 5. Electrical Power Systems by C.L.Wadhwa, New Age International Publishers Ltd., New Delhi

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes

After the completion of this course, students will be able to:

CO1 Describe the general structure of power systems

CO2 **Develop** the knowledge of generation of electricity based on conventional and nonconventional energy sources

- CO3 Determine the transmission line parameters
- CO4 Analyze the performance of overhead transmission line
- CO5 Describe the concept of power plant economics

CO6 Explain different types of tariffs and power factor economics

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Software Lab-II: 130405

L	Т	Р	Total Credits	Practical End Sem	Lab Work & Sessional
-	-	04	2	30	20

List of Experiments:

- 1. To model a DC motor and draw speed torque characteristics.
- 2. Model and calculate efficiency and voltage regulation for a single phase transformer.
- 3. Determination of step & impulse response for a type '0', type '1', type '2' systems.
- 4. Determination of Root Locus plot and Nyquist Plot using MATLAB control system toolbox.
- 5. Study the effect of PI & PD controller on system performance.
- 6. Calculation of eigen value and eigen vector using MATLAB.
- 7. Write the code for the logic gates.
- 8. Implementation of boolean expression using MATLAB simulink.
- 9. Implement R-S and J-K flip flop using MATLAB.
- 10. Calculation of A, B, C, D parameters of transmission lines.

Course Outcomes:

After the completion of this course students will be able to:

- CO 1. Simulate the performance of DC motor using MATLAB Simulink environment.
- CO 2. Validate the concepts of Induction motor by writing MATLAB codes.
- **CO 3. Analyze** the waveforms on parameter variation of PV Array module using MATLAB Environment.
- CO 4. Compare the performance of renewable energy sources using MATLAB environment.
- CO 5. Design engineering problem and validate the results using MATLAB environment.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Syllabi Fifth Semester & Sixth Semester (B.Tech.)

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Signals & Systems: 130501

L	Т	Р	Total Credits	End Sem	Mid Sem	Quiz/Assignment
03	01	-	04	70	20	10

Course Objectives:

To develop an understanding of fundamental characteristics of signals and systems in both time and transform domains and to develop mathematical skills to solve problems involving convolution, filtering, modulation and sampling.

Unit I

Dynamic Representation of Systems: Definition & Classification of signals, Systems Attributes, Causality linearity, Stability, time invariance. Special Signals, Complex exponentials, Singularity functions (impulse and step functions). Linear Time-Invariant Systems: Differential equation representation convolution Integral. Discrete form of special functions. Discrete convolution and its properties, Realization of LTI system (differential and difference equations).

Unit II

Fourier Analysis of Continuous Time Signals and Systems: Fourier Series, Fourier Transform and properties, Parseval's theorem, Frequency response of LTI systems, Sampling Theorem.

Unit III

Fourier Analysis of Discrete Time Signals & Systems: Discrete-Time Fourier series, Discrete-Time Fourier Transform (including DFT) and properties, Frequency response of discrete time LTI systems.

Unit IV

Laplace Transform: Laplace Transform and its inverse: Definition, existence conditions, Region of Convergence and properties, Application of Laplace transform for the analysis of continuous time LTI system (stability etc.) Significance of poles & zeros.

Z-Transform : Z-Transform and its inverse: Definition, existence, Region of convergence and properties, Application of Z-Transform for the analysis of Discrete time LTI Systems, Significance of poles and zeros.

Unit V

Sampling: The sampling theorem, reconstruction of signal from its samples, sampling in the frequency domain, sampling of discrete-time signals.

Recommended Books:

- 1. Signal and systems by Oppenheim AV, Willisky AS and Nawab SH, Pearson
- 2. Signals and systems by Hwel. P. Hsu, Schaum's outlines, TME
- 3. Digital Signal Processing Principles by Proakis JP, Manolaxis, Pearson
- 4. Fundamentals of Signals & Systems by Michael J Roberts, McGraw Hill

Course Outcomes

After the completion of this course, students will be able to:

- **CO 1.** Explain the process of sampling and the effects of under sampling.
- CO 2. Classify systems based on their properties and determine the response of LSI system using convolution.
- **CO 3.** Apply the concepts of linear algebra to signals.
- **CO 4. Analyse** the spectral characteristics of continuous-time periodic and a periodic signals using Fourier analysis.
- CO 5. Analyze system properties based on impulse response and Fourier analysis.
- **CO 6.** Apply the Laplace transform and Z- transform for analysis of continuous-time and discrete-time signals and systems.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Power System-II: 130502

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment	Practical End Sem	Lab Work & Sessional
02	01	02	04	70	20	10	30	20

Course Objectives:

- To expose the students to the concepts of Load Flow Studies, Symmetrical and Unsymmetrical Faults, Power System Stability, Power System Control, Underground Cables and HVDC Transmission System.
- To enable the students to solve problems related to Load Flow Studies, Fault analysis, Power System Stability, Power System Control and Underground Cables.

Unit I.

System Representation and Load Flow Analysis: Single line representation, Per unit system, Network Model formulation, Formulation of YBUS, Formation of static load flow equations, solution of load flow problem by Gauss-Seidel, Newton-Raphson (polar and rectangular) and fast decoupled load flow methods.

Unit II.

Symmetrical and unsymmetrical fault: Review of symmetrical components, sequence networks, symmetrical fault analysis, unsymmetrical fault analysis, analysis of open conductor fault, fault calculations for symmetrical and unsymmetrical faults.

Unit III.

Power System Stability: Basic concepts of steady state, dynamic and transient stability, power angle equation, synchronizing power coefficient, equal area criterion, critical clearing angle, Swing equation, multi-machine transient stability studies with classical machine representation, factor affecting stability and methods of its improvement.

Unit IV.

Power System Control: Elementary idea of load-frequency control, automatic generation control, reactive power and voltage control. Series and shunt compensation techniques, Tap changing transformers, phase shifting transformers, Induction regulator, Economic limit of VAR control.

Unit V.

Underground Cables and HVDC Transmission :Types of cables, Insulation resistance of cable, Electrostatic stress and grading of cables, rating and power factor of cables, Brief history of DC transmission, comparison of HVDC with EHV AC transmission systems, Basic converter circuit used in HVDC system, types of HVDC links.

Recommended Books:

- 1. Advanced Power System Analysis and Dynamics, L.P. Singh, Wiley Eastern Ltd, 6th ed. 2017.
- 2. Modern Power System Analysis, Nagrath & Kothari, TMH Publishers, 4th ed. 2016.
- 3. Elements of Power System Analysis, W.D. Stevenson, McGraw-Hill, 4th ed. 2017.
- 4. Power system operation and control, A.J. Wood &Woollenberg, 2nd ed. 2010.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

5. HVDC Power Transmission Systems: Technology and System Interactions, K. R. Padiyar, New Age International, 3rd ed. 2017.

Course Outcomes

After the completion of this course, students will be able to:

- **CO 1. Explain** the concepts of single line diagram and per unit system
- CO 2. Apply different load flow techniques to solve load flow problem
- **CO 3. Perform** fault calculations for symmetrical and unsymmetrical faults
- CO 4. Explain the theoretical and practical aspects of Power System Stability and its enhancement
- **CO 5. Elucidate** the automatic generation control reactive power, voltage control, series and shunt compensation
- **CO 6. Discuss** the insulation resistance, capacitance of various types of cables and the need of HVDC transmission.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Power System-II Lab: 130502

S. No.	Name of the Experiment
1	Demonstration of EHV AC Transmission line simulation panel
2	Measurement of resistance, inductance and capacitance of EHV AC Transmission line simulation panel
3	Study of Cables, Insulators and line supports used in transmission and distribution system
4	Calculation of generalized circuit constants for short, Medium and Long transmission line
5	Simulation of L-G, L-L, L-L-G, L-L-L, L-L-G faults using MATLAB
6	Development of MATLAB code to determine the maximum power without loss of synchronism using equal area criterion
7	Development of MATLAB code to determine the critical clearing angle and critical fault clearing time
8	To determine the system stability from the swing curve
9	Use MATLAB rlocus function to obtain the root locus plot
10	A visit and study of 33kV Substation

At the end of the Laboratory work the students will be able to

- **CO 1. Demonstrate** the performance EHVAC transmission line.
- **CO 2. Determine** transmission line parameters.
- CO 3. Simulate the different types of faults in transmission line using MATLAB.
- CO 4. Identify the different components of substation & their applications
- CO 5. Familiar with construction & application of various insulator, cables & line support.
- CO 6. Prepare report for presentation.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

	ELECTRICAL MACHINES-II: 130503								
L	L T P Total Theory Mid Quiz/ Practical End Lab Work &								
	Credits End Sem Sem Assignment Sem Sessional								
02	01	02	04	70	20	10	30	20	

Course Objective: To develop basic concepts about AC machines, their constructional details and working principles and to understand the practical applications and operational issues of three phase transformer and other rotating machines

UNIT-I

Transformer: Three phase transformers, Special construction features, Single phase Transformers connected as 3 phase bank. Phasor diagram of star/star, Star/delta, Delta/delta, Delta/star, connected 3 phase transformers and their uses. Phase conversion. Three to two phase open delta or V connection, Parallel operation of single phase and three phase Transformers, load sharing, harmonics in transformer, Magnetization current wave form, Tertiary winding.

UNIT-II

Three phase Induction Motor II: Circle diagram and its experimental determination. cogging and Crawling Losses, Efficiency and Testing I.M, Double cage induction motor. Operation on unbalanced voltages, Speed control. Rotor resistance control. pole changing method. Frequency control. Induction generator.

UNIT-III

Synchronous machine I: Constructional features.salient pole and cylindrical synchronous machines. Relation between speed, Frequency and no. of poles, excitation.Voltage generation. Generator mode.Interaction between excitation flux and armature EMF.Voltage regulation, phasor diagram on load. Leakage reactance and synchronous reactance. Steady state parameters of synchronous machines, open circuits, Short circuit and zero power factor tests. Determination of voltage regulation by synchronous impedance method. MMF method and potier triangle method

UNIT-IV

Synchronous machine II: Two reaction theory .Slip test .Expression for power developed and power angle curves. Synchronization of alternators Dark and bright lamp method .Synchro scope Parallel operation and load string. Effect of governor charectristics on load sharing.operation on infinite bus bar.

UNIT-V

Synchronous machine III: Motoring mode, transition from motoring to generating mode. V curves starting. Synchronous condenser. Hunting, damper winding synchronizing torque and power analysis under sudden short circuit. Transient parameters of synchronous machines. Various transient and sub transient reactance. Time constant, Expression of transient and sub transient reactance Analysis of3 phase short circuit oscillogram and determination of transient parameters from oscillogram. Short circuit ratio.

Text and Reference Books:

- 1. Theory of Alternating current Machinery by Alexender S Langsdorf.
- 2. The performance and design of AC machines by M.G. Say ,CBS Publication.
- 3. Electric machine by Nagrath and Khotari. TMH.
- 4. Geneatlized theory of electrical machine by P.S. Bimbhra, Khanna publication
- 5. Electrical machines by P.S. Bimbhra, Khanna publication
- 6. The Performance and Design of AC Commutator Machines by Openshaw Taylor. CBS Publication

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

After completion of this course, students will be able to:

- **CO 1. Analyze** the performance of 3-phase induction and synchronous machines using equivalent circuits & phasor diagrams under different loading conditions.
- **CO 2.** Explain the constructional details and working principle of three phase transformer and synchronous machine.
- **CO 3. Develop** phasor diagram and determine voltage regulation of an alternator and its steady state performance.
- **CO 4. Determine** time constant, various sequence reactance and equivalent circuit parameters under transient conditions for synchronous machines.
- **CO 5. Analyze** the behavior of synchronous machine connected to infinite bus and parallel operation of alternators.
- **CO 6. Analyze** the performance of 3-phase induction and synchronous machines using equivalent circuits & phasor diagrams under different loading conditions.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department Electrical Machines-II Lab: 130503

S. No.	Name of the Experiment
1	To Conduct No Load & Blocked Rotor Test on 3-Phase Sq. Cage Induction Motor and plot performance curve
2	To Conduct Load Test on 3-Phase Sq. Cage Induction Motor and plot performance curve
3	To Conduct No Load & Blocked Rotor Test on 3-Phase Slip Ring Induction Motor and plot performance curve
4	To Conduct Load Test on 3-Phase Slip Ring Induction Motor and plot performance curves
5	To Study the cascaded connection of Two 3-Phase Slip Ring induction motor
6	To Find out OCC and SCC of an Alternator and its regulation using synchronous impedance method
7	To find regulation of Alternator using ZPF Method
8	To draw V Curves of Synchronous motor
9	Synchronization of Alternators
10	 a) Determination of X_d and X_q of an alternator using Slip Test b) Determination of X_d" and X_q" of an alternator (Positive sequence Reactance)

At the end of the Laboratory work the students will be able to

CO 1. Analyze the working of any electrical machine using mathematical model under loaded and unloaded conditions.

CO 2. Explain the working principle and different types of connections of three phase transformer.

CO 3. Derive the relation between real and reactive power control with application to the equivalent circuit of a synchronous machine.

CO 4. Demonstrate an understanding of the fundamental control practices associated with AC machines (starting, reversing, braking, plugging, etc.).

CO 5.Use accepted national and international standards (such as NEMA, IE Code) to select appropriate electrical machines to meet specified performance requirements.

CO 6. Conduct testing and experimental procedures on different types of electrical machines.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department Power Electronics: 130504

	1 Ower Electronics. 150504								
L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment	Practical End Sem	Lab Work & Sessional	
02	01	02	04	70	20	10	30	20	

Course objective: To introduce the students the basic theory of power semiconductor devices and passive components, their practical application in power electronics and to familiarize the operation principle of AC-DC, DC-DC, DC-AC conversion circuits and their applications. Also to provide the basis for further study of power electronics circuits and systems.

Unit I. Power Semiconductor Devices: Power diodes, Transistors, Power MOSFET, IGBT, Thyristor TRIAC and GTO, Static and dynamic characteristics. Two transistor equivalent model of SCR, Firing & Commutation circuits, protection of SCR, Series and parallel operation.

Unit II. Rectifiers: Principle of phase controlled converter operation, Single phase half wave, full wave and semi converters. Three phase half wave, full wave and semi converters, Effect of load and source inductance. Rectifiers Application

Unit III. AC regulators, Cyclo-converter **& Dual converter:** Principle of AC phase control, Single and three phase AC voltage controllers, Cyclo-converter: Single and three phase, dual converters.

Unit IV. Inverter circuits: Principle of operation, Single phase and three phase inverters. Voltage control using PWM technique, Current source inverters, single phase series & parallel inverter, Inverter applications.

Unit V. DC-DC converters: Principles of operation, Control strategies, Single & multi quadrant chopper. Steady state time domain analysis of step down chopper, Voltage commutated Chopper, and their application

Recommended Books:

- 1. Power Electronics by P.C. Sen, McGrawHill, 1st Ed., 2001
- 2. Power Electronics by P.S. Bimbhra, Khanna Publishers, 5th ed., 2012
- 3. Power Electronics: Circuits, Devices & Applications by MH Rashid, Pearson, 5th ed., 2012
- 4. Power Electronics by Cyril W.Lander, McGraw-Hill; 2nd edition, 1987
- 5. Power Electronics Principles and Applications by JoshephVidyathil, TMH,2010

Course Outcomes:

After completing this course the student will be able to:

- **CO 1. Explain** static & dynamic characteristics of power electronics devices like Diode SCR, BJT, MOSFET and IGBT. etc
- CO 2. Explain the configuration of different commutation methods.
- **CO 3. Describe** the configuration of AC to DC converter, Dual converter, chopper, cyclo-converter.
- CO 4. Classify converters and identify their applications.
- CO 5. Develop different model of different converters to calculate their performance parameter
- CO 6. Identify the problems/limitations of power electronics devices, converters and suggest solution

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Power Electronics Lab: 130504

		List of Experiments:
1		Observe effect of gate current, analyse Holding current & Latching current and plot V-I characteristics of S.C.R.
2		Analyse different (1, 2, 3 & 4) modes of operation of a TRIAC , determine break over voltages, holding current, latching current and Plot its V-I characteristics
3		Observe effect of different gate voltages, and plot V-I characteristics of MOSFET
4		Observe effect of different gate Currents, and plot V-I characteristics of IGBT
5		Observe and Analyse the effect on output voltage using SCR and AC Phase control with
	А	R-triggering Circuit (Half wave phase control)
	В	RC- triggering Circuit (Half wave phase control and full wave phase control)
	С	UJT- triggering circuit(full wave phase control)
6		Observe and Analyse dv/dt limitation of SCR and Use of Snubber circuit.
7		Observe and analyse variation in output voltage using TRIAC based AC Phase control with R-load (Lamp load)
8		Realise turn off process of SCR with force commutation different techniques
	А	Class-A commutation (Self commutation by resonating the load)
	В	Class-B commutation (Self commutation by a LC Circuit)
	С	Class-C or Complementary commutation
	D	Class-D commutation or Auxiliary commutation
	E	Class-E commutation or External pulse commutation
9		Observe and Analyse the variation in output voltage for a semi-converter
	А	with Resistive load
1.0	В	Inductive load and Freewheeling Diode
10		To observe and realise the variation in output voltage for a fully controlled bridge
11		converter circuit under Rectification and inverter mode
11		based chopper with RL load
12		Observe and analyse the Effect of Pulse width modulation on output voltage for a single phase bridge inverter
13		Realization of Half-wave Rectifier with RL Load using
	А	PSPICE Software
	В	MATLAB Simulink

Course Outcomes:

After completing the course the students will be able to

- CO 1. Demonstrate VI characteristics of Semiconductor Devices and Various Firing scheme of SCR.
- CO 2. Demonstrate the performance of various converters AC to DC and DC to AC converter
- CO 3. Compare the performance of single and three phase VSI Inverter.
- CO 4. Demonstrate the performance of converters in its different modes of operation.
- CO 5. Prepare an organized written report.
- CO 6. Develop the ability to work is team and learns professional ethics.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

100006: Indian Constitution and Traditional Knowledge

100006	Indian Constitution	Theory	Midterm	Quiz/Assignment	TOTAL	L	Т	Р	С
100000	Knowledge	70	20	10	100	3	-	-	-

Course Objectives:

- The course aims to provide students with the continuous, comprehensive and cumulative understanding of Indian Knowledge Tradition (Philosophy, Language, Art) and its modern interpretation and analysis.
- It intends to connect the students' modern advanced knowledge system with the roots of Indian Knowledge Tradition for their development and better understanding of the essentials of thought process, intellection and inference.
- To impart the knowledge of the Yogic Science and an insight into Sanskrit Literature which will promote interest among students in discerning the significance of health and wisdom with an Indian perspective.
- The objective of the syllabus is to familiarize students with the essential features and basic principles of the constitution of India.
- It will acquaint them with the concept of government, its organs and various types.
- It will provide students with a comprehensive and clear understanding of the basic fundamental rights and duties.

Unit-1

- Introduction to Basic Structure of Indian Knowledge System
- Homogeneity of modern science and Indian Knowledge Tradition
- Yoga: Promoting positive health and personality
- Case Studies

Unit-2

- Indian Philosophy or Darshanas: Jainism, Buddhism, Yoga, Śaiva and Vedanta
- Indian Linguistic Tradition: Panini's Ashtadhyayi
- Indian Art: Mauryan art, Buddhist art, Gupta art, Muslim Art & Culture Contemporary art
- Case Studies

Unit 3 Introduction to Political Science

- Nature and scope of political science
- Definition, elements and theories of origin of State (Social Contract and Evolutionary)
- Meaning and features of Civil Society
- Indian Political Thought: Raja Ram Mohan Roy, Swami Vivekanand, Gandhi, Ambedkar

Unit 4 Concept of Government and Its Organs

- Government: Definition and its characteristics
- Types and meaning of Legislature: Composition, Function and Role of the Parliament (Lok Sabha and Rajya Sabha)
- The Powers, Position and Role of the President, Prime Minister and the Cabinet
- The Powers, Position and Role of the Governor and the Chief Minister; Composition and the role of Supreme Court, Judicial Review and Judicial Activism

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Unit 5 Salient features of Indian Constitution

- Preamble, Conventions, Sovereignty of the Constitution and the Rule of Law
- Parliamentary Democracy, Federalism, Secularism and Socialism
- Fundamental Rights, Directive Principles of State Policies and Fundamental Duties
- Election Commission and Electoral Reforms

Basic Readings:

- 1. O.P. Gauba, Political Theory, Macmillan, (latest edition).
- 2. D.D. Basu, Introduction to the Constitution of India, (Latest Edition).
- 3. N.G. Jayal & Pratap Bhanu Mehta, The Oxford Companion of Politics in India, 2000.
- 4. W.H. Morris-Jones, The Government and Politics of India.
- 5. Swami Jitaman and, Holistic Science and Vedam, Bhartiya Vidyabhawan
- 6. V. Shivramakrishnan (Ed.), Cultural Heritage of India, Bhartiya Vidyabhawan, Mumbai Fifth Edition, 2014.
- 7. Yoga sutra of Patanjali, Ramakrishnan Mission, Kolkata.
- 8. Panini Shiksha, Motilal Banarsidas
- 9. VN Jh, Language, Thought and Reality
- 10. Krishna Chaitanya. Arts of India, Abhinav Publications, 1987.
- 11. SC Chaterjee and DM Datta, An Introduction to Indian Philosophy, university of Calcutta, 1984
- 12. A L Basham, The Wonder That was India

Course Outcomes:

After successful completion of the course, the students will be able to

- CO 1. Know the rich Indian traditions and the Indian constitution.
- CO 2. Appraise the utility and significance of tradition and its applicability in present times.
- **CO 3.** Employ the knowledge of the constitutional norms as laid in the constitution and abide by the practices stated therein.
- CO 4. Create a better society and living standards for themselves as well as for others.
- CO 5. Recognize the basic concepts of ethics and morality pertaining to Indian culture and tradition.
- **CO 6.** Connect traditional Indian philosophy with their everyday conduct and practices.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

<u>List of courses from NPTEL platform for Seminar/</u> <u>Self Study Courses in V Semester</u>

Name of the course	Duration of	Course R	Examination	
	the course	Start Date	End date	date
Solar Photovoltaics	8 Weeks	29-Jul-19	20-Sep-19	29-Sep-19
Fundamentals, Technology and				
Applications				
Intellectual Property Rights and	8 Weeks	29-Jul-19	20-Sep-19	29-Sep-19
Competition Law				
Patent Drafting For Beginners	4 Weeks	29-Jul-19	23-Aug-19	29-Sep-19
Ethics in Engineering Practice	8 Weeks	26-Aug-19	18-Oct-19	03-Nov-19
Technologies for Clean and	8 Weeks	29-Jul-19	20-Sep-19	29-Sep-19
Renewable Energy Production			-	-

List of Additional Courses

Purpose	Name of the course	Duration	Course Re	gistration	Exam. date	Name of the
		of the course	Start Date	End date		Mentor faculty
For	Sensors and Actuators	12 Weeks	29-Jul-19	18-Oct-19	02 Nov. 2019	Prof. K. Swarnkar
Honours	Neural Networks for Signal	12 Weeks	29-Jul-19	18-Oct-19	03 Nov 2019	Prof. Vishal
	Processing-I					Chaudhary
	Electrical Distribution System analysis	8 Weeks	29-Jul-19	20-Sept-19	29 Sep 2019	Prof. S. Dixit
	DC Microgrid	8 Weeks	29-Jul-19	20-Sept-19	29 Sep 2019	Prof. R. Narvey
	Introduction to Smart Grid		29-Jul-19	20-Sept-19	29 Sep 2019	Prof. H. Singh
	Advanced Linear Continuous Control Systems: Applications with MATLAB Programming and Simulink	8 Weeks	29-Jul-19	20-Sept-19	29 Sep 2019	Dr. S. Wadhwani
	Linear System Theory		29-Jul-19	18-Oct-19	02 Nov. 2019	Prof. Praveen Bansal
For	Power Electronics	12 Weeks	29-Jul-19	18-Oct-19	02 Nov. 2019	Prof. H.M. Dubey
Minor	Electrical Machines - I	12 Weeks	29-Jul-19	18-Oct-19	03 Nov 2019	Prof. A. Patra
Specialization	Power System Analysis	12 Weeks	29-Jul-19	18-Oct-19	03 Nov 2019	Prof. S. Dixit
-	Introduction to Smart Grid	8 Weeks	29-Jul-19	20-Sept-19	29 Sep 2019	Prof. R. Narvey
	Fundamentals of Electric Drives	8 Weeks	29-Jul-19	20-Sept-19	29 Sep 2019	Prof. Praveen Bansal
	Control Engineering	12 Weeks	29-Jul-19	18-Oct-19	03 Nov 2019	Dr. S. Wadhwani
	Advanced Linear Continuous	8 Weeks	29-Jul-19	20-Sept-19	29 Sep 2019	Prof. Vishal
	Control Systems: Applications					Chaudhary
	with MATLAB Programming and					
	Simulink					

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Departmental Core (DC13)

Switchgear and Protection: 130601

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment	Practical End Sem	Lab Work & Sessional
02	-	02	03	70	20	10	30	20

Course Objectives: To familiarize the students with the learn standard terms and definitions, to understand the need for protection and various protective devices, their construction, operating principle, torque equation, characteristics and field of application for different types of equipments to identify reasons for mal operation and their remedies

Unit I. Arc Interruption : Arc properties , Formation and extinction of arc, Restriking and recovery voltage RRRV, different methods and control devices for arc extinction, Current chopping, Interruption of capacitive currents, Resistance switching. Type and classification of circuit breakers. Oil circuit breaker.

Unit II. Air blast and SF6 circuit breakers: Vacuum circuit breakers, duties and rating Maintenance and testing of OCB 's. Isolators, HRC fuse. Protective Relays: introduction, Definition of terms associated with protective relaying. Construction and characteristics of electromagnetic relays.

Unit III. Elements of static relays: Comparator, induction, distances and differential relays, microprocessor based relays. Modern trends in power system protection, Auto reclosure, under and over frequency relays and their applications. Digital Protection. Numerical protection Introduction, block diagram of numerical relay, numerical over current protection.

Unit IV. Protection schemes: Protection of generators and transformers, percentage differential relay, Buchholz relay, different protections provided for generator and transformer, transmission line protection using over current relays, distance relays and carrier current protection, protection of motors and bus bars.

Unit V. Protection against Over Voltages: Power System transients, Over voltage in transmission lines, fault clearance and lightning and switching surges, ground wire, lightning arrestors, basic impulse insulation level(BIL), insulation coordination, grounding of P.S. current limiting reactors, their uses and location protection against traveling waves.

Recommended Books:

- 1. Switchgear protection and power systems by Sunil S. Rao, Khanna publication, 13th edition, 2008.
- 2. Power system protection & Switchgear by Badriram, TMH publication, 2nd edition, 2011.
- 3. Switchgear and protection by Ravindranath and Chander, Newage publication, 2nd edition, 2012
- 4. Switchgear and protection by Deshpande, TMH Publication, 2004
- 5. Digital Protection by L.P. Singh New Age Publication, 2nd edition, 1997.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

After completing this course the students will be able to:

- CO 1. Explain the concepts, theories and features associated with protective relays and circuit breakers.
- **CO 2. Classify** relays and circuit breakers based on criteria such as construction, type of supply, working principle, actuating quantities.
- CO 3. Select relays and circuit breakers for specific equipments and applications.
- CO 4. Design protection schemes for generators, motors, transformers and transmission lines.
- CO 5. Analyze the behavior and performance of relays under different loading levels and faults.
- **CO 6. Select** the protective devices and their locations for protecting power systems against over voltages.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Switch Gear & Protection Lab- 130601

List of Experiments

- 1. Testing of under voltage relay (electromechanical) at desired fault voltage.
- 2. Testing of over voltage relay (microprocessor based) at desired fault voltage.
- 3. Testing of over current relay (electromechanical) at desired fault current.
- 4. Testing of percentage biased differential relay (Static) at desired biasing.
- 5. Testing of percentage biased differential relay (Electro-mechanical) at desired basing.
- 6. Testing of over current relay using the relay test bench.
- 7. Study of Motor protection simulation panel.
- 8. Study of Feeder protection simulation panel.
- 9. Simulation of distance relay and plot the characteristic by using matlab
- 10. Simulations of IDMT relay and Plot the characteristic using matlab.

Course Outcomes:

After completing the lab course the students will be able to:-

- **CO 1. Operate** the Over/Under voltage & over current relays and observe the performance for different settings
- **CO 2. Analyze** the effect of time and current settings on the operating characteristics of an Inverse Definite Minimum Time (IDMT) relay
- CO 3. Validate the characteristics of percentage biased differential relay for different bias settings
- CO 4. Prepare an organized written report.
- **CO 5. Develop** the ability to work is team and learns professional ethics.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Departmental Core (DC14)

Electrical Engineering Materials: 130602

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
02	-	-	02	70	20	10

Course Objective: The Objective is to familiarize the students with different types of materials and their use in the field of Electrical Engineering.

Unit I. Conducting Materials: The conductivity of metals and alloys, Generals properties, Classification of conducting materials, Low resistivity and high resistivity materials, their properties and applications, Electrical and mechanical properties and applications of Cu, Al, Steel, Brass, Bronze, ACSR conductor, AAAC conductor, Tungsten, Molybdenum, Platinum, mercury, lead, manganin, alloys for application in resistances, lamps and electric furnaces, soldering materials, metals and Alloys for fuses, contact materials and their applications, Graphite materials, its properties and application, superconductivity and its applications.

Unit II. Semiconductor Materials: Classification of materials based on atomic structure, conductors, insulators and semiconductors, Electron energy and energy band theory, Excitation of atoms, Semiconductor materials, Intrinsic semiconductors, Extrinsic semiconductor, N type materials, P type materials, minority and majority carriers. Formation of PN junction by alloying, Merits of semiconductor materials for use in electrical Engg., Factors affecting semiconductors, application of semiconductor materials, Hall effect with mathematical treatment.

Unit III. Magnetic Materials: Different terms associated with magnetic materials. Classification of magnetic materials, Diamagnetic, Paramagnetic and ferromagnetic materials, Curie point, Magnetostriction, electromagnet and its uses, Magnetization curve, Hysteresis and eddy current loss, Soft and hard magnetic materials, their properties and applications, alloying silicon to steel, its advantage and disadvantages, requirements of magnetic materials for use in Electrical machines, Grain oriented sheet steel, Magnetic anisotropy, Spontaneous magnetization.

Unit IV. Dielectric materials: Behaviour of dielectrics in static and alternating fields, effect of a dielectric on the behaviour of a capacitor, polarization, Dielectric constant of mono atomic gases, ionic polarization, Dipolar polarization, internal fields in solids and liquids, Polaris ability catastrophe, Frequency dependence of electronic polarization, permittivity, ionic polarization, dielectric losses, significance of the loss tangent dipolar relaxation, frequency and temperature dependence of the dielectric constant of polar dielectric, Ferro electricity, piezoelectricity.

Unit V. Insulating materials: General electrical, mechanical, thermal and chemical properties of insulating materials, classification of insulating materials on the basis of temperature rise. Gaseous insulating materials properties and application of nitrogen, liquid insulating materials, their main features, Transformer oil, testing the dielectric strength of transformer oil, Fibrous insulating materials, insulating textiles, impregnated fibrous insulating materials, Insulating resins, Classification of synthetic resins (Plastics), thermosetting and thermoplastic resins, adhesives, varnishes and other insulating materials such as mica, ceramic, Bakelite, Ebonite glass, PVC, Rubber.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Recommended Books:

- 1. A text book of Electrical Engineering materials by P.L. Kapoor, Khanna Publication
- 2. Electrical Engineering materials by A.J. Dekker, PHI
- 3. An introduction to Electrical Engineering materials by C.L. Indulkar, S. Thiravengadam, S. Chand & Co.

Course Outcomes:

After completing this course the student will be able to:

- CO1 Discuss the properties of conducting, insulating, magnetic & semiconducting materials.
- CO2 Explain applications of conducting, insulating, magnetic & semiconducting material.
- CO3 Describe the testing of dielectric strength of liquid insulating material
- **CO4 Explain** behavior of dielectric material with respect to temperature & frequency.
- CO5 Classify conducting, insulating, magnetic & semiconducting material.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

ITEM 1: Departmental Electives							
Computer Aided Power System Analysis	Industrial Automation*	Transducers & Sensors					

*Industry Collaborative Course

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

DE-1A (130611)

Computer Aided Power System Analysis

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment	
02	-	-	02	70	20	10	

Course Objectives:

- To familiarize the students with the engineering and economic aspects of planning, operation & control of power generation and transmission systems.
- To provide the basic understanding of Artificial Neural Networks and their applications in power system.

Unit I. Unit Commitment and Economic Dispatch: Introduction to unit commitment, statement of unit commitment problem, priority list method, forward dynamic programming, formulation of economic dispatch problem, input-output cost characterization, incremental cost curve, coordination equations with and without loss, solution by direct method and lamda iteration method.

Unit II. Reactive Power Control: Concept of reactive power, control of active power and reactive power - active power and frequency control, flow of reactive power, real power balance and its effect on system frequency; Static VAR systems and their application.

Unit III. Automatic Generation Control (AGC): Frequency dependence of loads, Turbine and speed-governors, Droop control and power sharing, Generation control loops, Load frequency control, AGC, tie-line bias control, AGC in isolated and interconnected power systems, AGC with economic dispatch.

Unit IV. Power System Security: An overview of Power System security, Functions of Operations Control Centre: System monitoring (Normal, Alert, Emergency, Extremis states of a Power System), Contingency Analysis, Security constrained Optimal Power Flow, Factors affecting power system security, Linear sensitivity factors, Application of AC/DC power flow methods, Contingency selection.

Unit V. Applications of Artificial Neural Networks in Power System: Introduction to Artificial neural network (ANN), Types of artificial neural networks, Feed-forward and Feedback ANNs, training and testing of ANNs, Training set generation, ANN applications to power system problems: load forecasting, fault detection, economic load dispatch and voltage security & stability etc.

Recommended Books:

- 1. Modern Power System Analysis by I.J. Nagrath and D.P. Kothari, Tata McGraw-Hill, 4th ed. 2011.
- Power System Stability and Control by P. Kundur, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 10th reprint, 2010.
- Electric Energy Systems theory –An introduction by Olle. I. Elgerd, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2nd ed. 2004.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

- 4. Power Generation, Operation and Control by Allen. J. Wood and Bruce F. Wollenberg, John Wiley & Sons, Inc., 2006.
- 5. Power System Analysis Operation and Control by Abhijit Chakrabarti and Sunita Halder, PHI learning Pvt. Ltd., New Delhi, 3rd ed. 2010.
- 6. Neural computing Theory and Practice by P.D. Wasserman, Coriolis Group, 1989.
- 7. Introduction to neural networks using Matlab 6.0 by S.N. Sivanandam, S. Sumathi and S.N. Deepa, Tata McGraw Hill Education Pvt. Ltd., New Delhi 2006.

Course Outcomes

After the completion of this course, students will be able to:

- CO1 Explain unit commitment and different methods for Solving UC problem
- CO2 Apply direct method and lamda iteration method for solving economic dispatch problem
- CO3 Discuss the concept of reactive power, control of active power and reactive power and SVC
- CO4 Solve the AGC problem in isolated and interconnected power systems
- CO5 Illustrate Operations Control Centre functions, System monitoring and Contingency Analysis.
- CO6 Describe various types of ANN and their applications to power system.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

DE-1B (130612)

Industrial Automation

Course Objective:

- To familiarize the students with the Industrial aspects of automation, planning and model making
- To provide the understanding of the control of a different PLCs and their applications in various low , medium and high power drives
- To expose the students to understand various sensors, transducers and data acquisition systems and IoT

Pre-requisite: Basics of Power Electronics , digital electronics and Electrical drives

Course Contents:

Unit I:Introduction: Overview of industry environment, Different type of switches & their operation, Architecture of industrial automation system, Relay and contactor logic, AC and DC relays and their role for load control. Review of starters: Power and Auxiliary contactors and their usage for load control. Overview of standards (BIS, ISO) & star and delta starters and their rating.

Unit II:Sensors: Temperature& speed Measurement, Humidity,Pressure, Force and Torque Sensors, Motion Sensing(speed sensor), proximity sensor, Signal Conditioning, Data Acquisition Systems, Characteristics of Sensors and control logic, control using potential free output sensors, linear potentiometer timer hardware architecture, Controlling industrial system using timers and counters (case study)

Unit III: Industrial Drives: AC & DC Drive basics, Electrical specifications and hardware architecture .AC drive and AC motor specification matching (sizing of drive),Load characteristics and its types, Servo Drives Stepper motor drive and VFD(Variable frequency drives) drives.AC drive power wiring and Interfacing input and output signals. Energy Savings with Variable Speed & multi motor Drives. Braking motoring and regerative operation of drives Selection of power, motor and signal cables for AC drive application. Heat management of Drives, Drives protection

Unit IV: Programmable Logic Controllers: Programmable controllers, Programmable logic controllers, Analog/Digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, , Advantage of using PLC for Industrial automation, Application of PLC to process control industries.Different types of Network Communication Protocol, DH-485, Ethernet, Device Net, Control Net, Modbus, Profibus Proprietary Protocol, open Protocol.

Unit V: Automatic Control: Introduction to P-I-D Control, manual and auto PID Control Tuning, Feed forward Control Ratio Control, Time Delay Systems and Inverse Response Systems, PWM control in drives.

References and Textbooks:

- 1. Lingefeng Wang, Kay Chen Tan, "Modern Industrial Automation and Software Design" John Wiley & Sons Inc.
- 2. K. L.S. Sharma, "Overview of Industrial Process Automation", Elsevier
- 3. KokKiong"Drives and Control for Industrial Automation", Springer
- 4. JOHN WEBB," Programmable Logic Controllers Principles & applications", PHI
- 5. JOHN G. WEBSTER," The Measurement, Instrumentation and Sensors Handbook", CRC Press.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

After completing the course, students are able to:

- CO1 Analyze architecture of industrial automation system
- CO2 Select appropriate sensors
- CO3 Acquire PLC knowledge
- **CO4** Acquire the knowledge of PID control technique
- CO5 Develop small application using PLC & transducer,
- **CO6** Suggest AC and DC drives for particular applications.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

DE-1C (130613)

Transducers & Sensors								
L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment		
02	-	-	02	70	20	10		

Course Objective: To make students familiar with the constructions and working principle of different types of sensors and transducers. To make students aware about the measuring instruments and the methods of measurement and the use of different transducers.

Unit 1: Mechanical and Electromechanical transducer & sensor:

Principle of sensing & transduction, classification, Resistive (Potentiometric type): Strain gauge:. Inductive Transducer: Reluctance change type, Mutual inductance change type, transformer action type, Magnetostrictive type, LVDT: Proximity sensor

Unit 2: Capacitive transducers & sensors:

Variable distance-parallel plate type, variable area- parallel plate, serrated plate/teeth, type and cylindrical type, variable dielectric constant type, Stretched diaphragm type: microphone, Piezoelectric element: piezoelectric effect, charge and voltage co-efficient, crystal model, force & stress sensing, ultrasonic sensors.

Unit 3: Thermal transducers & sensors:

Solid, liquid, gas & vapour, Resistance change type: RTD materials, tip sensitive & stem sensitive type, Thermister Thermo emf sensor: types,Junction semiconductor type IC and PTAT type. Radiation sensors: types, characteristics and comparison. Pyroelectric type.

Unit 4: Magnetic transducers & sensor:

Sensor based on Villari effect for assessment of force, torque, proximity, Wiedemann effect for yoke coil sensors, Thomson effect, Hall effect, and Hall drive, performance characteristics. Radiation sensors: LDR, Photovoltaic cells, photodiodes, photo emissive cell types, Geiger counters, Scintillation detectors, Introduction to smart sensors

Unit 5: Smart Sensors:

Architecture of Smart Sensors: Features, Fabrication of Sensor and Smart Sensor: Electrode fabrication: Screen printing, Photolithography, Electroplating Sensing film deposition: Physical and chemical Vapor, Anodization, Sol-gel Selection of Sensors for Practical Applications, Usefulness of Silicon Technology in Smart Sensor And Future scope of research in smart sensor

Recommended Books:

- 1. Sensor & transducers, D. Patranabis, 2nd edition, PHI
- 2. Instrument transducers, H.K.P. Neubert, Oxford University press.
- 3. Measurement systems: application & design, E.A.Doebelin, Mc Graw Hill
- 4. Electronics and Electrical Measurements & Instrumentation, J.B.Gupta, S.K.Kataria & Sons.
- 5. A Course in Electrical and Electronic Measurements and Instrumentation, A.K. Sawhney Dhanpat Rai & Co.
- 6. Transducers and Instrumentation by D.V.S. Murty.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

At the end of the course, a student will be able to:

- 1. **Describe** the converting principle of a physical parameter into an electrical quantity
- 2. Classify transducers for measurement of temperature, strain, motion, position and light
- 3. **Choose** proper sensor to make sensitive measurements of physical parameters like displacement, force, pressure, temperature, acceleration, etc
- 4. Predict correctly the expected performance of various sensors
- 5. **Identify** different type of sensors used in real life applications and paraphrase their importance

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Disaster Management

100007	Disaster	Theory	Midterm	Quiz/Assignment	TOTAL	L	Т	Р	С
	Management (MC)	70	20	10	100	3	-	-	-

Course objectives:

i) To understand basic concepts in Disaster Management

ii) To understand Definitions and Terminologies used in Disaster Management

iii) To understand Types and Categories of Disasters

iv) To understand the Challenges posed by Disaster

v) To understand Impact of Disasters key skills

Syllabus

Unit 1: Introduction to disaster management, concepts and definitions: disaster, vulnerability, risk severity, frequency and details, capacity impact, prevention, mitigation.

Unit 2: Disasters – Disasters classification, demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends, hazard and vulnerability profile of India.

Unit 3: Disaster Impacts – Disaster impact (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues, impact of natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides etc.), impact of manmade disasters (industrial pollution, artificial flooding in urban areas, urban disasters, transportation accidents etc.).

Unit 4: Disaster Risk Reduction (DRR) - Disaster management cycle- its phases; prevention, mitigation, preparedness, relief and recovery; structural and non- structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post disaster environmental response. Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders: Policies and legislation for disaster management. DRR programmes in India and the activities of National Disaster Management Authority.

Unit 5: Disasters, Environment and Development – Factors affecting vulnerability such as impact of development projects and environmental modifications (including of dams, land use changes, urbanization etc.), sustainable and environmental friendly recovery; reconstruction and development methods.

Course outcomes:

After successful completion of the course, the students will be able to

- 1. Propose disaster prevention and mitigation approaches.
- 2. Classify global and national disasters, their trends and profiles.
- 3. Appreciate the impacts of various disasters.
- 4. Apply Disaster Risk Reduction in management.
- 5. Find the linkage between disasters, environment and development.

Text Books:

1. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.

2. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation

3. Srivastava H.H. & Gupta G.D., Management of Natural Disasters in developing countries, Daya Publishers Delhi, 2006, 201 pages.

Reference Books:

1. <u>http://ndma.gov.in</u> (Home page of National Disaster Management Authority)

2. http://www.ndmindia.nic.in / (National Disaster Management in India)

3. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication.

4. National Disaster Management Policy, 2009, GOI.

5. Inter Agency Standing Committee (IASC) (Feb. 2007), IASC Guidelines on Mental Health and Psychosocial Support in Emergency Setting. Geneva: IASC

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

List of Courses from SWAYAM/NPTEL/MOOC Platform to be offered in online mode under DE category for credit transfer in the VI Semester.

DE 2 : Courses _SWAYAM/NPTEL/MOOC

Code	Name of the	Duration			Examination	
	course	of the	Start	End date	date	Name of the Montor
		course	Date			faculty
130651	Non Conventional Energy Resources (IITM)	12 Weeks	27-Jan- 20	17-April- 20	26- April- 20	Prof. GK Naveen, Prof. Vishal Chaudhary.
130652	DC Power Transmission Systems (IITM) New	12 Weeks	27-Jan- 20	17-April- 20	25- April- 20	Prof. Bhavna Rathore, Prof. shweta Kuamri

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

<u>Courses & Syllabi to be offered under</u> <u>Open Category (OC) Courses for VI semester</u>

- **1.** OC-A: 900103: Energy Conservation & Management
- 2. OC-B: Biomedical Instrumentation

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

OC-A

Energy Conservation & Management /900103

L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
02	-	-	02	70	20	10

Course Objectives:

To familiarize the students to the concepts of Energy Audit, various terminology, rules and regulations, policy, energy economics, energy tariff, analysis techniques and energy conservation.

Unit I. Energy Scenario: Classification of Energy, Indian energy scenario, energy needs of growing economy, long term energy scenario, energy conservation and its importance, Energy conservation Act 2001 and its features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, Electricity Acts, National action plan on climate change.

Unit II. Energy Sources & conservation: Conventional & Non Conventional sources of energy, Renewable & non renewable source of energy, Various methods of energy Conservation, Generation of Electrical Energy using non-conventional Sources.

Unit III. Energy Audit: Introduction, Energy Audit- Need, Scope, Methodology, Types of Energy Audit, Energy Flow Diagram, Baseline data for energy audit, Instruments for energy auditing. Sankey Diagram, Questionnaire for energy audit, Preparations & presentations of energy audit reports, Functions of Energy Auditor

Unit IV. Energy Management: Definition and objective of energy management, General Principles of energy Management, Energy Management Approach, Energy supply side Management, Management of energy distribution, Functions of energy management team.

Unit V. Energy Economics: Introduction, Parameters for energy economics, Energy Tariff, Economic Analysis Technique- Simple payback period, Discounted Cash Flow Method or Time Audited Technique (Net present value NPV, Present value index method PI, Internal rate of return Method IRR), Return on Investment (ROI).

Recommended Books:

- 1. Energy Management by W. R. Murphy, G. A. Mckay, Butterworth, 2nd ed., 2009.
- 2. Energy Management Principles by C.B. Smith, Pergamon Press, 2nd ed., 2015.
- Electrical Energy Conservation & Utilization by S.C. Tripati, McGraw Hill Edu. India, 1st ed., 1980.
- 4. Non-Conventional Energy Resources by N. K. Bansal, Laxmi Publication, 1st ed., 2014.
- 5. Energy Management Hand book by W.C. Turner, John Wikey& Sons, 6th ed., 2006.
- 6. Energy Conservation guide book by Pattrick, Prentice Hall, 1st ed. 1993.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Course Outcomes:

After the completion of the course, the student will be able to –

- **CO 1. Explain** the basic concepts of Energy Audit & its various terminologies, rules and regulations, policy and how to write reports.
- **CO 2.** Acquire fundamental knowledge on the science of energy and on both the conventional and non-conventional energy technologies
- CO 3. Describe different energy auditing methods and the implementation procedures
- **CO 4. Identify** present scenario of energy utilization, management and corresponding ACT of regulatory commission
- **CO 5. Recognize** process billing, energy tariff and power factor improvements to achieve energy efficient systems.
(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

OC-B

			Biomedica	al Instrument	ation	
L	Т	Р	Total Credits	Theory End Sem	Mid Sem	Ouiz/Assignment

70

20

10

Course	Objectives:	То	introduce	students	to	the	basic	biomedical	engineering	technology	and
different	biological si	gnal	s, their acq	uisition, r	nea	surei	ments a	and related c	onstraints.		

02

Unit I. Introduction to Biomedical Electrodes & Transducers: Development of biomedical instrumentation, Man-Instrument System, Problems Encountered in Measuring a Living System, transducers for biomedical applications; origin of biopotential and its propagation, sources of bioelectric potentials, electrocardiogram, electro encephalogram, electromyogram and other bioelectric potentials. Biopotential Electrodes, the nervous system, Instrumentation for sensory measurements.

Unit II. Cardiovascular System & Measurement: The Cardiovascular system, ECG lead configuration, ECG recording, (Einthoven Triangle) Mechanical & electrical Activity of the Heart, electrocardiography, measurement of blood pressure, blood flow and cardiac output, plethysmography, heart sounds, pacemakers and defibrillators.

Unit III. Measurements in the Respiratory System: Respiratory Mechanism, measurements of gas volume, flow rate, carbon dioxide and oxygen concentration in exhaled air, respiration controller, spirometer, respiratory therapy equipments, inhalators, ventilators & respirations, humidifiers, nebulizers & Aspirators.

Unit IV. Patient Care, Monitoring and Safety: Elements of intensive care, Monitoring, Hospital System & components, Electrical safety of patients & medical equipment, physiological effects of electric current, shock hazards from equipments, Patient care and monitoring: elements of intensive care unit, safety measures.

Unit V. Noninvasive Diagnostic Instrumentation: Ultrasonic Waves and Ultrasonic Vibrations, Propagation, Acoustic Intensity, Applications, Super Imposition, Potential Health Hazard, Measurement of Velocity, Ultrasonic Scanning techniques for bone fracture detection, Applications, Comparison between X-rays and ultrasonic scanning, Applications, Ultrasonic Cleaning, digital radiography Medical Imaging equipments Method.

Recommended books:

02

- 1. Biomedical Instrumentation and Measurement by Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, 2nd ed., 1980.
- 2. Biomedical Instrumentation: Technology and Applications by Raghbir Singh, McGraw-Hill Education, 1st ed., 2004.
- 3. Medical Instrumentation for Health Care by Leslie Cromwell, Prentice Hall, 1sted, 1976.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

- Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation by Robert B. Northrop, CRC Press, 2nd ed., 2012.
- 5. Introduction to Bioinstrumentation: With Biological, Environmental, and Medical Application by Clifford D. Ferris, 2nd ed., 1978.
- 6. Clinical Neurophysiology, U K Mishra, Elsevier.

Course Outcomes:

After completing this course the student will be able to:

- CO 1. Describe the origin of biopotentials and the role of biopotential electrodes & transducers
- CO 2. Analyze common biomedical signals and distinguish characteristic features;
- CO 3. Describe the physical and medical principles used as a basis for biomedical Instrumentation
- **CO 4.** Explain measurement principles for blood flow, pressure and volume as well as respiratory variables
- CO 5. Identify the patient safety issues related to biomedical instrumentation
- **CO 6.** Explain the different ultrasonic scanning & medical imaging systems

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhop Electrical Engineering Department

To propose the list of "Additional Courses" which can be opted for getting an (i) Honours (ii) Minor Specialization

[These will be comp	[These will be completed through SWAYAM/NPTEL/MOOC based Platforms during VI semester]					
Name of the course	Offered	Course		Examination	Name of	

Name of the course	Officieu	Course			Examination	
	By	Duration	Start Date	End	date	Faculty
				date		Mentor
	List	of Courses	offered fo	r Honou	rs	
				April		Prof.G K
The Joy of Computing			January	17,		Naveen
using Python	IIT Ropar	12 Weeks	27, 2020	2020	April 25, 2020	
Programming, Data						Prof.Rahul
Structures And				March		Sagwal
Algorithms Using	CMI,		January	20,	March 29,	
Python	Chennai	8 Weeks	27, 2020	2020	2020	
	KTH,			April		Dr.Hari Mohan
	RIT,		February	17,		Dubey
Machine Learning, ML	Sweden	8 Weeks	24, 2020	2020	April 26, 2020	
				April		Dr.Laxmi
An Introduction to			January	17,		Srivastava
Artificial Intelligence	IITD	12 Weeks	27, 2020	2020	April 26, 2020	
Artificial Intelligence :						Prof.Aparajita
Knowledge				April		Kumari
Representation And			January	17,		
Reasoning	IITM	12 Weeks	27, 2020	2020	April 25, 2020	
				April		Prof.Manoj
Fundamentals of			January	17,		Kumar
semiconductor devices	IISc	12 Weeks	27, 2020	2020	April 26, 2020	
Power Quality				March		Prof.Praveen
Improvement			January	20,	March 29,	Bansal
Technique	IITR	8 Weeks	27, 2020	2020	2020	

List	List of Courses offered for Minor Specialization						
Fundamentals of		8	January 27,	March 20,	March 29,	Prof. Manoj	
semiconductor devices	IITR	Weeks	2020	2020	2020	Kumar	
	IIT	12	January 27,	April 17,	April 25,	Prof G.K.	
Power System Engineering	KGP	Weeks	2020	2020	2020	Naveen Kumar	
Fuzzy Sets, Logic and		12	January 27,	April 17,	April 25,	Dr. A.K.	
Systems & Applications	IITK	weeks	2020	2020	2020	Wadhwani	
						Prof. Vishal	
Non-Conventional Energy		12	January 27,	April 17,	April 26,	Chaudhary	
Resources	IITM	Weeks	2020	2020	2020		
DC Power Transmission	IITM	12	27-Jan-20	17-April-	25-	Prof. Bhavna	
Systems (IITM) New		Weeks		20	April-20	Rathore	

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

List and syllabi for all Departmental Elective (DE) Courses of

VII Semester

under the flexible curriculum alongwith their COs

<u>DE-3</u>

Code	Name of DE-3 Course
130711	Electrical Drives
130712	Renewable Energy Systems
130713	Microgrid Technologies
130714	Intelligent Sensors and Instrumentation

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Electrical Drives:130711

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objectives:

- To provide an overview of complete electrical drive systems to students, including the mechanical parts, electrical machines, and power converters and control.
- To expose the students to the basic and advanced speed control techniques using power electronic converters that are used in industry.
- To familiarize the students with the concepts behind four quadrants operation of electric drives and slip power recovery schemes in induction motors.

Unit I. Basic Concepts: Elements of drive system, Requirements of electric drives. Ratings and selection of drives, Group and individual drives, constant power and constant torque drive. Dynamics of Electric drive convention and multi quadrant operation. Transient and steady state stability of Electrical drive. Control of Electrical drive, modes of operation, speed control and drive classification, closed loop control of drive.

Unit II. DC Drives: DC motor drives, DC motor and their performance, starting, braking, transient analysis and control, Ward Leonard drives, Thyristorised controlled DC drives, chopper controlled DC drives.

Unit III. Induction Motor Drives: Three phase induction motors Drives, starting, braking, transient operation, Variable frequency control from voltage and current source, rotor resistance control, static Scherbius and Kramer drives, introduction to vector control.

Unit IV. Synchronous Motor Drives: synchronous motor drives, synchronous motor operation from fixed frequency supply, synchronous variable speed drives, self controlled synchronous motor drives, brush less DC motor, stepper motor and switched reluctance motor drives.

Unit V. Special Drives : Solar and battery powered drives , solar powered electrical vehicles and boat, Traction Drives nature of traction load, conventional DC and AC Traction drives, Energy conservation in electric drives, Servo drives.

Recommended Books:

- 1. Fundamentals of Electrical Drives by G.K. Dubey, CRC Press, 2nd Ed.2007
- 2. A first course in Electric Drives by S.K. Pillai, New Age International, 2nd Ed.2007
- 3. Power Electronics and AC Drives by B.K. Bose, IEEE Press, New jersey, 2001
- 4. Electrical Drives Concept & Application by Vedam Subrahmanyam, Tata Mcgraw Hill, 2nd Ed.2011.

Course Outcomes:

After the completion of the course, the student will be able to –

- **CO 1. Describe** various components of a drive system along with modes of operation, control needs and identify stable/unstable regions
- **CO 2.** Name the various controllers for AC/DC drives and draw their circuit diagrams
- CO 3. Classify various drives & loads, their characteristics and control methods under various operating conditions
- CO 4. Develop mathematical models of various drives and compute various parameters
- CO 5. Employ the various static converters for speed control of different types of drives
- CO 6. Illustrate the functioning of solar, battery powered and traction drives and explain energy conservation methods

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Renewable Energy Systems: 130712

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/ Assignment
03	-	03	70	20	10

Course Objectives: To impart the knowledge on various forms of renewable energy sources and the process of electric energy conversion.

Unit I. Environmental aspects of electric power generation: conventional sources: Limitation of fossil fuels. Atmospheric pollution – effects of hydro-electric projects – disposal of nuclear waste – green house gaseous mission from various energy sources and its effects – need for renewable energy sources.

Unit II. Solar Photo-Voltaic system: Solar radiation and its measurement – Angle of sun rays on solar collector – optimal angle for fixed collector – sun tracking, an introduction to solar cell, solar PV module, PV system design and applications – stand-alone and grid connected systems, environmental impacts.

Unit III. Wind power generation: Wind energy, classification of wind turbines – aerodynamic operation of wind turbine, extraction of wind turbine power, wind turbine power curve, horizontal axis wind turbine generator – modes of wind power generation – stand-alone and grid connected system, environmental impacts

Unit IV. Fuel cell system: Principle of operation of fuel cell, technical parameters of fuel cell, Type of fuel cell – advantages of fuel cell power plants, energy output, efficiency and emf of fuel cell – operating characteristics, applications and environmental impacts.

Unit V. Hybrid energy systems: Need for hybrid systems, types, configuration and coordination, electrical interface – PV-Diesel, Wind-diesel, wind-PV, wind-PV- fuel cell.

Recommended Books:

- 1. Non-conventional Energy sources by G D Rai, Khanna Publishers, 5th ed., 2014.
- Renewable Energy Sources and Emerging Technologies by D P Kothari, K C Singal and R. Ranjan, PHI, 2nd ed., 2012.
- 3. Solar Photo-voltaics Fundamentals, Technologies and Applications by C S Solanki, PHI Pvt., Ltd., 2nd ed., 2011.
- 4. Wind Electric Systems by S N Bhadra, D Kastha and S Banerjee, Oxford Publications, 2nd ed., 2007.

Course Outcomes:

Upon the completion of this course the student will be able to:

- **CO 1.** Apprise the environmental impacts of conventional energy sources and the need of renewable energy
- CO 2. Explain the process of PV generation and design stand-alone and grid connected system
- CO 3. Explain the process of wind power generation and choose stand-alone and grid connected configuration

- CO 4. Explain the process of fuel cell power generation and its applications.
- **CO 5. Configure** the various hybrid systems.

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

IoT in Microgrid:130713

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objectives:

- To provide the basic concepts of Microgrid, its configuration, operation and control
- To familiarize the students with energy storage devices, smart metering and IoT application in Microgrid

Unit I. An Overview of Microgrid: Concept of Microgrid, Typical structure and configuration of a Microgrid, Significance of Microgrid, Sources of microgrid, Types of Microgrids, AC, DC and hybrid Microgrids.

Unit II. Microgrid Operation and Control: Modes of Operation: Grid Connected Mode, Islanding Mode, Issues in Island Mode of operations, Control laws, Power relations and power control, Bi-directionality and its need in a Microgrid, Control of DC-DC converters and inverter and challenges in a Microgrid, Microgrid Control Strategies: Centralized, Decentralized and Hierarchical control

Unit III. Energy Storage for Microgrid: Role of energy storage systems AND their applications in Microgrid, Overview of energy storage technologies: Thermal, Mechanical, Chemical, Electrochemical, Electrical, Battery Energy Storage Systems (BESS), Superconducting Magnetic Energy Storage (SMES), Compressed Air Energy Storage (CAES)

Unit IV. Introduction to IoT: Architecture of IoT, Communication network: Home Area Network (HAN), Neighborhood Area Network (NAN), Field Area Network (FAN), Wide Area Network (WAN), Wireless Sensor Networks (WSNs)

Unit V. IoT in Microgrid: Smart Meters, Automatic Meter Reading (AMR), Advanced Metering Infrastructure (AMI), Real Time Pricing, Smart Appliances. Smart sensors: home & building automation, plug in hybrid electric vehicles (PHEV), algorithms for vehicle to grid and grid to vehicle management, smart charging stations.

Recommended Books:

- 1. Microgrids: Architectures and Control by Nikos Hatziargyriou, Wiley-IEEE Press, 2013
- 2. Microgrid: Advanced Control Methods and Renewable Energy System Integration by Magdi S Mahmoud, Butterworth-Heinemann, 2016
- 3. Microgrids and Active Distribution Networks by S. Chowdhury, P. Crossley, IET Press, 2010
- 4. Design of Smart Power Grid Renewable Energy Systems, Ali Keyhani, John Wiley & Sons, 2011
- 5. Smart Grid: Infrastructure, Technology and Solutions by Stuart Borlase, CRC Press 2012.
- 6. Smart Grid: Technology and Applications by Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, Wiley

Course Outcomes:

After the completion of the course, the student will be able to

- CO 1. Define the role and significance of microgrid in future power systems
- CO 2. Identify different types and modes of operation of Microgrids
- CO 3. Illustrate the different control strategies available for Microgrid
- CO 4. Select proper energy storage devices for smooth operation of microgrid
- CO 5. Compare various communication networks: HAN, NAN, FAN, WAN and WSNs
- CO 6. Describe various applications of IoT in Microgrid

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Intelligent Sensors and Instrumentation:130714

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objective: To familiarize students with the state of art of smart, intelligent and network sensors, and instrumentation systems and their design.

Unit I. Sensor, Actuator and Transducer: Classification of sensors on the basis of energy source and type of output signals; Signal conditioning; Meaning and types of smart sensors, Neurosensors, Biosensors

Unit II. Smart Sensor Technologies: Thick-film, thin-film and monolithic IC technologies and their use in making smart sensors; Bulk and surface micromachining technologies, wafer bonding, LIGA process, plasma etching, and their use in making smart sensors.

Unit III. MEMS, Intelligent and Network Sensors: Concept and methods of making MEMS devices, sensors and actuators, Concept and architecture of intelligent sensors; Concept and architecture of network sensors; Examples.

Unit IV. Sensor Networking: 7-Layer OSI model of communication system, device-level networks, introduction to protocols and technologies for wired and wireless LANs; Ethernet, RS-485 and Foundation Field bus protocols; Wi-Fi; Zigbee and Bluetooth protocols; Concept of adhoc networks; Smart Transducer Interface Standard IEEE 1451.

Unit V. Intelligent Instrumentation: Introduction meaning and advantages; Microprocessor application techniques; I/O techniques; II/O techniques; I/O devices, Nano-technology, Softcomputing techniques in instrumentation.

Recommended Books:

- 1. Fraden J., "Handbook of Modern Sensors: Physics, Design and Applications", AIP press, 2003.
- 2. Frank R., "Understanding Smart Sensors", Artech House publishers, 2000.
- 3. Yamasaki H., "Intelligent Sensors", Elsevier Eastern Limited, 1996.
- 4. Ramon P. A. and Webster J. G., "Sensors and Signal Conditioning" John Wiley and Sons, 2nd 2001 Ed.,.
- 5. Feng Z. and Leonidas G., "Wireless Sensor Networks", Elsevier Eastern Limited, 2007.
- 6. Barney G., "Intelligent Instrumentation", Prentice-Hall International Editions, 1998.

Course Outcomes:

After completing this course students will be able to:

- CO 1. Classify sensors on the basis of energy source and type of output signals.
- CO 2. Explain Smart Sensor Technologies
- CO 3. Design the MEMS, Intelligent and Network Sensors
- CO 4. Apply protocols and technologies for wired and wireless LANs; Ethernet, RS-485
- CO 5. Discuss Intelligent Instrumentation techniques including Nano-technology and Softcomputing

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

List of Courses from SWAYAM/NPTEL/MOOC Platform

to be offered in online mode under DE category

for credit transfer in the VII Semester

NPTEL Offered Courses

Code	Name of the course	the course Duration of		egistration	Exam.	Faculty Mentor
		the course	Start Date	End Date	Date	
130751	Introduction to Smart	8Weeks	July 20,	Sept 11,	27 Sept	Dr. H. Singh/
	Grid, IITR		2020	2020	2020	Prof. GK
						Naveen
130752	Advances in UHV	8 Weeks	July 20,	Sept 11,	27 Sept	Prof.V.
	Transmission and		2020	2020	2020	Chaudhary
	Distribution, IISc BLR					Prof. B. Rathore
130753	Electrical Distribution	8Weeks	July 20,	Sept 11,	27 Sept	Dr. S. Dixit/
	system Analysis, IITR		2020	2020	2020	Prof. S. Kumari
130754	Electrical Equipment and	8 Weeks	July 20,	Sept 11,	27 Sept	Prof. P. Bansal/
	Machines: Finite Element		2020	2020	2020	Prof. N. Gupta
	Analysis, IITB					

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Courses & Syllabi to be offered under

Open Category (OC) Courses for VII semester

students of other departments along with their COs

S.	Course	Proposed OC course	Name of the
No.	Code		Faculty
1	900205	Applications of Electrical Equipment & Motors	Dr. Vijay Bhuria

<u>OC-2</u>

<u>OC-3</u>

S. No.	Course Code	Proposed OC course	Name of the Faculty
1	900216	IoT in Microgrid	Ms. Bhavna Rathore
2	900217	Electric Vehicles	Mr. G K Naveen Kumar

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

Applications of Electrical Equipment & Motors: 900205

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objectives: To impart knowledge on electrical appliances and their applications, safety on electrical equipments, electric motors, traction system considering economic and technology up gradation.

Unit I. Safe Working on Electrical Equipments: - Authorized Person, procedure for shutdown, testing devices for electricity, special shutdown precautions in substations and Power House, safety measures on LV & HV electrical equipments

Unit II. Utility of electrical equipments: Electrical motors, transformers, cables, and generators, motor control centres, medium voltage distribution panels, power control centres, Motor used in E- Rikshwah, Electric vehicle, Robotic control, Automatic Washing machine, Air conditioning systems in factory, Earthling equipment & its methods, Lighting equipment in modern airport, shopping mall, railway coach factory and hospitals

Unit III. Substation Equipment: Bus bar: Temperature rise test, rated short time current test, HV test, Power frequency voltage withstand test, Earthling Equipment, Isolator testing equipment, switch gear equipment: relay, CT, PT

Unit IV. Electric Motors Drives: Introduction, Individual and group drive, Factor affecting selection of motor, Types of loads, Revised study of speed torque characteristics of DC and AC motor, Transient Characteristics, size and rating of motors, continuous & intermittent rating, Temperature rise calculation, Load Equalization, Motor enclosures

Unit V. Electric Traction Equipment: Introduction, requirements of an ideal traction system, supply systems for track-electrification, Comparison and application of different systems, Train Movement: speed time and speed distance curves, average and schedule speed, Mechanics of train movement: energy consumption Tractive effort, Factor affecting specific energy consumption, Coefficient of adhesion, Types of motors used for electric traction, current collection systems

Recommended Books:

- 1. Art and Science of Utilization of Electrical Energy by H. Pratab, Dhanpat Rai and Company, 2nded, 2007.
- 2. Electric Power Utilization by N.N. Hanock, Wheeler publishing, 1sted, 1967.
- 3. Utilization of Electric energy by E. Openshaw Taylor, Orient Longman, 1sted, 1961.
- 4. Generation Distribution and Utilization of Electrical Energy by C.L. wadhwa, New Age publications, 1sted, 1989.

Course Outcomes:

After the completion of the course, the student will be able to:

- CO 1. Discuss the various types of electrical equipments and their suitable applications.
- CO 2. Describe the various schemes of AC, DC drives, traction schemes and different braking systems.
- **CO 3.** Explain the basics of lighting and illumination and its parameters and able to design Illumination systems for various applications.
- **CO 4.** Apply the concepts of power electronics technology in efficient utilization of electrical power.
- **CO 5.** Identify the area for research in field of electric traction & utilization of Electric energy

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

IoT in Microgrid: 900216

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objectives:

- To provide the basic concepts of Microgrid, its configuration, operation and control
- To familiarize the students with energy storage devices, smart metering and IoT application in Microgrid

Unit I. An Overview of Microgrid: Concept of Microgrid, Typical structure and configuration of a Microgrid, Significance of Microgrid, Sources of microgrid, Types of Microgrids, AC, DC and hybrid Microgrids.

Unit II. Microgrid Operation and Control: Modes of Operation: Grid Connected Mode, Islanding Mode, Issues in Island Mode of operations, Control laws, Power relations and power control, Bi-directionality and its need in a Microgrid, Control of DC-DC converters and inverter and challenges in a Microgrid, Microgrid Control Strategies: Centralized, Decentralized and Hierarchical control

Unit III. Energy Storage for Microgrid: Role of energy storage systems AND their applications in Microgrid, Overview of energy storage technologies: Thermal, Mechanical, Chemical, Electrochemical, Electrical, Battery Energy Storage Systems (BESS), Superconducting Magnetic Energy Storage (SMES), Compressed Air Energy Storage (CAES)

Unit IV. Introduction to IoT: Architecture of IoT, Communication network: Home Area Network (HAN), Neighborhood Area Network (NAN), Field Area Network (FAN), Wide Area Network (WAN), Wireless Sensor Networks (WSNs)

Unit V. IoT in Microgrid: Smart Meters, Automatic Meter Reading (AMR), Advanced Metering Infrastructure (AMI), Real Time Pricing, Smart Appliances. Smart sensors: home & building automation, plug in hybrid electric vehicles (PHEV), algorithms for vehicle to grid and grid to vehicle management, smart charging stations.

Recommended Books:

- 1. Microgrids: Architectures and Control by Nikos Hatziargyriou, Wiley-IEEE Press, 2013
- 2. Microgrid: Advanced Control Methods and Renewable Energy System Integration by Magdi S Mahmoud, Butterworth-Heinemann, 2016
- 3. Microgrids and Active Distribution Networks by S. Chowdhury, P. Crossley, IET Press, 2010
- 4. Design of Smart Power Grid Renewable Energy Systems, Ali Keyhani, John Wiley & Sons, 2011
- 5. Smart Grid: Infrastructure, Technology and Solutions by Stuart Borlase, CRC Press 2012.
- 6. Smart Grid: Technology and Applications by Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, Wiley

Course Outcomes:

After the completion of the course, the student will be able to

- CO 1. Define the role and significance of microgrid in future power systems
- **CO 2. Identify** different types and modes of operation of Microgrids
- **CO 3. Illustrate** the different control strategies available for Microgrid
- **CO 4. Select** proper energy storage devices for smooth operation of microgrid
- CO 5. Compare various communication networks: HAN, NAN, FAN, WAN and WSNs
- CO 6. Describe various applications of IoT in Microgrid

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department Electric Vehicles: 900217

L	Т	Total Credits	Theory End Sem	Mid Sem	Quiz/Assignment
03	-	03	70	20	10

Course Objectives: To impart knowhow to choose a suitable drive scheme in developing electric vehicles depending on resources to develop basic schemes, design proper energy storage systems and usage of various protocols of communication under the umbrella of electrical vehicles.

Unit I: Background of EVs

History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles. Advantages & Disadvantages of EVs, Electric Revolution, Types of EVs (Plug-in EVs, ground vehicles, air borne, sea borne, Hybrid EVs, on-and-off road EVs), and Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics.

Unit II: Electric Drive-Trains & Propulsion

Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, Tractive effort, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives.

Unit III: Energy Storage & Management

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Charging of electric Vehicles, Battery based energy storage and its analysis, Fuel cell based energy storage and its efficiency analysis, Battery Management System, Classification of different energy management strategies Comparison of different energy management strategies Implementation issues of energy strategies. Vehicle to grid (V2G) and Grid to Vehicle (G2V) fundamentals.

Unit IV Vehicle Dynamics

Acceleration & Braking, Suspension of EVs, Steering of EVs, Ride Comfort, Dynamic equation, Driving Cycle and range.

Unit V Sizing & Selection

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications.

Recommended Books:

- 1. Electric and Hybrid Vehicles: Design Fundamentals by Iqbal Hussein, , CRC Press, 2003.
- 2. Electric Vehicle Technology Explained by James Larminie, John Lowry, , Wiley, 2003.
- 3. Modern Electric, Hybrid Electric and fuel Cell Vehicles: Fundamentals, Theory and Design by Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, , CRC Press, 2005.

Course Outcomes:

After completion of the course, the student will be able to

- CO 1. Interpret the environmental importance of electric vehicles and their role in society.
- CO 2. Define electric drive train topologies and propulsion mechanisms used in EVs
- CO 3. Design energy storage and management strategies for V2G and G2V concepts.
- CO 4. Analyze dynamics of EVs for constant and variable tractive efforts.
- **CO 5. Select** different components and sizes of EVs.
- **CO 6. Design** basic modeling of vehicle dynamics in simulink.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

List of "<u>Additional Courses</u>" to be opted for getting an

(i)'Honours' (by the students of parent department)

(ii) 'Minor Specialization' (by the students of other departments)

These courses will be completed through SWAYAM/ NPTEL / MOOC based learning platforms during V & VII Semesters

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Name of the course	Offered	Course	('ourse Deta	ile	Faculty Mentor
Tunic of the course	By	Duration	Start Date	End Date	Exam Date	I dealty Mentor
Introduction to Smart	итр	9 Waaka	July 20,	Sep 11,	Sep 27,	Dr. H. Singh/
Grid	IIIK	o weeks	2020	2020	2020	Prof. B. Rathore
DC Microgrid and	UTD	9 Waalra	July 20,	Sep 11,	Sep 27,	Prof. S. Kumari
Control System	IIIK	o weeks	2020	2020	2020	
Technologies for Clean			July 20	Sep 11	Sep 27	
and Renewable Energy	IITR	8 Weeks	2020,	2020	2020	Prof. Nipun Gupta
Production			2020	2020	2020	
Introduction to Pobotics	IITM	12 Wooks	July 20,	Oct 9,	Oct 18,	Dr. Vikram
introduction to Robotics	11 1 111	12 WEEKS	2020	2020	2020	
Design of photovoltaic	ПСо	12 Wooks	July 20,	Oct 9,	Oct 18,	Dr. H.M. Dubey/
systems	nsc	12 WEEKS	2020	2020	2020	Prof. R. Sagwal
Lincon System Theory	TITNA	12 Washa	July 20,	Oct 9,	Oct 17,	Prof. A. Patra
Linear System Theory	IIIM	12 weeks	2020	2020	2020	
Semiconductor Devices	IICo	12 Washa	July 20,	Oct 9,	Oct 17,	Prof. Manoj Kumar
and Circuits	IISC	12 weeks	2020	2020	2020	

<u>V Semester</u> <u>List of Courses offered for Honors</u>

List of Courses offered for Minor Specialization

Name of the course	Offered	Course	С	ourse Deta	ils	Faculty Mentor
	By	Duration	Start Date	End Date	Exam Date	
Technologies for Clean And Renewable Energy Production	IITR	8 Weeks	July 20, 2020	Sep 11, 2020	Sep 27, 2020	Prof. Nipun Gupta
Basic Electrical Circuits	IITM	12 Weeks	July 20, 2020	Oct 9, 2020	Oct 18, 2020	Prof. V. Choudhary
Electrical Machines - I	IIT KGP	12 Weeks	July 20, 2020	Oct 9, 2020	Oct 18, 2020	Prof. P. Bansal/ Prof. N. Gupta
Power Electronics	IITD	12 Weeks	July 20, 2020	Oct 9, 2020	Oct 18, 2020	Dr. H.M. Dubey/ Prof. M. Kumar
Power system analysis	IIT KGP	12 Weeks	July 20, 2020	Oct 9, 2020	Oct 18, 2020	Dr. S. Dixit/ Prof. A. Kumari
Control systems	IITM	12 Weeks	July 20, 2020	Oct 9, 2020	Oct 18, 2020	Dr. S. Wadhwani/ Prof. Shaillendra P. Singh
Linear System Theory	IITM	12 Weeks	July 20, 2020	October 9, 2020	Oct 17, 2020	Prof. A. Patra

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Name of the course	Offered	Course	C	course Detai	ls	Faculty Mentor
	By	Duration	Start Date	End Date	Exam Date	
Introduction to Smart	ПТР	8 Wooks	July 20,	Sep 11,	Sep 27,	Dr. H. Singh/
Grid	IIIK	O WEEKS	2020	2020	2020	Prof. B. Rathore
DC Microgrid and	ПТР	8 Wooks	July 20,	Sep 11,	Sep 27,	Prof. S. Kumari
Control System	IIIK	O WEEKS	2020	2020	2020	
Technologies for Clean			July 20	Sen 11	Sep 27	
and Renewable Energy	IITR	8 Weeks	2020, 2020	2020	2020	Prof. Nipun Gupta
Production			2020	2020	2020	
Introduction to Robotics	ПТМ	12 Weeks	July 20,	Oct 9,	Oct 18,	Dr. Vikram
Introduction to Robotics	111111	12 WCCK5	2020	2020	2020	
Design of photovoltaic	IISc	12 Weeks	July 20,	Oct 9,	Oct 18,	Dr. H.M. Dubey/
systems	lise	12 WEEKS	2020	2020	2020	Prof. R. Sagwal
Lineer System Theory	ПТМ	12 Wooks	July 20,	Oct 9,	Oct 17,	Prof. A. Patra
Linear System Theory	IIIM	12 WEEKS	2020	2020	2020	
Semiconductor Devices	IISo	12 Wooks	July 20,	Oct 9,	Oct 17,	Prof. Manoj Kumar
and Circuits	1150	12 WEEKS	2020	2020	2020	

<u>VII Semester</u> <u>List of Courses offered for Honors</u>

Note: Credit for opting a particular NPTEL course will be given only once throughout the tenure of B.Tech. program.

Name of the course	Offered	Course	(Course Deta	ils	Faculty Mentor
	By	Duration	Start Date	End Date	Exam Date	
Introduction to Smart	ПТР	8 Wooks	July 20,	Sep 11,	Sep 27,	Dr. H. Singh/
Grid	IIIK	o weeks	2020	2020	2020	Prof. B. Rathore
DC Microgrid and	ПТР	8 Wooks	July 20,	Sep 11,	Sep 27,	Prof. S. Kumari
Control System	IIIK	O WEEKS	2020	2020	2020	
Electrical		8 Weeks	July 20,	Sep 11,	Sep 27,	Prof. A. Kumari
Distribution System	IITR		2020	2020	2020	
Analysis						
Power System		8 Weeks	July 20,	Sep 11,	Sep 27,	Prof. R. Narvey/
Protection and	IITR		2020	2020	2020	Prof. R. Sagwal
Switchgear						
Computer Aided		12 Weeks	July 20,	Oct 9,	Oct 17,	Dr. S. Dixit/
Power System	IITR		2020	2020	2020	Prof. B. Rathore
Analysis						
Design of	IISc,	12 Weeks	July 20,	Oct 9,	Oct 18,	Dr. H.M. Dubey/
photovoltaic systems	BLR	12 WCCKS	2020	2020	2020	Prof. S. Rajput
Fundamentals of	IJТ	12 Weeks	July 20,	Oct 9,	Oct 17,	Prof. K. Swarnkar/
Electrical	KGP		2020	2020	2020	Prof. N. Gupta
Engineering	NOI					

List of Courses offered for Minor Specialization

Note: Credit for opting a particular NPTEL course will be given only once during the tenure of B.Tech. program.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Syllabus of Mandatory Course Intellectual Property Rights along with the COs

(A Govt. Aided UGC Autonomous Institute NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP)

Electrical Engineering Department

100008: INTELLECTUAL PROPERTY RIGHTS

(Offered by Humanities Department: MC)

		Intellectual Property	Theory	Midterm	Quiz/Assignment	TOTAL	L	Т	Р	С
10	00008	Rights	70	20	10	100	2	-	-	02

COURSE OBJECTIVES

- To acquaint the learners with the basic concepts of Intellectual Property Rights.
- To develop expertise in the learners in IPR related issues and sensitize the learners with emerging issues in IPR and the rationale for the protection of IPR.

UNIT – I: Introduction

Introduction to IPRs, Basic concepts and need for Intellectual Property – Meaning and practical aspects of Patents, Copyrights, Geographical Indications, IPR in India and Abroad. Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

UNIT – II: Intellectual Property Rights

The IPR tool kit, Patents, the patenting process, Patent cooperation treaties: International Treaties and conventions on IPRs, TRIPS Agreement, PCT Agreement, Patent Act of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication Act.

UNIT – III: Intellectual Property Protections

IPR of Living Species, protecting inventions in biotechnology, protections of traditional knowledge, biopiracy and documenting traditional knowledge, Digital Innovations and Developments as Knowledge Assets – IP Laws, Cyber Law and Digital Content Protection. Case studies: The basmati rice issue, revocations of turmeric patent, revocation of neem patent.

UNIT - IV: Exercising and Enforcing of Intellectual Property Rights

Rights of an IPR owner, licensing agreements, criteria for patent infringement. Case studies of patent infringement, IPR – a contract, unfair competitions and control, provisions in TRIPs,

UNIT- V: Role of Patents in Product Development & Commercialization

Recent changes in IPR laws impacting patents and copy rights, intellectual cooperation in the science and allied industry. Patentable and non-patentable research. **Case studies**

References

P.B. Ganguli, Intellectual Property Rights: Unleashing the Knowledge Economy. Tata Mc Graw Hill, 2001.

Steve Smith, The Quality Revolution.1st ed., Jaico Publishing House, 2002.

Kompal Bansal and Praishit Bansal. Fundamentals of IPR for Engineers, 1st Edition, BS Publications, 2012. Prabhuddha Ganguli. Intellectual Property Rights. 1st Edition, TMH, 2012.

R Radha Krishnan & S Balasubramanian. Intellectual Property Rights. 1st Edition, Excel Books, 2012.

M Ashok Kumar & Mohd. Iqbal Ali. Intellectual Property Rights. 2nd Edition, Serial Publications, 2011.

VinodV. Scople, Managing Intellectual Property. Prentice Hall of India PvtLtd, 2012.

Deborah E. Bouchoux. Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets. Cengage Learning, 3rd ed. Edition, 2012.

Prabuddha Ganguli. Intellectual Property Rights: Unleashing the Knowledge Economy. McGraw Hill Education, 2011. Edited by Derek Bosworth and Elizabeth Webster. The Management of Intellectual Property. Edward Elgar Publishing Ltd., 2013.

B.S. Patil, Legal Aspects of Building and Engineering Contracts, 1974. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House

Course Outcomes: At the end of this course, the student will be able to

- 1. Imbibe the knowledge of Intellectual Property and its protection through various laws
- 2. apply the knowledge of IPR for professional development
- 3. develop a platform for protection and compliance of Intellectual Property Rights & knowledge
- 4. create awareness amidst academia and industry of IPR and Copyright compliance
- 5. deliver the purpose and function of IPR and patenting.

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Electrical Drives 130703

Electrical Drives Lab

S. No. Objective of the Experiment

- 1 To perform speed Control of DC shunt motor using single phase Semiconverter
- 2 Perform the operation of single phase full wave controlled rectifier with DC motor load
- 3 Perform and analyze the Non-circulating current mode of three phase dual converter
- 4 To perform and analyze the Circulating current mode of three phase dual converter
- 5 To perform the V/f control of 3-phase Induction Motor using Voltage Source Inverter (VSI).
- 6 Perform and analyze the Open loop speed control of DC Motor using chopper in all four quadrants.
- 7 To operate and perform microcontroller (DSP) based VSI for speed control of 3-phase Induction Motor.
- 8 To perform Speed control of Induction Motor using single phase SCR based regulator
- 9 To perform Speed control of Three phase motor using Three phase SCR based regulator
- 10 Determination of performance and characteristic of single phase SCR full bridge inverter with R load.

(A Govt. Aided UGC Autonomous Institute & NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Electrical Drives Lab 130703 List of Experiments

- Exp.No.1 To perform speed Control of DC shunt motor using single phase Semiconverter
- Exp.No.2 Perform the operation of single phase full wave controlled rectifier with DC motor load
- Exp.No.3 Perform and analyze the Non-circulating current mode of three phase dual converter
- Exp.No.4 To perform and analyze the Circulating current mode of three phase dual converter
- Exp.No.5 To perform the V/f control of 3 phase Induction Motor using Voltage Source Inverter (VSI).
- Exp.No.6 Perform and analyze the Open loop speed control of DC Motor using chopper in all four quadrants.
- Exp.No.7 To operate and perform microcontroller (DSP) based VSI for speed control of 3 phase Induction Motor.
- Exp.No.8 To perform Speed control of Induction Motor using single phase SCR based regulator
- Exp.No.9 To perform Speed control of Three phase motor using Three phase SCR based regulator
- Exp.No.10 Determination of performance and characteristic of single phase SCR full bridge inverter with R load

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

				/0 00 /0			
DE-5 (VIII SEM)	1	130851 Waste to Energy Conversion	08 Weeks	January 18, 2021	03-12-2021	March 21, 2021	Dr. Vijay Bhuria Prof. Punjan
							Dohare
	2	130852 Renewable Energy Engineering: Solar, Wind and Biomass Energy Systems	08 Weeks	January 18, 2021	03-12-2021	March 21, 2021	Dr. Himmat Singh Prof. Rahul
							Sagwal
OC-4 (VIII SEM)	1	900301 Waste to Energy Conversion	8 Weeks	January 18, 2021	March 12, 2021	March 21, 2021	Dr. Vijay Bhuria Prof. Punjan Dohare
	2	900302 Automatic Control	8 Weeks	January 18, 2021	March 12, 2021	March 21, 2021	Dr. Vikram Prof. Shailendra Pratap Singh
OC-5. (VIII SEM)	1	900311 Renewable Energy Engineering: Solar, Wind and Biomass Energy Systems	08 Weeks	January 18, 2021	March 12, 2021	March 21, 2021	Dr. Himmat Singh Prof. Rahul Sagwal
(VIII SEM	2	900312 Non-Conventional Energy Resources	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Prof. Saurabh Kumar Rajput Prof. Nipun Gupta

B. Tech. VIII Semester

(A Govt. Aided UGC Autonomous Institute& NAAC Accredited Institute Affiliated to R.G.P.V., Bhopal MP) Electrical Engineering Department

Nome of the course	Offered	Course	Course R	egistration	Examination	Name of Faculty
Name of the course	By	Duration	Start Date	End date	date	Mentor
The Joy of Computing using Python	IIT Ropar	12 Weeks	January 18, 2021	April 9, 2021	April 24, 2021	Prof. Rahul Sagwal
Introduction to Robotics	IITK	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Prof. A. Patra Dr. Vikram
Linear Dynamical Systems	IIT Mandi	08 Weeks	January 18, 2021	March 12, 2021	March 21, 2021	Prof. SP Singh
Fundamentals of semiconductor devices	IISc, BLR	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Dr. HM. Dubey Prof. Manoj Kumar
Non-Conventional Energy Resources	IITM	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Prof. Vishal Chaudhary Prof. S. kumar Rajput
Power System Dynamics, Control and Monitoring	IIT, KGP	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Dr. S. Dixit Prof. Rahul Sagwal
Sensors and Actuators	IISc, BLR	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Dr. A.K. Wadhwani Prof. AprajitaKumari
Robotics and Control: Theory and Practice	IITR	8 Weeks	January 18, 2021	March 12, 2021	March 21, 2021	Dr. S. Wadhwani Dr. Vikram
Biomedical Signal Processing	IIT, KGP	12 Weeks	January 18, 2021	April 9, 2021	April 24, 2021	Dr. A.K. Wadhwani Prof.PunjanDohare

B. Tech. VIII Semester (Honours)

Note: Credit for opting a particular NPTEL course will be given only once throughout the tenure of B.Tech. program.

B.Tech. VIII Semester(Minor Specialization)

Name of the course	Offered	Course	Course Re	gistration	Examination	Name of Faculty
Ivalle of the course	By	Duration	Start Date	End date	Date	Mentor
Fundamentals of semiconductor devices	IISc	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Dr. HM. Dubey Prof. Manoj Kumar
Power System Engineering	IIT KGP	12 Weeks	January 18, 2021	April 9, 2021	April 24, 2021	Dr. S. Dixit Prof. Rahul Sagwal
Non-Conventional Energy Resources	IITM	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Prof. Vishal Chaudhary Prof.Saurabhkumar Rajput
Fundamental of Power Electronics	IISc	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Dr. HM. Dubey Prof. Manoj Kumar
Principles of Signals and Systems	IITK	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Prof. KuldeepSwarnkar Dr. Vikram
Control engineering	IITM	12 Weeks	January 18, 2021	April 9, 2021	April 24, 2021	Prof. A. Patra Prof.PunjanDohare
Electrical Machines	IITD	12 Weeks	January 18, 2021	April 9, 2021	April 25, 2021	Prof.P.Bansal Prof.Nipun Gupta
Biomedical Signal Processing	IIT KGP	12 Weeks	January 18, 2021	April 9, 2021	April 24, 2021	Dr. A.K. Wadhwani Prof.PunjanDohare

Note: Credit for opting a particular NPTEL course will be given only once throughout the tenure of B.Tech. program.
