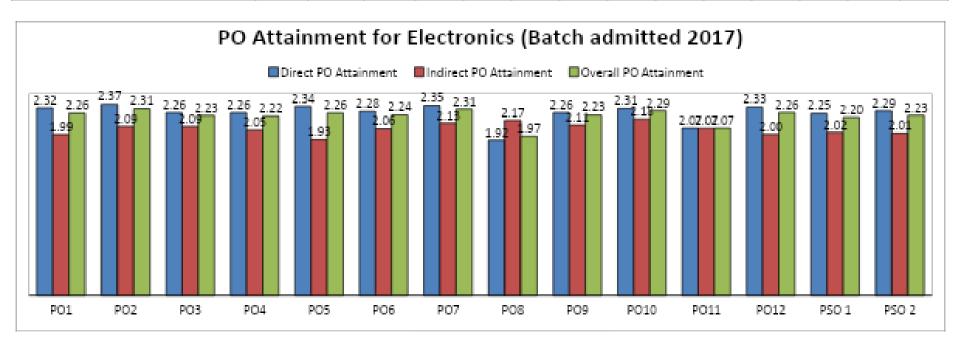
MADHAV INSTITUTE OF TECHNOLOGY AND SCIENCE, GWALIOR


(A Govt. Aided UGC Autonomous & NAAC Accredited Institute, Affiliated to R.G.P.V. Bhopal)

Department of Electronics Engineering

PO Attainment of Year 2020- 21 (For batch admitted in the Year 2017)

1. Summary of Program Outcomes attainments

PO ATTAINMENT	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Direct PO Attainment	2.32	2.37	2.26	2.26	2.34	2.28	2.35	1.92	2.26	2.31	2.07	2.33	2.25	2.29
Indirect PO Attainment	1.99	2.09	2.09	2.05	1.93	2.06	2.13	2.17	2.11	2.18	2.07	2.00	2.02	2.01
Overall PO Attainment	2.26	2.31	2.23	2.22	2.26	2.24	2.31	1.97	2.23	2.29	2.07	2.26	2.20	2.23

2. Assessment of Direct Program Outcomes

Course Name	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
140302/200302 Electronics – I	2.35	2.32	2.35	2.28	2.29	2.34	2.32	2.24	2.33	2.35	2.36	2.36	2.35	2.35
140303 /200303 Digital Circuits And	2.44	2.43	2.84	2.03	1.94	2.48	2.70	1.47	2.84	2.35	2.12	2.33	2.39	2.84
Systems														
140304/200304 Network Theory	2.45	2.47	2.45	2.14	2.24	2.52	2.62		2.66	2.34	2.15	2.45	2.34	2.45
140305/200305 Signals And Systems	2.47	2.59	2.28	2.19	2.48	2.57	2.53		2.45	2.18	2.30	2.29	2.51	2.48
140401/200401 Electronics-II	2.17	2.01	2.08	2.04	2.07	2.29	2.25	1.91	2.17	2.40	1.92	1.86	1.65	2.15
140402/200402 Analog	1.70	1.70	1.80	1.71	1.50	1.50	1.50				1.50	1.50	1.75	1.50
Communication														
140403/200403 Communication	1.91	1.93	1.88	1.86	1.78	1.98	1.72				1.63	1.88	1.81	1.98
Networks														
140404 Electronics Measurement	2.66	2.66	2.71	2.58	2.66		2.82		2.56	2.58	1.94	2.66	2.41	2.17
and Instrumentation														
200404 Stochastic Process	2.62	2.62	2.38	2.62	2.74	2.90	2.90		2.64	2.90	2.28	2.90	2.38	2.62
200503 Microprocessor and	2.40	2.49	2.28	2.38	2.46	2.40	2.58		2.58	2.58	2.26	2.43	2.27	2.20
Interfacing (DC 10)														
140502/ 200502 Electromagnetic	2.50	2.66	2.39	2.49	2.36	2.62	2.70		2.40	2.70	2.17	2.57	2.31	2.39
Fields (DC 9)														

140504/ 200504 Linear Control	2.22	2.22	2.11	2.22	2.00		2.10		1.97	2.22	1.97	2.16	2.03	2.15
Theory (DC 11)														
140505/ 200505 5444EL Digital	1.50	1.50	1.27		1.29	1.36	1.50		1.16			1.29	1.19	1.27
Communication (DC 12)														
140503 Data Communication	2.52	2.52	1.84	2.28	2.80	2.77	2.77		1.82	1.95	1.52	2.47	2.15	2.77
(DC 10)														
140601 Microprocessor and	2.42	2.42	1.82	2.74	2.40	1.83	2.22		1.77	1.81	1.71	2.48	1.80	1.82
Interfacing														
140602 Digital Signal Processing	2.60	2.68	2.35	2.31	2.72	2.68	2.60		2.24	2.25	2.60	2.48	2.72	2.24
200602 Data Communication	2.51	2.83	2.51	2.56	2.83	2.55	2.74			2.51	2.51	2.64	2.57	2.63
140603 Optical Communication	2.11	2.23	2.09		2.34	1.95	1.95		1.94	1.95	1.95	2.11	2.23	2.00
(DE-1)														
140613 Antenna and Wave	2.24	2.24	2.43	2.18	2.18	2.16	2.20	1.72		2.17	2.07	2.41	2.41	2.60
Propagation(DE-1)														
140615 OC-1 (Intelligent Control)	2.04	2.07	2.04	1.90	2.10	1.86	2.16	1.60	1.90	1.93	1.93	2.09	2.16	2.06
140605 OC-1 (Embeded System)	2.27	2.74	2.67	2.27	2.67	2.27			2.27	2.27	2.13	2.74	2.27	2.51
DE-3 Microwave Engineering	2.52	2.65	2.64	2.50	2.72	2.71	2.84		2.65	2.43	2.00	2.51	2.77	2.64
DE-3 Satellite & RADAR	2.32	2.30	2.28	2.30	2.54	2.20	2.20		2.32	2.28		2.32	2.60	2.28
Communication														
DE-3 VLSI Design	2.45	2.30	2.34	2.21	2.66	2.20	2.13			2.20	2.03	2.58	2.58	2.46
Major Project	2.68	2.58	2.76		2.76			2.58	2.58	2.58	2.58	2.76	2.64	2.58

3. Assessment of Indirect Program Outcomes

	PO1	PO2	PO3	РО	PO5	РО	PO7	РО	PO9	PO1	PO1	PO1	PSO 1	
INDIRECT PO ATTAINMENT				4		6		8		0	1	2		PSO 2
(Exit Survey)	2.09	2.21	2.25	2.3	2.21	2.3	2.30	2.3	2.29	2.35	2.30	2.37	2.25	2.22
				0		1		2						
(Alumni Survey)	2.05	2.13	2.12	2.1	1.98	2.2	2.23	2.2	2.21	2.31	2.22	2.31	2.15	2.22
				0		2		9						
(Employer Survey)	1.84	1.93	1.90	1.7	1.61	1.6	1.87	1.8	1.82	1.90	1.68	1.31	1.66	1.58
				4		6		9						
Indirect PO Attainment	1.99	2.09	2.09	2.0	1.93	2.0	2.13	2.1	2.11	2.18	2.07	2.00	2.02	2.01
				5		6		7						

4. Assessment of Overall Program Outcomes

Program Outcome	Direct	Indirect	Total	Target	Gap	Action taken
	attainment	Attainment	attainment	attainme		
	(in Levels)	(in Levels)	(in Levels)	nt level		
PO1	2.32	1.99	2.26	2.2	-0.06	Students are encouraged to
Engineering Knowledge: Apply the knowledge of						learn complex analytical/
mathematics, science, engineering fundamentals, and						mathematicalconcepts and
an engineering specialization to the solution of						apply them in real life
complex engineering problems						problem solving.
PO2	2.37	2.09	2.31	2.2	-0.11	Industrial visits are expected
Problem Analysis: Identify, formulate, review research						to help students to further
literature, and analyze complex engineering problems						

reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						gain knowledge on complex engineering problems.
PO3 Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2.26	2.09	2.23	2.2	-0.03	Students are motivated to include all standard parameters and constraints according to National & International safety norms and to address environmental concerns, while focusing oninnovative designs for their projects.
PO4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2.25	2.05	2.22	2.2	-0.02	Students are motivated to further gain deep knowledge about research in electronics circuits and devices.
Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2.34	1.93	2.26	2.2	-0.06	Students are also encouraged to develop software based projects.
PO6 The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	2.27	2.06	2.24	2.2	-0.04	Industrial visits, tour and some humanities based courses can be added in the curriculum.
PO7 Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	2.35	2.13	2.31	2.2	-0.11	Students are encouraged to indulge in projects, in which global and environmentalissues are improved, with respect to effective electronics circuit

						designing and miniaturization of circuits.
PO8	1.86	2.17	1.97	2.2	0.23	Career readiness program,
Ethics: Apply ethical principles and commit to						corporate lectures and
professional ethics and responsibilities and norms of						motivational talks are
the engineering practice.						arranged for the students.
PO9	2.27	2.11	2.23	2.2	-0.03	Extracurricular activities
Individual and Team work: Function effectively as an individual, and as a member or leader in diverse						such as debates, technical and cultural events will be
teams, and in multidisciplinary settings.						organized for honing
teams, and in materiscipinary settings.						communication skills of
						students while teaching them
						to work as a team.
PO10	2.31	2.18	2.29	2.2	-0.09	Soft skills training is
Communication: Communicate effectively on						imparted to students to
complex engineering activities with the engineering						enhance various aspects
community and with society at large, such as, being						ofcommunication/technical
able to comprehend and write effective reports and						talks by group discussions,
design documentation, make effective presentations, and give and receive clear instructions.						presentations and new learning outcomes.
PO11	2.06	2.07	2.07	2.2	0.13	Awareness is created among
Project management and Finance: Demonstrate	2.00	2.07	2.07	2.2	0.15	the student regarding the
knowledge and understanding of the engineering and						management principles
management principles and apply these to one's own						andmanaging projects
work, as a member and leader in a team, to manage						through webinar, conclave
projects and in multidisciplinary environments.						etc.
PO12	2.33	2.00	2.26	2.2	-0.06	Students are encouraged to
Life-long Learning: Recognize the need for, and have						learn some advanced level
the preparation and ability to engage in independent						courses that have relevance
and life-long learning in the broadest context of						throughout their careers and
technological change.	2.24	2.02	2.20	2.2	0.00	have long term benefits.
PSO1 Graduates will be able to clearly understand the basic	2.24	2.02	2.20	2.2	0.00	Workshops for fundamental of electronics, emerging
concepts and applications in the field of Electronics/						of electronics, emerging technologies, technical
Electronics & Telecommunication Engineering and to						writing, and simulation of
apply them in various areas, like Electronics,						electronic circuits are being
Communications, Signal processing, VLSI, Embedded						organised. More hardware

systems etc., in the design and implementation of complex systems.					based projects are being undertaken.
PSO2 Graduates will be able to formulate, plan, administrate and execute projects in the various field of Electronics/ Electronics Telecommunication Engineering viz. digital and analog electronics, telecommunication and control areas etc.	2.01	2.23	2.2	-0.03	Students are motivated to take up the real life problems during their project work so that they can design, analyze and find solution which gives exposure to latest technologies.