

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत
MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.),
INDIA

Deemed University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Report on Online Faculty Development Programme

On

Emerging Frontiers in Quantum Technology and Communication

(Application Number: 1749121066)

15th Dec. – 20th Dec. 2025

Organized by:

Department of Electronics Engineering,

Madhav Institute of Technology & Science, Gwalior, Deemed University

Website: <https://web.mitsgwalior.in>

Sponsored by

AICTE Training and Learning (ATAL) Academy,
All India Council of Technical Education, New Delhi

Introduction

The Department of Electronics Engineering, Madhav Institute of Technology & Science (MITS), Gwalior, Deemed University, successfully organized a six-day AICTE-ATAL Online Faculty Development Programme (FDP) on "*Emerging Frontiers in Quantum Technology and Communication*" from 15th to 20th December 2025. The programme was conducted in online mode through the AICTE ATAL Academy portal. The FDP was designed to strengthen faculty competence, research orientation, and practical understanding in the rapidly evolving domain of quantum technologies, with a special emphasis on quantum communication, quantum computing, sensing and quantum algorithms.

The key objectives of the FDP were:

- ❖ To introduce fundamental concepts of quantum mechanics relevant to communication system.
- ❖ To explore quantum computing, quantum cryptography, and quantum key distribution (QKD).
- ❖ To familiarize participants with the challenges, opportunities, and future scope of quantum technologies in communication systems.
- ❖ To provide experience and knowledge on quantum simulators and experimental setups.

About the Institute

Madhav Institute of Technology & Science (MITS), Gwalior, established in 1957 by Sir Jiwaji Rao Scindia, is a premier technical institution in India. Declared a Deemed University in 2024 under Distinct Category by Ministry of Education, Government of India and accredited with an A++ grade by NAAC. MITS offers undergraduate, postgraduate, and doctoral programs in various engineering and technology disciplines, including Electronics, Computer Science, Information Technology Electrical, Civil, Mechanical, Chemical Engineering, Architecture, etc. The institute is committed to providing quality education, fostering research, and offering innovative courses to meet global advancements.

About ATAL

AICTE Training and Learning (ATAL) Programme is an initiative by AICTE which aims at empowering faculty to achieve goals of Higher Education such as access, equity and quality. Proposed programme is designed to fulfill the need to train the young generation in the skill sector and having faculty & technicians to be trained in their respective disciplines. It was felt that training with the latest tools and technologies is vital to keeping an institute competitive and productive. Training is required for increasing the knowledge and skills of students to make them more employable to acquire global competencies. It also transforms them to harmonize with society and most importantly to make them good citizen of the country.

Skill Enhancement & Future Readiness Outcomes

- ❖ **Quantum Competence:** Develop a strong foundation in quantum mechanics, qubits, and information theory, enabling analysis and design of next-generation communication systems.
- ❖ **Practical & Computational Proficiency:** Gain hands-on experience with quantum simulators, algorithms, and quantum machine learning tools to bridge theory with real-world applications.

- ❖ **Secure & Intelligent Communication Expertise:** Build expertise in quantum cryptography, QKD, and post-quantum security for secure 6G networks.
- ❖ **Research & Innovation Readiness:** Cultivate future-ready skills and adaptability to lead advancements in quantum research, industry, and emerging communication technologies.

Patrons

Dr. R. K. Pandit, Vice Chancellor, MITS-DU Gwalior.

(Advisory) Committee Members

Dr. Manjaree Pandit, Pro-Vice Chancellor, MITS-DU Gwalior.

Dr. Vimal Bhatia, Professor, EE, IIT Indore.

Dr. Aditya Trivedi, Professor, IT, ABV-IIITM Gwalior.

Dr. G. S. Tomar, Director, Govt. Engg. College, Sonbhadra, UP.

Dr. Y. K. Prajapati, Professor, ECE, MNNIT Allahabad, Prayagraj.

Dr. P. K. Singhal, Professor, Dean, Quality Assurance, MITS-DU Gwalior.

Dr. M. K. Gaur, Professor, Dean Research, MITS-DU Gwalior.

Dr. Laxmi Shrivastava, Professor, HoD, Electronics Engineering, MITS-DU Gwalior.

Coordinator

Dr. Vandana Vikas Thakare

Professor and HoD,

Department of Electronics and Telecommunication Engineering, MITS-DU Gwalior, India

Contact Number: +91- 9479874761

Email: vandana@mitsgwalior.in

Co-Coordinator

Dr. Mukesh Kumar Mishra

Assistant Professor,

Department of Electronics Engineering, MITS-DU Gwalior, India

Contact Number: +91-8889921142

Email: mukeshmishra@mitsgwalior.in

Details of Resource Persons

S.No	NAME, Designation, and Contact Details	Brief Bio
1.	<p>Prof. Arun K. Pati Director, Centre for Quantum Technology, KIIT Bhubaneswar, former Professor of Harish-Chandra Research Institute, Prayagraj Email: akpati@hri.res.in Contact No.8756612314</p>	<p>Prof. Arun K Pati has made many pioneering contributions in the area of Quantum Computation and Quantum Information. He has been working in the area of Quantum Science, Quantum computing and Quantum information over last 35 years. His seminal contributions include the No-Deletion theorem, No-Hiding theorem, No-Masking theorem, Remote State Preparation, and Stronger Uncertainty Relations. His research papers have been featured in Nature, Science, Scientific American and Nature Asia. For his original and creative contributions he has received many awards. This include the Indian Physical Society Award for Young Scientists, Kolkota (1996), Indian Physics Association Award for Young Physicist of the Year, Mumbai (2000), Samanta Chandra Sekhar Award for the year 2009 from the Orissa Science Academy, India and the Distinguished Alumni award from Berhampur University Odisha. He is an elected Fellow of the Indian Academy of Science, Bangalore and also Fellow of the National Academy of Science, Allahabad. He was a J C Bose National Fellow in 2019. He consistently ranks in top 2% Scientists in the world by the Stanford University. He also figures in No 1 position as World's Famous Quantum Information scientists. He is regarded as the Father of Indian Quantum Computing.</p>
2.	<p>Prof. Tharm Ratnarajah Fred Harris Endowed Chair Professor, Dept. of Electrical and Computer Engineering, San Diego State University, USA Email: tratnarajah@sdsu.edu T.Ratnarajah@ieee.org Contact No. 0447904866402</p>	<p>Prof. Tharm Ratnarajah works as a Fred Harris Endowed Chair in Digital Signal Processing at San Diego State University and Director of the Communication Systems and Signal Processing Institute. His research interests include signal processing and information-theoretic aspects of beyond 5G cellular networks, full-duplex radio, mmWave communications, random matrix theory, big data analytics and machine learning for wireless networks, statistical and array signal processing, physical-layer secrecy and interference alignment. He has published over 475 Peer-reviewed papers in these areas and holds four US patents. He was the lead coordinator of the European Union (EU) projects HARP (4.6Me) in the area of highly distributed MIMO and ADEL (3.7Me) in the area of licensed shared access. He was also the coordinator of the European Union Future and Emerging Technologies project CROWN (3.4Me) in the area of cognitive radio networks and HIATUS (3.6Me) in the area of interference alignment. Prof Ratnarajah was an associate editor of IEEE Transactions on Signal Processing, 2015-2017, and Technical co-chair of the 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, Edinburgh, UK, 3-6, July 2016.</p>

		Prof. Ratnarajah is a Fellow of the Higher Education Academy (FHEA).
3.	<p>Dr. Satyendra Kumar Mishra, Associate Professor, Senior Researcher, SRCOM, CTTC, Castedefels Barcelona Spain Email: satyendramishraiitd@gmail.com, satyenda.mishra@cttc.cat Contact No. +34637286649</p>	Satyendra K. Mishra is a Senior Researcher (Associate Professor) at the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), working in the Space and Resilient Communications and Systems unit. With an M.Tech. in Nanotechnology and a Ph.D. in Physics from IIT Delhi, he has held research positions across Hong Kong, the USA, Canada, and Denmark. His work focuses on quantum communication, optical and photonic sensing, fiber-optic devices, and advanced nanomaterials for next-generation communication and sensing systems. He has authored more than 140 scientific publications and serves as an editor for several international journals and conferences, he is the editor of IEEE Sensors Journal, Scientific Reports, and Discover Journals.
4.	<p>Prof. Aditya Trivedi Professor (H), Dept. of IT, ABV-IIITM, Gwalior Email: ativedi@iiitm.ac.in Contact No.9425137999</p>	Prof. Aditya Trivedi is a Professor (HAG) in the Department of Information Technology at ABV-IIITM, Gwalior, India. He holds a PhD from IIT Roorkee and an M.Tech from IIT Kanpur, He is a Senior Member of IEEE. Prof. Trivedi has three decades of academic and research experience. He also held an international academic engagement as a Visiting Faculty at the Asian Institute of Technology (AIT), Bangkok, Thailand (Jan–May 2020). Prof. Trivedi's recent research leadership includes serving as Principal Investigator of a Faculty Initiation Grant (FIG) project (₹1.615 Cr, 2025–2027). The project focuses on developing meaning-aware, semantic learning–driven communication frameworks for next-generation networks. His scholarly contributions include several patents, 60 journal publications, 115 conference papers, and 5 book chapters.
5.	<p>Dr. Bhaskar Kanseri Associate Professor, Dept. of Physics, IIT Delhi, India. Email: bkanseri@physics.iitd.ac.in Contact No.9811026412</p>	Dr. Bhaskar Kanseri is working as IHFC chair professor at Department of Physics and a joint faculty at Optics and Photonics Center (OPC), IIT Delhi. Prior joining IITD, he was postdoctoral fellow at Institut d'Optique, Palaiseau France, and earlier at Max Planck Institute for the Science of Light, Erlangen Germany. He received his PhD from University of Delhi and National Physical Laboratory, New Delhi. His research interests span in optics and photonics, statistical optics, quantum optics, and photonic quantum technologies. He has more than 80 publications in peer-reviewed international journals and about 150 conference presentations and invited lectures in his credit. He has been awarded "Teaching excellence award-2022" and "Veena Arora Early Career Research Award-2022" by IIT Delhi for his teaching and research contributions. In 2023, he has been selected as member of The National Academy of Sciences India (NASI), and Indian National Science Academy (INSA) Associate Fellow. Some of his notable contributions in

		fiber based secure quantum communication are the “first Indian intercity quantum secure communication for 100km” in 2022 and the “trusted node free quantum secure communication for 380km” achieved in 2023. Currently Dr. Kanseri is pioneering entanglement-based quantum network activities at IIT Delhi under National Quantum Mission of India.
6.	Dr. Vivek Venkataraman Associate Professor Dept. of Electrical Engineering, IIT Delhi, India Email: Vivek.Venkataraman@e.iitd.ac.in Contact No.9599251770	Dr. Vivek Venkataraman is currently an Associate Professor in the Department of Electrical Engineering at IIT Delhi with a joint appointment in the Department of Physics. He completed his BTech in 2006 from IIT Delhi, followed by MS+PhD from Cornell University in 2012. He was a postdoctoral fellow and research associate at Harvard University until 2017 before joining IIT Delhi. His research interests and expertise lie in the areas of quantum and non-linear optics, light-matter interaction and atomic physics, fiber-optics & integrated photonics, all-optical devices and novel light sources, optical signal processing and communication.
7.	Dr. Gurmohan Singh Joint Director, CDAC, Mohali Email: gurmohan@cdac.in , Contact No.9417483045	Dr. Gurmohan Singh is a Joint Director & Scientist-E at the Centre for Development of Advanced Computing (C-DAC) in Mohali, specializing in quantum computing and cybersecurity. With over 19 years of experience in research and development, he has made significant contributions to the fields of quantum algorithms, machine learning, and VLSI design. He holds a Ph.D. from NIT Jalandhar with his thesis focused on Quantum-Automata Based Circuits. Dr. Singh has held various key positions at C-DAC making him a pivotal figure in advancing research and innovation at C-DAC. Dr. Singh's research interests include quantum computing, quantum machine learning models, quantum circuit optimization, and quantum applications & use cases development. He has supervised multiple 01 Ph.D. and 50 Master's theses, published more than 60 research papers in reputed journals and conferences, and played an active role in organizing quantum computing workshops and training programs both nationally and internationally. For his exceptional contributions, he received the prestigious Award in 2020 from C-DAC for implementing a high-value project, and his work continues to influence the future of quantum computing and cybersecurity in India.

8.	<p>Mr. Arka Mukherjee Scientist E, CDOT, New Delhi Email: arka@cdot.in, Contact No.8447455338</p>	<p>Arka Mukherjee works as a Scientist 'E' and Team Leader at the Centre for Development of Telematics (C-DOT), India and is responsible for the hardware design aspects of fibre-based quantum key distribution (QKD) systems. He has over 13 years of experience designing embedded hardware for optical access networks and QKD systems. He is a gold medalist in Master of Science (Research) from the Indian Institute of Technology, Delhi. He holds a Bachelor's degree in Electronics and Telecommunication Engineering from Jadavpur University, Kolkata, India. He has authored multiple technical articles in peer-reviewed international journal, technical magazines, and conferences.</p>
9.	<p>Mr. Lakshya Priyadarshi VP Quantum Strategy and Solutions, QpiAI, Pvt. Ltd. Bangalore Email: lakshya.priyadarshi@qpi.ai.tech Contact No.9980724306</p>	<p>Lakshya Priyadarshi is the Vice President of Quantum Platforms and Solutions at QpiAI India Private Limited. At QpiAI, he leads the Quantum Software Platforms and Solutions vertical, overseeing the development of QpiAI's Quantum Computing as a Service (QCaaS) platform and the complete quantum software toolchain for QpiAI Indus and future systems. He manages a team of over 20 scientists and engineers, delivering quantum solutions for industries including pharmaceuticals, life sciences, automotive, manufacturing, financial services, and energy. He has led the development of QpiAI-Quantum, a comprehensive quantum development platform; QpiAI-Opt, an optimization platform applied in the automotive sector; and QpiAI-Pharma, a drug discovery platform deployed by a leading global pharmaceutical company. Lakshya holds a B.Tech. in Computer Science and Engineering from the Institute of Engineering and Technology (IET), Lucknow. He has published 2 research papers and has filed 7 patents in the field of quantum computing.</p>
10.	<p>Ms. Janhavi Hatwar VP Quantum Strategy and Solutions, QpiAI, Pvt. Ltd. Bangalore Contact No.94030 81610</p>	<p>Janhavi Hatwar is a Quantum Algorithms Researcher at QpiAI, specializing in the development and optimization of advanced quantum computing techniques. She holds an MS in Quantum Computing and a BS in Physics with a minor in Data Science Engineering from IISER Bhopal. During her academic journey, she has worked on cutting-edge projects, including implementing quantum factorization using the Quantum Approximate Optimization Algorithm (QAOA) at IIT Bombay and contributing to experimental data analysis at the University of Alberta. Her research on Variational Quantum Factorization (VQF) using QAOA has been accepted for presentation at COMSNETS 2025. Janhavi has been recognized with prestigious fellowships and scholarships such as the MITACS Globalink Research Internship, the CHANAKYA fellowship, and the INSPIRE Scholarship. With a strong background in physics, data science, and algorithm design, she is passionate about advancing the frontier of quantum computing through innovative algorithmic solutions.</p>

Summarized Schedule of FDP 2025-26 Schedule

Day 1 (15-12-2025)	Day 2 (16-12-2025)	Day 3 (17-12-2025)	Day 4 (18-12-2025)	Day 5 (19-12-2025)	Day 6 (20-12-2025)
4:30 PM – 5:00 PM Inauguration Session	-	-	-	-	2.00 PM to 3.30 PM Session 11 * Title: Quantum Computing, Expert: Ms. Janhavi Hatwar, Quantum Algorithm Researcher, (QpiAI Pvt Ltd, Bangalore) Years of Exp.: 10+
5.00 PM to 6.30 PM Session 1 Title: Quantum Information Theory and Computation, Expert: Prof. Arun K. Pati (Harish-Chandra Research Institute, Prayagraj) Years of Exp.: 35+	6.00 PM to 7.30 PM Session 3 Title: Quantum Simulators, Expert: Mr. Lakshya Priyadarshi, VP Quantum Strategy and Solutions, (QpiAI Pvt. Ltd., Bangalore) Years of Exp.:11+	6.00 PM to 7.30 PM Session 5 Title: Quantum Secure Communication: Basic Aspects, Expert: Dr. Bhaskar Kanseri, Associate Professor, IIT Delhi Years of Exp.:15+	6.00 PM to 7.30 PM Session 7 Title: Federated Quantum Learning Aspects, Expert: Prof. T. Ratnarajah Years of Exp.:15+	6.00 PM to 7.30 PM Session 9 Title: Intro. to Quantum Communication over Quantum Networks, Expert: Mr. Ark Mukherjee, Associate Professor, Electrical & Comp. Engg, San Diego State University, USA Years of Exp.: 27+	3.30 PM to 5.00 PM Session 12 Title: Quantum Communication over Telecom Fiber-optic Networks, Expert: Dr. Vivek Venkataraman, Associate Professor, E,(IIT Delhi) CDOT, New Delhi Years of Exp.:13+
6.30 PM to 7.30 PM Session 2 Title: Quantum Machine Learning, Expert: Mr. Lakshya Priyadarshi, VP Quantum Strategy and Solutions, (QpiAI Pvt. Ltd., Bangalore) Years of Exp.:11+	7.30 PM to 9.00 PM Session 4 Title: Future Trends in Quantum Communication, Expert: Prof. Aditya Trivedi, (ABV-IIITM Gwalior) Years of Exp.: 35+	7.30 PM to 9.00 PM Session 6 Title: Quantum Gates to Algorithms, Expert: Dr. Gurmohan Singh (CDAC, Mohali) Years of Exp.: 13+	7.30 PM to 9.00 PM Session 8 Title: Quantum Secure Communication: Some Realisations Expert: Dr. Bhaskar Kanseri, Associate Professor, IIT Delhi Years of Exp.:15+	7.30 PM to 9.00 PM Session 10 Title: Quantum Sensing Materials, Expert: Dr. Satyendra Kumar Mishra, Associate Professor SRCOM, CTTC, Castedefels Barcelona Spain Years of Exp.:12+	5.00 PM to 6.30 PM Session 13 Title: QKD Protocols and QRNG, Expert: Mr. Ark Mukherjee, Scientist E, CDOT, New Delhi Years of Exp.:13+
					6:30PM to 7:30 PM Online Test & Feedback
					7.30 PM to 8.00 PM Valedictory Session

***Note:** Session 11 was originally scheduled to be delivered by Dr. Manjunath R. V., VP – Quantum Hardware, QpiAI Pvt. Ltd., Bengaluru. However, due to unforeseen circumstances at the last moment, the session was conducted by Ms. Janhavi Hatwar, Quantum Algorithm Researcher, QpiAI Pvt. Ltd.

Day-wise Programme Schedule and YouTube Link

Day & Date	Session Title	Resource Person	YouTube Link
Day 1 (15 Dec 2025)	Inauguration Session	—	Inauguration Session and Session1: https://youtu.be/9cAiL4FUIC8
Day 1	Quantum Information Theory and Computation	Prof. Arun K. Pati (HRI Prayagraj)	
Day 1	Quantum Machine Learning	Mr. Lakshya Priyadarshi (QpiAI Pvt. Ltd., Bengaluru)	Session 2: https://youtu.be/SSwD5wOA19A
Day 2 (16 Dec 2025)	Quantum Simulators	Mr. Lakshya Priyadarshi (QpiAI Pvt. Ltd., Bengaluru)	Session 3: https://youtu.be/HvvOzX8ml0o
Day 2	Future Trends in Quantum Communication	Prof. Aditya Trivedi (ABV-IIITM Gwalior)	Session 4: https://youtu.be/JP-iaGxttaM
Day 3 (17 Dec 2025)	Quantum Secure Communication: Basic Aspects	Dr. Bhaskar Kanseri (IIT Delhi)	Session 5: https://youtu.be/w1bbsfSSTAk
Day 3	Quantum Gates to Algorithms	Dr. Gurmohan Singh (CDAC Mohali)	Session 6: https://youtu.be/XKU_0LldPE
Day 4 (18 Dec 2025)	Federated Learning	Prof. T. Ratnarajah (SDSU, USA)	Session 7: https://youtu.be/xMpMwCYP4rE
Day 4	Quantum Secure Communication: Realisations	Dr. Bhaskar Kanseri (IIT Delhi)	Session 8: https://youtu.be/iSevurVSIDk
Day 5 (19 Dec 2025)	Introduction to Quantum Communication	Mr. Arka Mukherjee (C-DOT New Delhi)	Session 9: https://youtu.be/TO510AdzgK8
Day 5	Quantum Sensing Materials	Dr. Satyendra Kumar Mishra (CTTC Barcelona, Spain)	Session10: https://youtu.be/RCNz38OSIMc
Day 6 (20 Dec 2025)	Quantum Computing	Ms. Janhavi Hatwar, (QpiAI Pvt Ltd, Bangalore)	Session 11: https://youtu.be/63varJYup7U
Day 6	Quantum Communication over Telecom Fiber Networks	Dr. Vivek Venkataraman (IIT Delhi)	Session12: https://youtu.be/tWf2yKIB8jw
Day 6	QKD Protocols and QRNG	Mr. Arka Mukherjee (C-DOT New Delhi)	Session13: https://youtu.be/pSCSQABcUFc
Day 6	Online Test, Feedback & Valedictory	—	https://youtu.be/omi4uKJsBuU https://youtube.com/shorts/m0rrd-4vO78

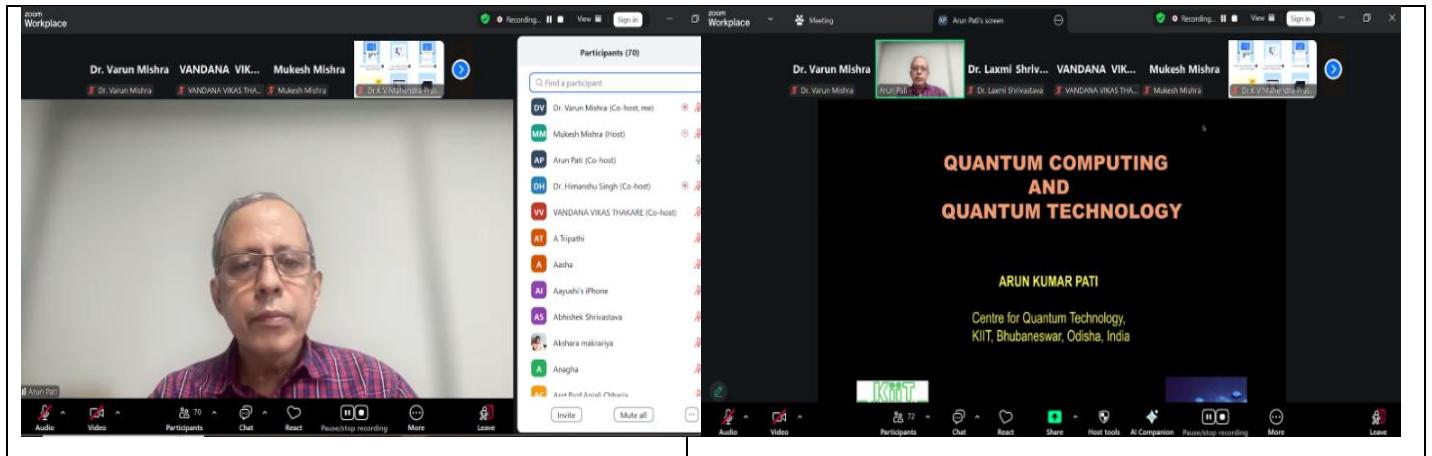
Brief Report on Sessions

1. Report on Inauguration Session

The Inauguration Session of the AICTE-sponsored ATAL Online Faculty Development Programme (FDP) on “*Emerging Frontiers in Quantum Technology and Communication*” was held successfully on 15 December 2025 in online mode. The programme is organized by the Department of Electronics Engineering, Madhav Institute of Technology & Science (MITS), Gwalior, Deemed University, and is scheduled from 15th to 20th December 2025.

The session commenced with a warm welcome to all dignitaries, expert speakers, and participants. The organizing team expressed sincere gratitude to the ATAL Academy for sponsoring this prestigious FDP. Participants were briefed about the online conduct of the programme. Dr. Laxmi Shrivastava, Professor and HoD, Electronics Engineering, introduced the institute, department, and relevance of the ATAL FDP. Subsequently, Dr. Vandana Vikas Thakare, Professor and Head, Department of Electronics and Telecommunication Engineering and FDP Coordinator, formally introduced the FDP, outlining its objectives, structure, and the key quantum technology themes to be covered during the six-day programme. The Co-Coordinator, Dr. Mukesh Kumar Mishra, briefed participants on the expected learning outcomes, expert sessions, and ATAL guidelines related to attendance, assessment, and certification. Participants were informed that the FDP comprises 13 expert sessions, delivered by eminent academicians and industry professionals, with a strong emphasis on conceptual clarity, real-world applications, and emerging research directions. Important rules regarding minimum 80% attendance, mandatory MCQ-based assessment, and minimum 70% qualifying marks for certification were clearly communicated, in accordance with ATAL Academy norms.

The Inauguration Session concluded with a vote of thanks to AICTE-ATAL Academy, the leadership of MITS Deemed University, distinguished resource persons, and all participants. The session seamlessly transitioned to the first expert lecture, delivered by Prof. Arun K. Pati, an eminent expert in quantum science, marking an inspiring beginning to the FDP.



2. Report on Session: 1

Title: Quantum Information Theory and Computation

Expert: Prof. Arun K. Pati (Director, Centre for Quantum Technology, KIIT Bhubaneswar, former Professor of Harish-Chandra Research Institute, Prayagraj)

The first expert lecture of the AICTE-ATAL FDP was delivered by Prof. Arun K. Pati, Director, Centre for Quantum Technology, KIIT Bhubaneswar, former Professor of Harish-Chandra Research Institute, Prayagraj. He highlighted how quantum mechanics enables fundamentally new ways of storing and processing information, distinct from classical systems. Prof. Pati explained the computational advantages of quantum computers and emphasized that quantum information offers inherently stronger security. He concluded by noting that quantum computing and quantum communication will drive the next major technological revolution.

CLASSICAL INFORMATION

- Basic unit of information: 0 or 1
- Present day computers store information on transistors switching between 'on' and 'off' states.
- Two distinct positions refer to 0 or 1 which represent two possible states of a classical bit.
- Perform various tasks according to classical laws of physics.
- Never find in combination of 0 and 1.

First motivation: Moore's Law

By 2030, transistors will need to be about 2nm in size (that is, about 4 atoms across.)

At atomic scale conventional classical physics breaks down. We have to use quantum physics to store and process information.

3. Report on Session: 2

Title: Quantum Machine Learning

Expert: Mr. Lakshya Priyadarshi, VP Quantum Strategy and Solutions, (QpiAI Pvt. Ltd., Bangalore).

Session 2 of Day 1 (15 December 2025) of the AICTE-ATAL Online FDP on *Emerging Frontiers in Quantum Technology and Communication* featured an expert talk on “Quantum Machine Learning” delivered by Mr. Lakshya. The session introduced the fundamentals of quantum machine learning, explaining how quantum computing principles can enhance classical machine learning algorithms. Mr. Lakshya discussed key concepts, potential advantages, and emerging applications of quantum machine learning, along with current challenges and future research opportunities. The talk was insightful and well-received, providing participants with a clear understanding of the role of quantum machine learning in next-generation intelligent systems.

Getting Started with a Qubit

(a) Q-CNN

(b) Q-GAN

(c) Q-Autoencoder

What is Quantum Machine Learning?

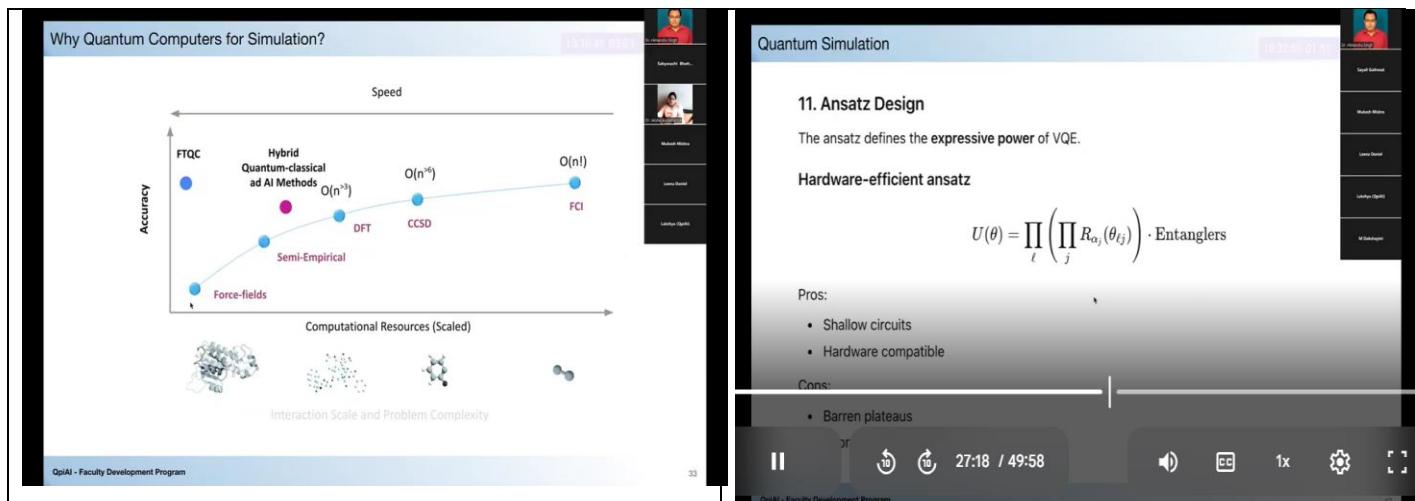
5. Step 2 – Variational Ansatz (Trainable Circuit)

The ansatz introduces learnable parameters θ .

We choose:

$$U(\theta) = R_Y(\theta_1)R_Z(\theta_2)$$

6. Step 3 – Full Quantum Model


$$|\psi_{\text{out}}\rangle = U(\theta)|\psi(x)\rangle$$

Report on Session: 3

Title: Quantum Simulators,

Expert: Mr. Lakshya Priyadarshi, VP Quantum Strategy and Solutions, (QpiAI Pvt. Ltd., Bangalore).

The session 3 provided an overview of quantum simulation techniques and their importance in modeling complex quantum systems that are difficult to study using classical computers. Mr. Priyadarshi discussed key concepts, practical examples, and applications of quantum simulations in areas such as material science, chemistry, and quantum physics, along with current challenges and future research directions. The talk was informative and engaging, enhancing participants' understanding of the role of quantum simulations in advancing quantum technologies.

Report on Session: 4

Session 4: Future Trends in Quantum Communication

Expert: Prof. Aditya Trivedi, (ABV-IIITM Gwalior)

Session 4 of the AICTE-ATAL Online Faculty Development Programme on Emerging Frontiers in Quantum Technology and Communication featured an expert talk on “Future Trends in Quantum Communication” delivered by Prof. Aditya Trivedi, ABV-IIITM Gwalior. The session highlighted emerging trends, enabling technologies, and research challenges in quantum communication systems. Prof. Trivedi discussed advancements in quantum key distribution, secure communication frameworks, and the integration of quantum communication with next-generation networks. The talk provided valuable insights into future research directions and practical deployment challenges. The session was insightful and well-received, enriching participants' understanding of secure and next-generation quantum communication technologies.

Future Trends in Quantum Communication

- **Chip-Scale Quantum Photonics:** Miniaturized quantum transceivers.
- **Quantum Networking Protocols:** Standardization for interoperability.
- **Towards the Quantum Internet:** Secure global communication + distributed quantum computing.

Quantum Algorithms

- **The importance of Shor and Grover Algorithms**
 - Quantum algorithms are intended to model and perform Quantum computation
 - Consists of quantum gates and acts on fixed number of Qubits
 - Inherits quantum effects such as Superposition and Entanglement to perform faster and parallel computations
 - Acts on input qubits and exits on solving a problem
 - Quantum algorithms use Quantum Fourier transform, which is analogous to discrete Fourier transform
 - Examples: Deutsch-Josza, Simon, Shor, Grover, Boson sampling, Fourier fishing and Fourier checking
- **Shor's algorithm** (Prof. Peter Shor of MIT)
 - Solves discrete logarithm problems and integer factorizations in a polynomial time.
- **Grover's algorithm** (Prof. Lov Kumar Grover of Cornell University)
 - Searching unstructured entries on a database for a marked entry and allows faster querying of results.

Report on Session: 5

Title: Quantum Secure Communication: Basic Aspects,

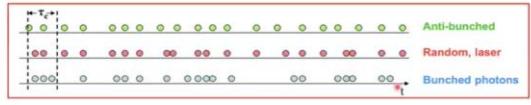
Expert: Dr. Bhaskar Kanseri, Associate Professor, IIT Delhi

Session 5 of the AICTE-ATAL Online Faculty Development Programme on *Emerging Frontiers in Quantum Technology and Communication* featured an expert talk on “Quantum Secure Communication: Basic Aspects” delivered by Dr. Bhaskar Kanseri, Associate Professor, IIT Delhi.

The session covered the fundamental principles of quantum secure communication, including the role of quantum mechanics in ensuring information security. Dr. Kanseri discussed basic concepts such as quantum key distribution, security advantages over classical systems, and foundational protocols. The talk provided a strong conceptual base for understanding secure quantum communication systems. The session was informative and highly appreciated, strengthening participants’ foundational knowledge in quantum security.

Quantum Secure Communication: Basic Aspects

Bhaskar Kanseri


[*bkanseri@physics.iitd.ac.in](mailto:bkanseri@physics.iitd.ac.in)

Experimental Quantum Interferometry and Polarization (EQUIP),
Department of Physics and Optics and Photonics Centre,
Indian Institute of Technology Delhi
Hauz Khas, New Delhi-110016

<http://web.iitd.ac.in/~bkanseri/>

MITs Gwalior, December 16, 2025

Role of Photon Statistics

Anti-bunched	Random, laser	Bunched photons
• $g^{(2)}(0) < 1$	• $g^{(2)}(0) = 1$	• $g^{(2)}(0) > 1$

Bunched Photons

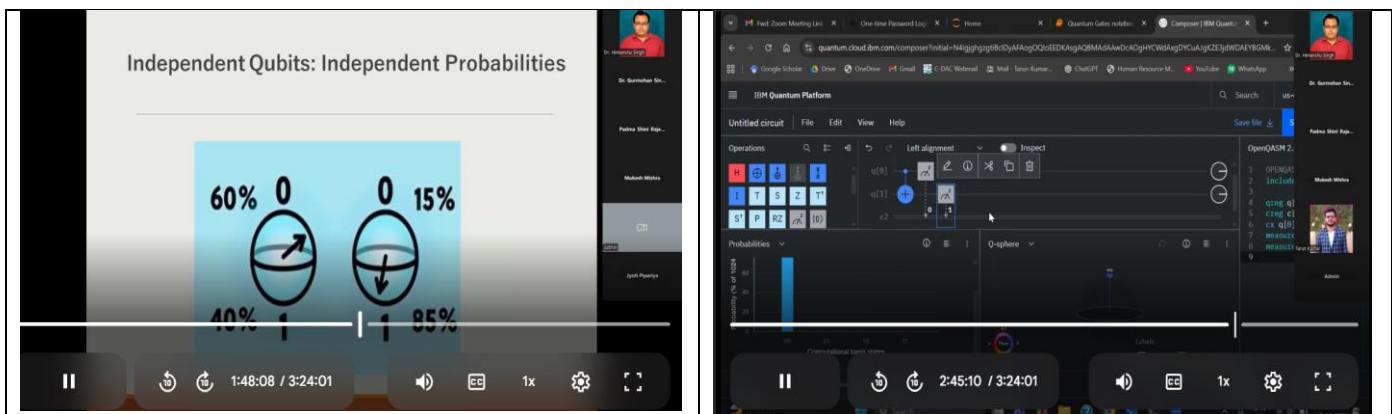
- Thermal Sources
- Chaotic source
- Single line of an arc lamp
- Super-Poissonian
- $g^{(2)}(\tau) = \text{second order correlation function}$
- $g^{(2)}(0) > 1$

Random

- Perfectly coherent laser source
- Photon emission still has fluctuations!
- Poisson distribution
- Semi-classical Picture
- $g^{(2)}(0) = 1$

Anti-Bunched Photons

- **Quantum Light Source**
- No classical analog
- On demand vs. Heralded
- Sub-Poissonian
- Use quantum optics
- Better statistics than laser
- Ultra low noise
- $g^{(2)}(0) < 1$

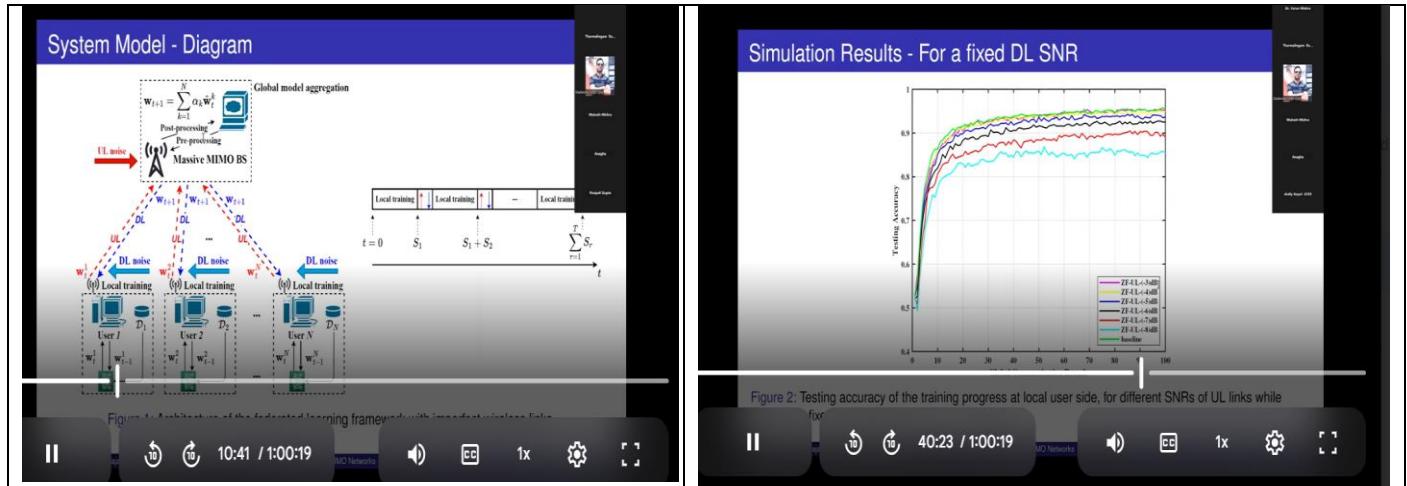

Report on Session: 6

Title: Quantum Gates to Algorithms,

Expert: Dr. Gurmohan Singh (CDAC, Mohali)

The session 6 explained the transition from basic quantum gates to the design of quantum algorithms. Dr. Singh discussed commonly used quantum gates, their role in building quantum circuits, and how these circuits form the basis of quantum algorithms. The session also included a live demonstration on simulating quantum gates using quantum simulators, which helped participants gain practical insights into quantum circuit implementation.

The talk was highly informative and interactive, strengthening participants' conceptual and practical understanding of quantum computing fundamentals.

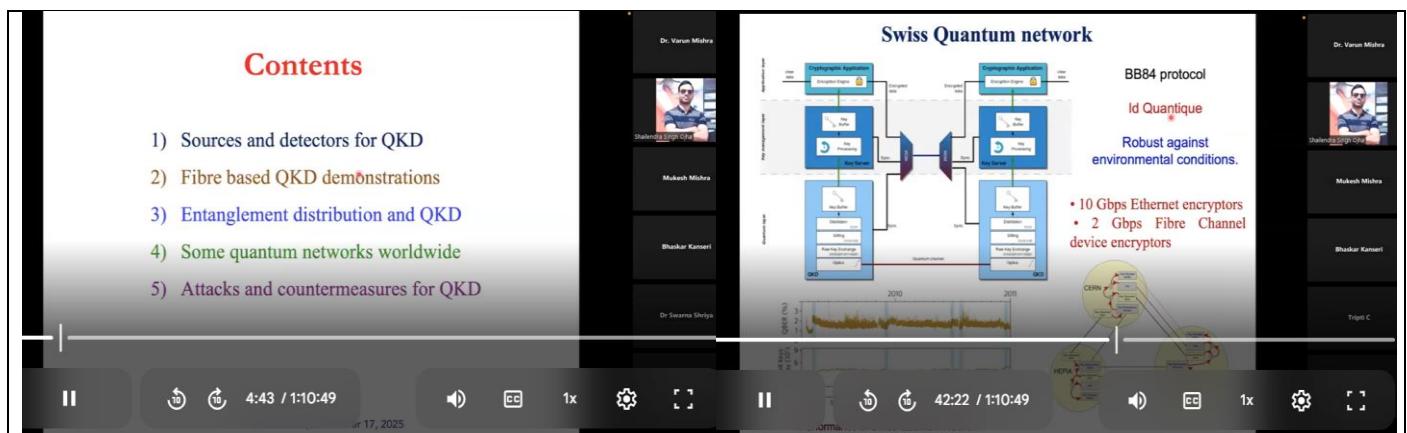

Report on Session: 7

Title: Federated Quantum Learning

Expert: Prof. T. Ratnarajah, Dept of Electrical & Comp. Engg, San Diego State University, USA

Session 7 of the AICTE-ATAL Online Faculty Development Programme on *Emerging Frontiers in Quantum Technology and Communication* featured an expert talk on “Federated Quantum Learning” delivered by Prof. T. Ratnarajah, Department of Electrical & Computer Engineering, San Diego State University, USA.

The session introduced the concept of federated learning in the quantum computing context, highlighting its potential for privacy-preserving and distributed quantum intelligence. Prof. Ratnarajah discussed key frameworks, advantages, and research challenges of federated quantum learning, along with its relevance to next-generation secure and scalable quantum systems. The session was insightful and thought-provoking, offering participants a global perspective on advanced research directions in quantum machine learning and distributed quantum computing.

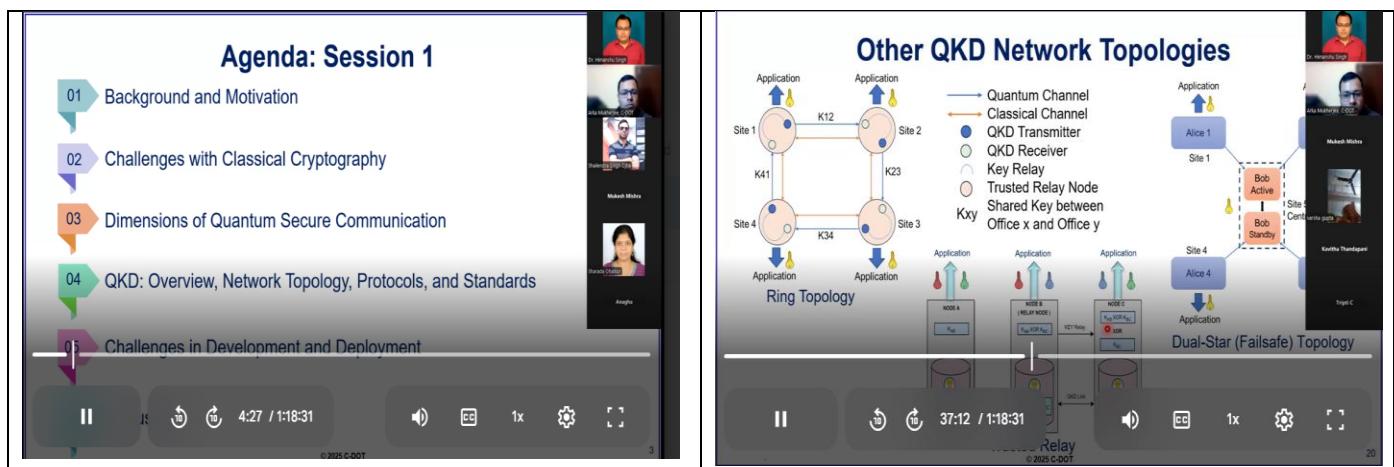

Report on Session: 8

Title: Quantum Secure Communication: Some Realisations

Expert: Dr. Bhaskar Kanseri, Associate Professor, IIT Delhi

Session 8 of the AICTE-ATAL Online Faculty Development Programme on *Emerging Frontiers in Quantum Technology and Communication* featured an expert talk on “Quantum Secure Communication: Some Realisations” delivered by Dr. Bhaskar Kanseri, Associate Professor, IIT Delhi.

The session focused on practical realizations of quantum secure communication systems. Dr. Kanseri discussed experimental setups, implementation aspects, and real-world demonstrations of quantum key distribution and secure quantum links. The talk bridged theoretical concepts with practical deployments, highlighting challenges and recent advancements in quantum security. The session was highly informative, enhancing participants’ understanding of practical quantum secure communication systems.


Report on Session: 9

Title: Intro. to Quantum Communication,

Expert: Mr. Arka Mukherjee, Scientist E, CDOT, New Delhi

Session 9 of the AICTE-ATAL Online Faculty Development Programme on *Emerging Frontiers in Quantum Technology and Communication* featured an expert talk on “Introduction to Quantum Communication” delivered by Mr. Arka Mukherjee, Scientist E, C-DOT, New Delhi.

The session provided a clear introduction to the fundamentals of quantum communication, covering basic principles, system components, and communication protocols. Mr. Mukherjee discussed the relevance of quantum communication in secure information transfer and highlighted ongoing developments and initiatives in the Indian quantum ecosystem. The talk was informative and well-structured, strengthening participants’ foundational understanding of quantum communication technologies.

Report on Session: 10

Title: Quantum Sensing Materials,

Expert: Dr. Satyendra Kumar Mishra, Associate Professor SRCOM, CTTC, Castedefels Barcelona Spain

The session 10 focused on materials and physical principles enabling quantum sensing technologies. Dr. Mishra discussed advanced quantum materials, their sensing mechanisms, and applications in high-precision measurement, imaging, and next-generation sensors. The talk highlighted current research challenges and future opportunities in quantum sensing.

The session was insightful and enriched participants’ understanding of material-driven advances in quantum sensing technologies.

Comparison: DV-QKD vs Entanglement QKD

Feature	Discrete Variable QKD (DV-QKD)	Entanglement-Based QKD
Source Requirement	Weak coherent pulses (WCP) or true single-photon sources	Entangled photon-pair sources (e.g., via Spontaneous Parametric Down-Conversion (SPDC))
Security Basis	Relies on the measurement-disturbance principle; eavesdropping introduces detectable errors	Relies on Bell's theorem violation; eavesdropping breaks entanglement correlations
Satellite Role	Typically acts as a "trusted node," establishing separate keys with ground stations and combining them	Can act as a non-trusted source, distributing entangled pairs to two ground stations directly
Protocol Example	B884, E91, BBM92	

Key Consideration for Satellite Implementation
Entanglement QKD offers advantages in satellite communication by removing the "trusted node" requirement and potentially enabling direct key distribution between distant ground stations.

Satellite as Trusted Node → Satellite as Non-Trusted Source

Introduction

Limitation of optical fibers

(1) They have limitations from the glass materials
(2) Fixed optical properties after fiber drawing

Metasurface

A metasurface is an artificial nanostructured interface that has subwavelength thickness and that manipulates light by spatially arranged meta-atoms, the fundamental building blocks of the metasurface. Those meta-atoms, usually consisting of plasmonic dielectric nanoantennas, can directly change light properties such as phase, amplitude, and polarization.

Integrate advanced nanophotonic technology into optical fibers: Plasmonics , Metasurfaces

- Transmission
- Polarization
- Focus
- Numerical Aperture
- Mode profile

Report on Session: 11

Title: Quantum Computing

Expert: Ms. Jhanavi Hatwar, Quantum algorithm researcher at QpiAI Pvt. Ltd. Bangalore.

Session 11 of the AICTE-ATAL Online Faculty Development Programme on Emerging Frontiers in Quantum Technology and Communication featured an expert talk on “Quantum Computing” delivered by Ms. Jhanavi Hatwar. The session provided an overview of quantum computing fundamentals, including qubits, superposition, entanglement, and quantum circuits. Ms. Hatwar discussed the potential advantages of quantum computing over classical computing, current technological developments, and emerging applications. The talk offered valuable insights into the present status and future prospects of quantum computing. The session was informative and well-received, enhancing participants’ conceptual understanding of quantum computing.

Dr. Varun Mishra MM Mukesh Mishra Janhavi Dr. Sabyasachi...

BLOCH SPHERE

107 117 90°

> 3D Representation

- Any single qubit pure state can be visualized as a point on a Bloch Sphere.
- North pole $|0\rangle$ state
- South pole $|1\rangle$ state
- Equator: Equal superpositions with different phases

> Components

- θ (polar angle): Controls measurement probabilities
- ϕ (azimuthal angle): Controls phase relationship

Dr. Varun Mishra Shally goyal MM Mukesh Mishra Janhavi Dr Nishant Jain

Quantum Computing

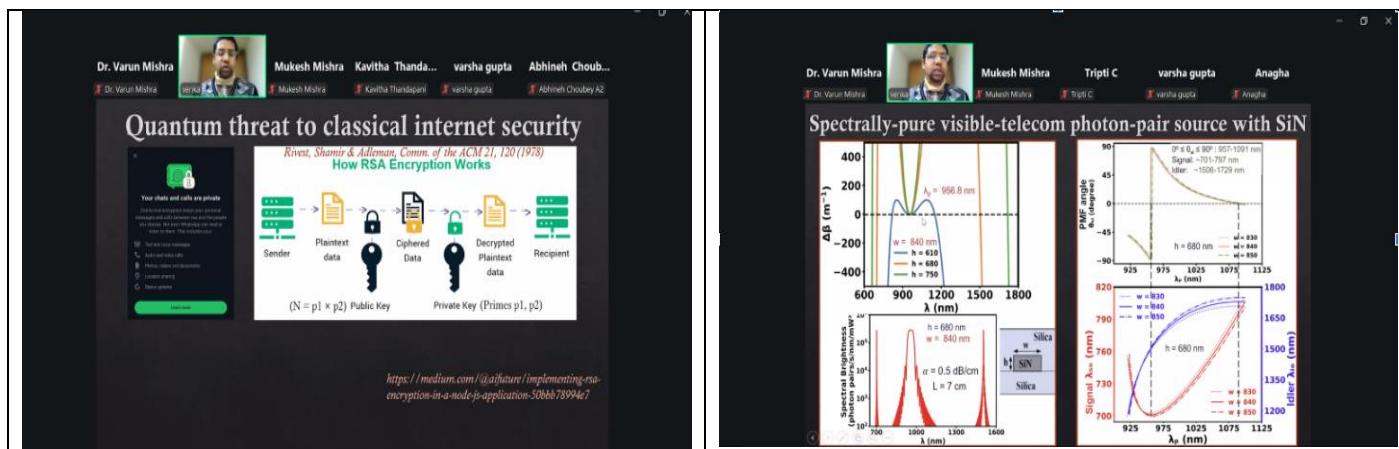
Superposition $|\frac{1}{2}\rangle + |\frac{1}{2}\rangle$

Interference

Entanglement

- Parallel Computation
- Information Storage
- Amplify useful computations
- Strong correlations

Quantum algorithms utilise quantum phenomenon to create exponentially faster or better algorithms.

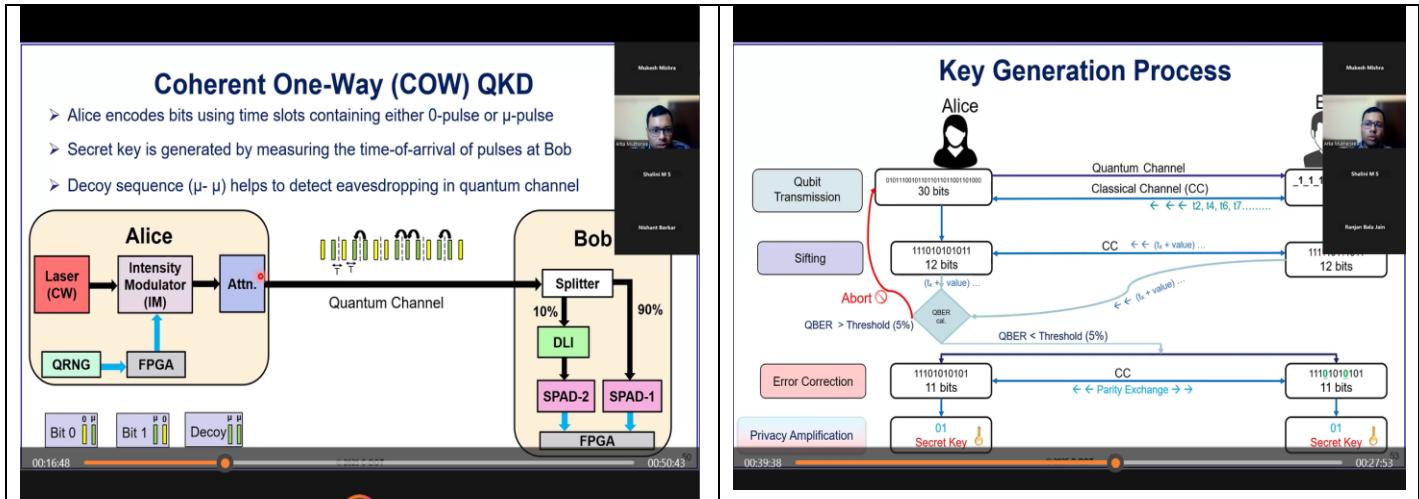

QpiAI

Report on Session: 12

Title: Quantum Communication over Telecom Fiber-optic Networks,
Expert: Dr. Vivek Venkataraman, Associate Professor, (IIT Delhi)

Session 12 of the AICTE-ATAL Online Faculty Development Programme on *Emerging Frontiers in Quantum Technology and Communication* featured an expert talk on “Quantum Communication over Telecom Fiber-Optic Networks” delivered by Dr. Vivek Venkataraman, Associate Professor, IIT Delhi.

The session focused on the implementation of quantum communication systems over existing telecom fiber-optic infrastructure. Dr. Venkataraman discussed system architectures, experimental demonstrations, and key challenges related to loss, noise, and scalability. The talk highlighted the potential of integrating quantum communication with conventional telecom networks for secure communication. The session was highly informative, providing participants with practical insights into real-world quantum communication deployments.


Report on Session: 13

Title: QKD Protocols and QRNG,

Expert: Mr. Arka Mukherjee, Scientist E, CDOT, New Delhi

The session 13 covered key quantum key distribution (QKD) protocols and the principles of quantum random number generation. Mr. Mukherjee discussed the role of QKD in ensuring secure communication and explained practical aspects and applications of QRNG in cryptographic systems. The talk highlighted recent developments and implementation challenges in quantum security technologies.

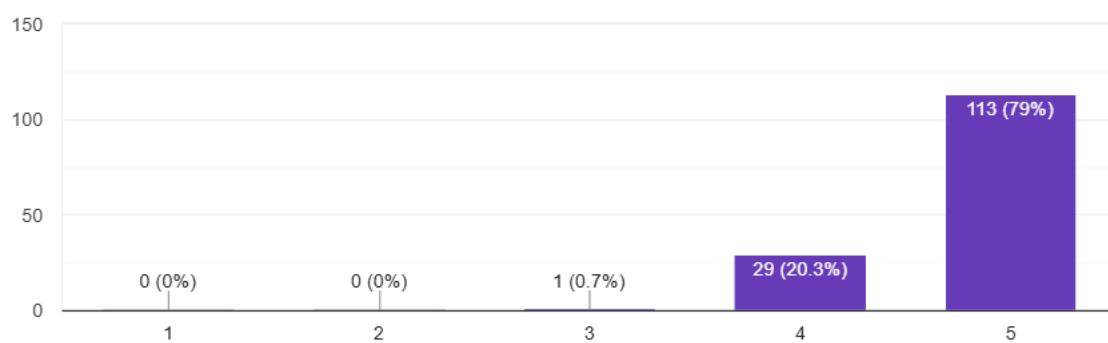
The session was informative and well-received, strengthening participants' understanding of advanced quantum communication and security mechanisms.

Report on Valedictory Session

The Valedictory Session of the AICTE–sponsored ATAL Online Faculty Development Programme (FDP) on “*Emerging Frontiers in Quantum Technology and Communication*” was held successfully on 20 December 2025 in online mode. The six-day FDP was organized by the Department of Electronics Engineering, Madhav Institute of Technology & Science (MITS), Deemed University, Gwalior, during 15–20 December 2025. The session began with a warm welcome to all participants and dignitaries, followed by brief reflections on the successful completion of the FDP. The organizing team highlighted the academic rigor, interdisciplinary coverage, and relevance of the programme in addressing emerging trends in quantum technology and communication systems. The FDP featured **13 expert sessions** delivered by eminent academicians and industry experts, providing deep insights into quantum computing, quantum communication, quantum sensing, and future research challenges.

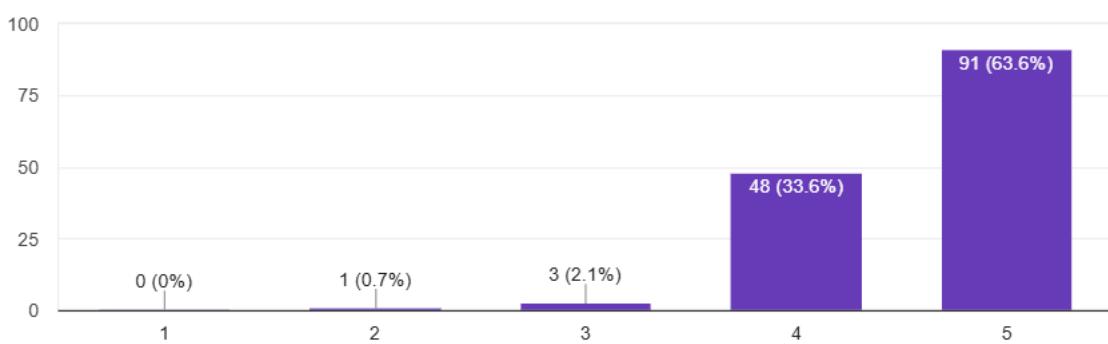
Dr. Vandana Vikas Thakare, FDP Coordinator, expressed sincere gratitude to the **AICTE–ATAL Academy** for sponsoring the programme and to the leadership of **MITS Deemed University** for their constant support. She also appreciated the valuable contributions of all resource persons whose expert lectures enriched the learning experience.

Dr. Mukesh Kumar Mishra, Co-Coordinator of the FDP, summarized the key learning outcomes and acknowledged the active participation, discipline, and enthusiasm shown by the participants throughout the programme. Compliance with **AICTE–ATAL guidelines**, including attendance, assessments, and feedback mechanisms, was also noted. The Valedictory Session concluded with a formal **vote of thanks** to the AICTE–ATAL Academy, expert speakers, organizing committee members, technical team, and participants. The programme ended on an optimistic note, encouraging participants to apply the acquired knowledge in teaching, research, and innovation in the domain of quantum technologies.

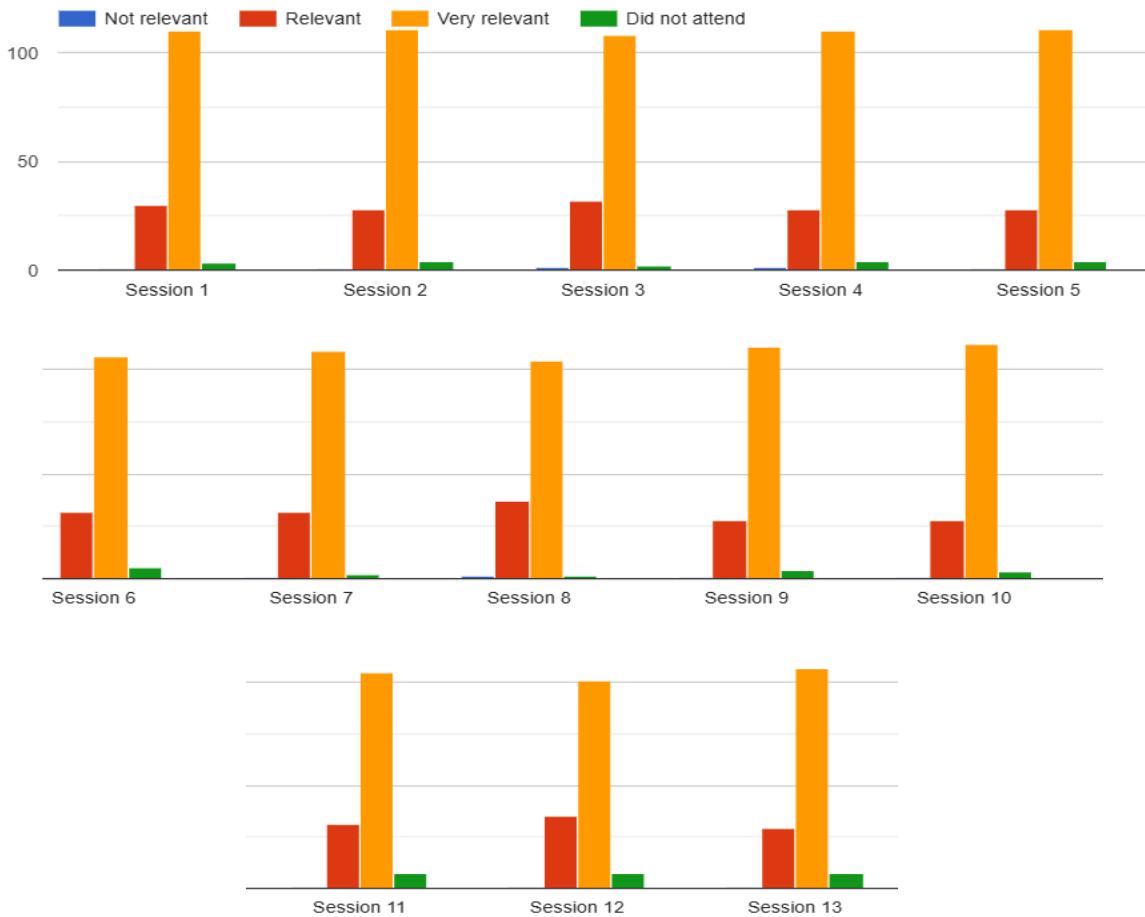

Feedback and Participant Response

The programme received highly positive feedback from participants (The list of successful participants is provided in **Annexure-II**). The sessions were widely appreciated for their clarity, relevance, expert delivery, and strong alignment with emerging research trends and industry requirements. Overall feedback for the FDP was very good, with a satisfactory ratio of **95.4%**. Participants actively engaged in all sessions and interacted meaningfully with the resource persons. The six-day programme comprehensively covered quantum fundamentals, quantum computing algorithms, quantum gates, quantum communication, applications, and emerging research directions in quantum computing and communication.

Feedback from the participants on the entire FDP

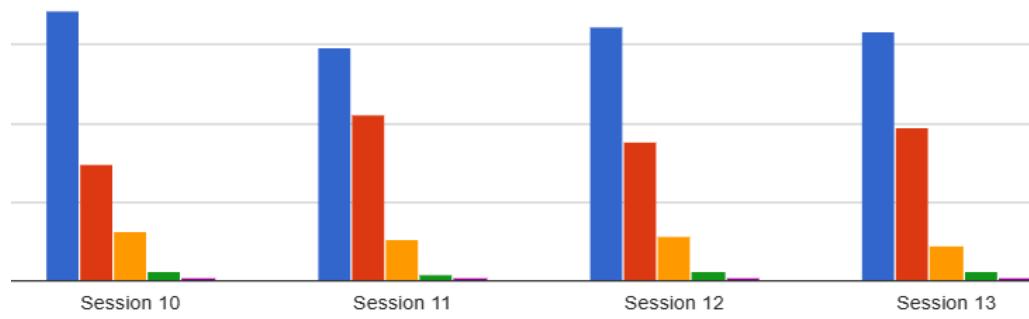

How satisfied were you with the event?

143 responses

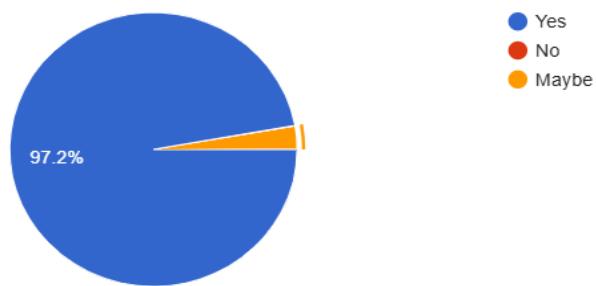


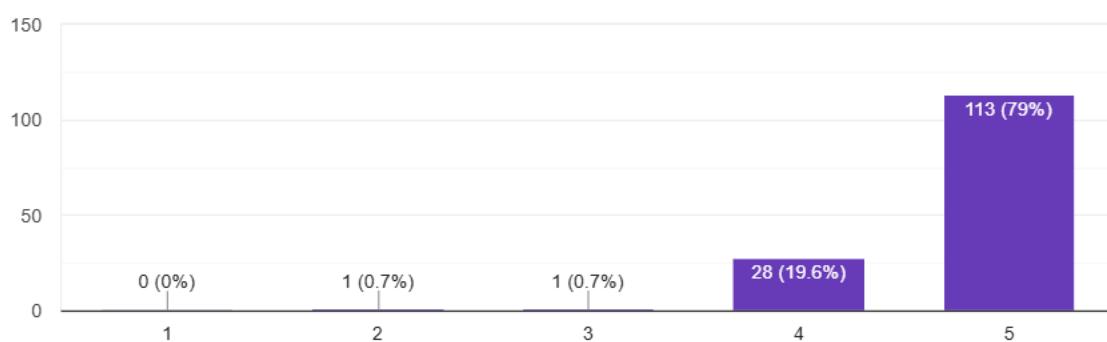
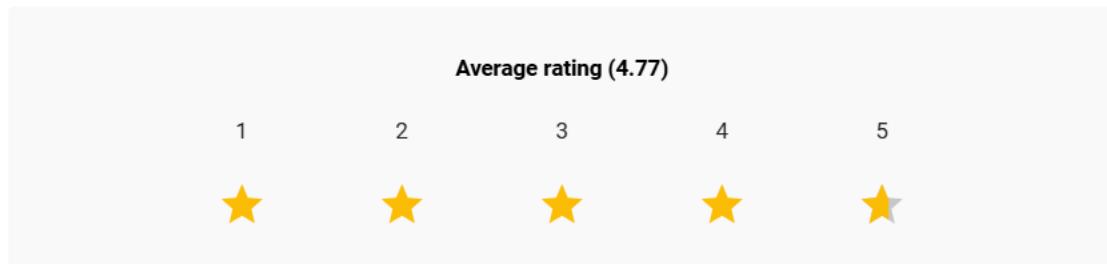
How relevant and helpful do you think it was for your job?

143 responses



Which sessions did you find most relevant?


How was the interactions and discussion handled?

Would you recommend such ATAL FDPs to your colleagues

143 responses

Overall rating of the FDP: (1 is lowest and 5 is highest)

Any additional comments regarding the sessions or overall agenda?

All the FDP are very excellent and helpful for research.

Well organised with expert speakers

Very good

The sessions were well organized, coordinated effectively , the experts were immensely knowledgeable and work presented was impressive. Special thanks to Dr. Mukesh Mishra sir for efficient coordination.

Very excellent

Excellent session are organised

Very well organised and excellent resource persons

THE SESSION WAS VERY INFORMATIVE, IT IS VERY HELPFUL

Informative session and excellent way of organising FDP by Team

Well Organized with the right experts

EXCELLENT SESSIONS

Overall good

Quite well organised and relavent content presented

Quantum Fundamentals

Well organized

I sincerely thank the FDP Coordinator and the entire faculty team for organizing such an informative and well-structured FDP. The sessions were insightful and enriched our knowledge both academically and practically.

Excellent

no

Little more break could have been given

very nicely coordinated and resource persons were appropriately arranged according to the title of FDP

Overall wise experience

Nil

Overall FDP was very well organised. All speakers were really good and knowledgeable.

Important knowledge about application

A Good FDP

Overall all good, but I think these sessions should be done on Saturday and Sunday so that we can involve more

It was nice and informative

Excellent

It will be helpful for future aspects.

Great experience to take part as participants to know about how the world of science and technology emerging in quantum physics

nil

It was quite informative

Excellent sessions

Very well organized sessions

THE ORGANIZERS HAVE GIVEN THEIR BEST TO BRING THIS FDP TO GOOD SUCCESS.

This FDP was informative

All good

If possible share the resources as well

It was well organized

Excellent speakers

Overall Good

Good sessions

Conclusion

The AICTE-ATAL FDP on "*Emerging Frontiers in Quantum Technology and Communication*" was successfully completed as per the approved schedule and guidelines of ATAL Academy. A total of **150 participants** appeared for the FDP quiz, out of which 142 participants successfully met the certification requirement of 70%, resulting in a 94.6% successful completion rate for the FDP.

The programme significantly contributed to capacity building, skill enhancement, and future readiness of faculty members and researchers in the domain of quantum communication and technologies. The organizing team expresses sincere gratitude to **AICTE ATAL Academy**, all esteemed resource persons, institutional leadership, and participants for their valuable support and cooperation in making the programme a grand success.

Annexure 1

List of participants appeared for Quiz conducted for the Certification

Emerging Frontiers in Quantum Technology and Communication

A total of **150 participants** appeared for the FDP quiz, out of which **142 participants successfully met the certification requirement of 70%**, resulting in a **94.6% successful completion rate** for the FDP.

S. No.	Name	Email	Institute Name	Score	Successfully Completed
1.	Dr. Aayushi Gautam	aayushi4march@gmail.com	Chandigarh Group of Colleges, Landran	47 / 50	Yes
2.	Dr. Sumit Dhariwal	sumitdhariwal22@gmail.com	MITS-DU Gwalior	50 / 50	Yes
3.	Neeraj Sharma	sharmaneeraj@akgec.ac.in	Ajay Kumar Garg Engineering College Ghaziabad	50 / 50	Yes
4.	Dr HIMANSHU SINGH	himanshu.iiitj@gmail.com	MITS Gwalior	50 / 50	Yes
5.	GAURAV SHARMA	gauravkh07@gmail.com	Military College of Telecomm. Engineering (MCTE), MHOW	49 / 50	Yes
6.	Nishant Madhukar Borkar	borkarnm1@rk nec.edu	RBU Nagpur	50 / 50	Yes
7.	Shubham Shukla	shu.cool3009@gmail.com	Atal Bihari Vajpayee Indian Institute of Information Technology and Management Gwalior	50 / 50	Yes
8.	NEHA BELWAL	nehabelwal.ece@geu.ac.in	Graphic Era (Deemed to be) University, Dehradun	48 / 50	Yes
9.	Saikumar Tara	tarasaikumar@gmail.com	BVRIT HYDERABAD College of Engineering for Women	49 / 50	Yes
10.	Dr. Harpreet Kaur	harpreet.kaur@thapar.edu	Thapar Institute of Engineering and Technology	50 / 50	Yes
11.	NISHTHA PARASHAR	nishtha2909@gmail.com	AMITY UNIVERSITY GWALIOR	46 / 50	Yes
12.	Roopali Gupta	roopaliakshaygupta@gmail.com	KCC Institute of Technology and Management	50 / 50	Yes
13.	Swarna Shirya	swarnashriya@gmail.com	CM Science College	47 / 50	Yes
14.	Dr. Varun Mishra	varun20mishra@gmail.com	Madhav Institute of Technology and Science (Deemed University)	47 / 50	Yes
15.	Geetika	gmehandiratta_phd18@thapar.edu	Thapar Institute of Engineering and Technology	49 / 50	Yes
16.	SITANSHU KAR	sitanshukar@giit.edu	GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, GUNUPUR,	49 / 50	Yes

			ODISHA		
17.	Dr. Nisha Yadav	nisha@thapar.edu	Thapar Institute of Engineering and Technology	49 / 50	Yes
18.	Shayna bano	banoshayna83@gmail.com	SRIIT	47 / 50	Yes
19.	Dr. Priyanka Singh	priyankaiit22@gmail.com	PDEU Ganshinagar	50 / 50	Yes
20.	Dr. MADHU GOLLA	madhu_g@vnrvjiet.in	VNR Vignana Jyothi Institute of Engineering and Technology	49 / 50	Yes
21.	Anuj Lodhi	anuj.lodhi123@mitsgwalior.in	MITS DU Gwalior	50 / 50	Yes
22.	Dr. Neha Choubey	nehachby2@gmail.com	VIT Bhopal University	50 / 50	Yes
23.	Dr. Akshara Makrariya	aksharahul@gmail.com	VIT BHOPAL UNIVERSITY	50 / 50	Yes
24.	Yogesh Shukla	yogeshparashar4jan@gmail.com	Vit bhopal university	50 / 50	Yes
25.	Dr. Manjul Kumar	manjulkumar@ldrp.ac.in	LDRP Institute of Technology & Research, Gandhinagar	50 / 50	Yes
26.	SANKARA MAHALINGAM M	sankaramahalingam@klu.ac.in	Kalasalingam Academy of Research and Education	48 / 50	Yes
27.	Dr.G.Naga Chandrika	gnchandrika@gmail.com	VNR VJIET	48 / 50	Yes
28.	Dr. Shubhi Jain	shubhijain19@gmail.com	Swami Keshvanand Institute of Technology management and Gramithan	38 / 50	Yes
29.	Dr. Ranjeet Bidwe	ranjeetbidwe@hotmail.com	Symbiosis Institute of Technology, Pune	49 / 50	Yes
30.	K SRAVANKUMARRED DY	kuppamsravankumar@gmail.com	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY, PUTTUR	50 / 50	Yes
31.	SHAILRAJ NARANG	shailraj44@gmail.com	GOVT. POLYTECHNIC KORBA CHHATTISGARH	44 / 50	Yes
32.	Dr Nishant Jain	nishantjain@mitsgwalior.in	Madhav Institute of Technology and Science MITS DU Gwalior	50 / 50	Yes
33.	Dr Maheswari L Patil	navi.maheswari@gmail.com	Sri Krishna Institute of Technology	49 / 50	Yes
34.	Lochan Varshney	varshneylochan@gmail.com	Galgotias College of Engineering and Technology	50 / 50	Yes
35.	Dr. S. Aasha Nandhini	aasha.nandhu@gmail.com	Sri Sivasubramaniya Nadar College of Engineering	49 / 50	Yes
36.	Dr. K. PREMALATHA	snkpremalatha@gmail.com	Kangeyam Institute of Technology, Tiruppur	50 / 50	Yes
37.	SWETHA PINNINTI	swetha_it@vnrvjiet.in	VNR VIGNANA JYOTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY	47 / 50	Yes
38.	SOM SHUVRA MANDAL	shuvrajyoti.ece@gmail.com	TECHNO INTERNATIONAL BATANAGAR	49 / 50	Yes
39.	NAVEEN	naveen133.b@gmail.com	VTU MUDDENAHALLI	49 / 50	Yes

	BEECHIGANIPALLI				
40.	Dr Shally Goyal	sgoyal@gwa.amity.edu	Amity University Madhya Pradesh	46 / 50	Yes
41.	Dr.J.Jayachitra	jayachitraifetit@gmail.com	IFET College of Engineering	50 / 50	Yes
42.	Akanksha Singh	asingh1_phd19@thapar.edu	Thapar Institute of Engineering and Technology	46 / 50	Yes
43.	Dr K Saravanan	ksn.it@rmkec.ac.in	R.M.K Engineering College	49 / 50	Yes
44.	Dr.G.Jenifa	gjenifa@gmail.com	Madanapalle Institute of Technology & Science (Deemed to be University)	50 / 50	Yes
45.	Dr. Neetu Goel	neetu.goel@vips.edu	Vivekananda Nanda Institute of Professional Studies-Technical Campus	49 / 50	Yes
46.	Sheela S Maharajpet	sheelamaharajpet4@gmail.com	Acharya Institute of Technology, Bangalore	50 / 50	Yes
47.	Dr. Velmurugadass Pandiaraj	velmurugadass.p@gmail.com	Kalasalingam Academy of Research and Education	46 / 50	Yes
48.	Kingsy Grace R	kingsydhlas@gmail.com	Sri Ramakrishna Engineering College	48 / 50	Yes
49.	Shubha Chakraborty	shubhac13@gmail.com	The University of Burdwan	47 / 50	Yes
50.	Dr. Arun Kumar	arunkumar.y@srmmap.edu.in	SRM AP	44 / 50	Yes
51.	Santosh Kumar Majhi	smajhi_cse@vssut.ac.in	Guru Ghasidas Viswavidyalaya, Bilaspur	47 / 50	Yes
52.	Rosy Pradhan	rosy.pradhan88@gmail.com	Veer Surendra Sai University Of Technology,Burla,Odisha	45 / 50	Yes
53.	Qudsiya Naaz	qudsiya.parvez@gmail.com	Anjuman college of engineering and technology	50 / 50	Yes
54.	Ranjan Bala Jain	ranjanbala.jain@ves.ac.in	Vivekanand Education Society's Institute of Technology, Chembur Mumbai	50 / 50	Yes
55.	Sayali Raosaheb Gaikwad	sayaliscrcoe@gmail.com	Sheer Ramchandra College of Engineering Wagholi Pune	48 / 50	Yes
56.	Dr Anuj Kumar Jhankal	anujjhankal@yahoo.com	Army Cadet College, Indian Military Academy, Dehradun	45 / 50	Yes
57.	Dr. Sumit Dhariwal	sumitdhariwal22@gmail.com	IMITS-DU Gwalior	48 / 50	Yes
58.	Dr. Vishan Kumar Gupta	vishangupta@gmail.com	Amity University Punjab, Mohali	50 / 50	Yes
59.	Dr. Jonaki Mukherjee	dr.jonaki@arkajainuniversity.ac.in	Arka Jain University	50 / 50	Yes
60.	Dr. Manjul Kumar	manjulkumar@ldr.ac.in	LDRP Institute of Technology and Research	50 / 50	Yes
61.	Chandni Tiwari	chandnitiwari.ece@geu.ac.in	Graphic Era (Deemed to be University)	49 / 50	Yes
62.	Dr. K. Muthumeenakshi	muthumeenakshik@ssn.edu.in	Sri Sivasubramaniya Nadar	50 / 50	Yes

		n	College of Engineering, Kalavakkam, Chennai		
63.	Dr. Asha Kanubhai Patel	asha.patel@ganpatuniversity.ac.in	Department of Computer Science, Ganpat University	50 / 50	Yes
64.	CHAITRA P C	chaitra.pc@christuniversity.in	Christ University	49 / 50	Yes
65.	Dr Pooja Thakar	pooja.thakar@vips.edu	Vivekananda Institute of Professional Studies-Technical Campus	50 / 50	Yes
66.	Dr. Satyam Omar	satyamomar840@gmail.com	Madhav Institute of Technology and Science, Deemed University	49 / 50	Yes
67.	Dr. Halima Sadia	halima@iul.ac.in	Integral University	48 / 50	Yes
68.	Sharada Narsingrao Ohatkar	sharada.ohatkar@cumminscollege.in	MKSSSs, Cummins College of Engineering for Women, Pune	49 / 50	Yes
69.	Krishna Santosh Naidana	krishnasantosh@vrsiddharth.ac.in	Siddhartha Academy of Higher Education	49 / 50	Yes
70.	Ummey Habiba	ummey@iul.ac.in	Integral university	49 / 50	Yes
71.	K HAZEE SHABBEER BASHA	khsb1987@gmail.com	Madanapalle Institute of Technology & Science	47 / 50	Yes
72.	Dr. Nilanjan Mukhopadhyay	nilu.opt@gmail.com	ADAMAS UNIVERSITY	50 / 50	Yes
73.	Radha R	radhar@srmist.edu.in	SRMIST	50 / 50	Yes
74.	SHREENIDHI B S	deepushreenidhi@gmail.com	Dayananda Sagar academy of technology and management	49 / 50	Yes
75.	Roopam Saxena	roopamsaxena.shriram@gmail.com	Shri Ram Institute of Information and technology	49 / 50	Yes
76.	Varsha Gupta	varshag472@gmail.com	SRIIT	50 / 50	Yes
77.	Dr. Leena Daniel	leenadaniel2707@gmail.com	Laxmiपati Institute of Science and Technology Bhopal	47 / 50	Yes
78.	Shailendra Singh Ojha	ssojha20@gmail.com	AKGEC Ghaziabad	49 / 50	Yes
79.	Dr. Rahul Dubey	rahul_nvision87@yahoo.co.in	MITS GWALIOR	49 / 50	Yes
80.	Rajesh Bhaskarla	raajesh6@gmail.com	Vidya Jyothi Institute of Technology	50 / 50	Yes
81.	Dr Rahul Kumar Garg	rahulkumargarg08@gmail.com	University of Engineering & Management Jaipur	50 / 50	Yes
82.	Tripti C	triptic@rajagiritech.edu.in	Rajagiri School of Engineering and Technology	45 / 50	Yes
83.	Dr. Ankita Srivastava	ankitasrivastava1317@gmail.com	Integral University	48 / 50	Yes
84.	Dr. PANEM CHARANARUR	panem.charan@gmail.com	National Forensic Sciences University Goa campus	50 / 50	Yes
85.	SANTOSH KUMAR PENDIMA	sanpendima@gmail.com	Anil Neerukonda Institute of Technology & Sciences (ANITS)	48 / 50	Yes

86.	H VENKATESH KUMAR	venkateshkumar.h@gmail.com	Nagarjuna College of Engineering and Technology	50 / 50	Yes
87.	ANUPAMA K	anupamak@yenepoya.edu.in	YIT	44 / 50	Yes
88.	Sayan De	sayan.de@bcrec.ac.in	BCREC, Durgapur	50 / 50	Yes
89.	Ms. Archana S Pawar	adpmaths@gmail.com	Pravara Rural Engineering college, Loni	43 / 50	Yes
90.	Shalini M S	shalininaveenkumar16@gmail.com	JSS institute of technology and university	46 / 50	Yes
91.	Usha Rani C M	usharanicm.16@gmail.com	JSS Science and Technology University, SJCE, Mysuryu	46 / 50	Yes
92.	Neha Sampat Ghawate	nehaghawate1611@gmail.com	Paravatibai Genba Moze College of Engineering Wagholi Pune	48 / 50	Yes
93.	Geetha Vediappan	geethavediappan93@gmail.com	Centre for Development of Advanced Computing	50 / 50	Yes
94.	Monika Singh	monika.singh@cmrit.ac.in	CMRIT	48 / 50	Yes
95.	Dr. Mahesh Kumar Jha	drmaheshjha04@gmail.com	CMR Institute of Technology(CMRIT), Bangalore	50 / 50	Yes
96.	Vikas Rathi	vikasrathi@geu.ac.in	Graphic Era University	48 / 50	Yes
97.	Aanchal Nagal	nagalaanchal111@gmail.com	Royal Institute Of Management And Advanced Studies	44 / 50	Yes
98.	Jyoti Pipariya	jyotipipariya@gmail.com	Acropolis Institute of Technology and Research, Indore	47 / 50	Yes
99.	CHOKKA SAI VEERA BRAHMA SARASWATHI	gimmy.saraswathi@gmail.com	USHARAMA COLLEGE OF ENGINEERING AND TECHNOLOGY	49 / 50	Yes
100	Dr Nazia Tabassum	nazia22feb@gmail.com	KCC Institute if Technology and Management, Greater Noida	49 / 50	Yes
101	K. Mallikarjuna Raju	kmkraju30@gmail.com	Gokaraju Rangaraju Institute of Engineering and Technology	50 / 50	Yes
102	Dr Gayatri Sakya	gayatrisakya@jssuninoida.edu.in	JSS University Noida	50 / 50	Yes
103	Divyansh Kaushal	divyanshkaushal3200@gmail.com	ABV-IIITM Gwalior	46 / 50	Yes
104	Dr. Sweety Jain	1502sweety@gmail.com	Samrat Ashok Technological Institute	48 / 50	Yes
105	SATENDRA KUMAR BANSAL	satendrabansal87@gmail.com	SHRIRAM INSTITUTE OF INFORMATION TECHNOLOGY BANMORE	36 / 50	Yes
106	Atul Sharma	atul1.phd24@mitsgwl.ac.in	IMITS-DU	49 / 50	Yes
107	Rubina Siddiqui	rubinasiddiqui@acropolis.in	Acropolis Institute of research Technology	46 / 50	Yes
108	Anagha Chougaonkar	anaghachougaonkar@acropo	Acropolis Institute of	48 / 50	Yes

		lis.in	Technology and Research		
109	SUDHIR SINGH RANA	sudhirsinghrana.shriram@gmail.com	S. R. I. I. T. GWALIOR	47 / 50	Yes
110	Pabitra Kumar Ghorai	pabitrakumarghorai@gmail.com	Techno International Batanagar	48 / 50	Yes
111	Dr. R. Hemalatha	hemalathar@ssn.edu.in	Sri Sivasubramaniya Nadar College of Engineering	50 / 50	Yes
112	Moumita Ghosh	moumita.ghosh@christuniversity.in	Christ University	47 / 50	Yes
113	Dr. Prashanth C R	prashanthcr@sjbit.edu.in	SJB Institute of Technology	39 / 50	Yes
114	Rajinder Kumar	rajinderkumar.cse@gmail.com	CBSA CGC Landran	49 / 50	Yes
115	PRINCE	princirana5@gmail.com	University Institute of Engineering and Technology	42 / 50	Yes
116	Dr GORLA VENKATA GANESH	ganesh.gorla@gmail.com	KONERU LAKSHMAIAH EDUCATION FOUNDATION	49 / 50	Yes
117	Rashmi Sachin Tikar	rashmi.phd24@mitsgw.ac.in	MITS,DU, Gwalior	43 / 50	Yes
118	S NYAMATHULLA	nyam.tisinfo@gmail.com	ANNAMACHARYA UNIVERSITY	35 / 50	Yes
119	Dr Abhishek Tripathi	tripathi.abhishek.5@gmail.com	Kalasalingam academy of research and education, Tamil Nadu, India	50 / 50	Yes
120	KANNAN M	Kannanmohanam@gmail.com	Government Polytechnic College , Ezhukone	50 / 50	Yes
121	AARTI DESHPANDE	aarti.deshpande@mitaoe.ac.in	MIT Acedemy of Engineering	49 / 50	Yes
122	Dr Ganesh Chandra	ganesh.iiscgate@gmail.com	Institute of Engineering and Technology, Dr Bhimrao Ambedkar University, Agra	49 / 50	Yes
123	Pradipta Maity	pradipta.maity@gmail.com	Techno International Batanagar	49 / 50	Yes
124	Zab khan	zab29khan@gmail.com	Amity University Gwalior (M.P)	47 / 50	Yes
125	Vanitha T N	vanithatncse@skit.org.in	Sri Krishna Institute of Technology	49 / 50	Yes
126	SIDDHARTHA SUPRASAD MOHANTY	m.siddhartha.suprasad@gmail.com	Guru Ghasidas University	49 / 50	Yes
127	Suman Kumar Laha	suman.laha@tib.edu.in	Techno International Batanagar	48 / 50	Yes
128	Dr. Vipul Dixit	vipul.dixit@bennett.edu.in	Bennett University, Greater Noida	50 / 50	Yes
129	Garima Tripathi	garima@fragnel.edu.in	Fr.Conceicao Rodrigues College of Engineering	50 / 50	Yes
130	Dr. R. Angeline	angelinr1@srmist.edu.in	SRM IST	50 / 50	Yes
131	Deep Kishore Parsadiya	parsediyadeep@gmail.com	Madhav Institute of Technology & Science, Deemed University,	49 / 50	Yes

			Gwalior		
132	Supriya P	supriyap.mel@bmsce.ac.in	Bmsce	49 / 50	Yes
133	SOUVIK ROY	roysouvik.ece@gmail.com	Techno International Batanagar	47 / 50	Yes
134	Dr. M Dakshayini	dakshayini.ise@bmsce.ac.in	B.M.S. College of Engineering	45 / 50	Yes
135	ABHISHEK SHRIVASTAVA	abhishek.shriram07@gmail.com	ShriRam Institute of Information Technology, Banmore	48 / 50	Yes
136	T.J.JEYAPRABHA	jprabha@svce.ac.in	Sri Venkateswara College of Engineering	45 / 50	Yes
137	Jaydeep Singh Parmar	jayparam08@gmail.com	MITS GWALIOR	47 / 50	Yes
138	Dr.Kavitha Thandapani	drkavitha@veltech.edu.in	Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology	49 / 50	Yes
139	Shalinee Pareek	shalineepareek@gmail.com	Jai university	50 / 50	Yes
140	Sanket S Kulkarni	sanketskulkarni95@gmail.com	Christ Deemed to be University Kengeri campus	47 / 50	Yes
141	Dr. Shankaraiah	shankaraiah@sjce.ac.in	SJCE, Mysore	19 / 50	Yes
142	Dr K V Mahendra Prashanth	principal@sjbit.edu.in	SJB Institute of Technology	47 / 50	Yes
143	Dr.ARUNDHATI.S	arundathi.mps@gmail.com	NALLA. MALLA ENGINEERING COLEGE	27 / 50	No
144	Senthil Kumar	angusen@gmail.com	Dayananda Sagar university	8 / 50	No
145	Dr Aniket K Shahade	aniket.shahade11@gmail.com	Symbiosis Institute of Technology, Pune	17 / 50	No
146	MANIRAM RAWAT	maniramrawatmits@gmail.com	ShriRam Institute Of Information technology, Gwalior	16 / 50	No
147	Dr. Sabyasachi Bhattacharyya	sabya005@gmail.com	Barak Valley Engineering College, Sribhumi (Attached to Residential Girls' Polytechnic, Golaghat)	16 / 50	No
148	Urvashi Dubey	urvashi1329@gmail.com	Shriram institute of information technology	13 / 50	No
149	Maria Michael Visuwasam	mariamichaelads@rmkcet.ac.in	Rmk College Of Engineering And Technology	18 / 50	No
150	Anjali Chharia	anjali14chharia.shriram@gmail.com	SRIIT, Banmore	13 / 50	No

Annexure 2

Media Coverage

नाम पात्र रहे हैं देश या समाज विरोधी विदेशी और नेता । अमरावती
प्रधान प्रेस 20, जीवी द्वारा की गयी, द्वारा 7,200 (वाला वाला लिखा गया) मुद्रा 103, 1, पारा 22, अम 350, वाला वाला

दैनिक भारतकर

ववांटम टेक्नोलॉजी से करियर की उड़ान विषय पर कार्यक्रम शुरू

ज्वालियर माधव प्रौद्योगिकी एवं विज्ञान संस्थान डीम्ड विवि के इलेक्ट्रॉनिक्स इंजीनियरिंग विभाग द्वारा एआईसीटीई—प्रायोजित अटल ऑनलाइन फैकल्टी डेवलपमेंट प्रोग्राम (एफडीपी) “ववांटम प्रौद्योगिकी एवं संचार के उभरते आयाम” का शुभारंभ किया गया। कार्यक्रम में कुलपति डॉ. आरके पंडित एवं प्रो. वाइस चांसलर डॉ. मंजरी पंडित मौजूद रहीं।

नव 24 अगस्त 2025 | भू. 21 | अंक 09 | पृष्ठ 12 | मुद्र. 5.00

navbharat.com | बाटों की खबरें | नव भारत

नव भारत

एमआईटीएस में शुरु हुई राष्ट्रीय एफडीपी

नव भारत न्यूज़

व्यालियर, 16 दिसंबर। प्रीयोगिकों पर एमआईटीई अटल एफडीपी का शुभारंभ माधव श्रीयोगिकों एवं विज्ञान संस्थान, डीम्ड विश्वविद्यालय, व्यालियर के इलेक्ट्रॉनिक्स इंजीनियरिंग विभाग द्वारा एमआईटीई-प्रायोगित अटल अॉनलाइन फैकल्टी डेवलपमेंट प्रोग्राम (एफडीपी) 'कलांग प्रीयोगिकों पर नवाचार के उभरते आवास' का विश्व भूमिका किया गया।

यह कार्यक्रम कलापात्र डॉ. आर. के. पौडिंग एवं प्रो.-वाइस चालक डॉ. भूरजी रैंडल के संस्थान, मार्गदर्शन एवं दूरदर्शी नेटवर्क में संचालन की रही है। उद्घाटन सत्र के द्वारा डॉ. लक्ष्मी श्रीवास्तव, विभागाध्यक्ष, इलेक्ट्रॉनिक्स इंजीनियरिंग विभाग ने एमआईटीएस-द्वारा की शैक्षणिक एवं अनुसंधान उपलब्धियों को रेखिकान किया। कार्यक्रम की समर्पणक डॉ. वंदना विकास ताकरे ने सभी अतिथियों एवं प्रतिवादियों का स्वागत करते हुए एफडीपी के उद्घाटन एवं विश्वासन का जनकारी दी। अधिक जानकारी प्रदान करते हुए डॉ. मुकेश कुमार मिश्रा, एफडीपी के सह-समर्पक ने कहा कि यह कार्यक्रम आईआईटी, अंतर्राष्ट्रीय विश्वविद्यालयों, सी-डैक, सी-डॉट तथा अग्रणी उद्योग संस्थानों के विशेषज्ञों को एक मंच पर लाता

है, और इसमें बहावटम सिस्मोलैटर्स, एल्यूरियप तथा भाविय की बाटिम-सक्षम संचार प्रणालीयों पर विशेष समर्थन भी विद्युतीय सत्र देश एवं विदेश के प्रस्तुति विशेषज्ञों द्वारा प्रस्तुत किए जा रहे हैं। डॉटाइट अंतर्राष्ट्रीय सम्मान सिद्धांत एवं संग्रहालय 'विषय पर प्रो. अरुण पर्सी द्वारा किया गया, जिन्हें विश्व रूप से भारतीय लोगों' पर डॉक्टर-न्यूम्बर विदेश का विषय किया गया। अंतर्राष्ट्रीय विशेषज्ञ प्रो. डी. रामराजन ने सेन एंडिपोर्ट संटर्यूनिवर्सिटी, अमेरिका) एवं सॉलेंड कुमार मिश्रा (सोटीटीटीम, वासिलिया, स्ट्रो) क्रमशः 'फैकल्टेट वर्कटेम लार्निंग' एवं 'कलांग प्रीयोगिकों पर व्यालियर डॉ. जबकि आईआईटी डिल्टिंग के डॉ. भास्कर कर्सेरी (बाटिम सुकृति सेंचर) 'विषय की संवेदनाधिक करते हैं। इस कार्यक्रम के उद्देश्य पर अपने अधिकारी से 175 शिक्षकों, शोधकार्यालयों एवं उद्योग धरेवरों की उत्तराध्युमी सहभागिता देखी गई है, जिससे बहावटम प्रीयोगिकों को शेष त्रै में राष्ट्रीय रूप से एक अकादमिक सहयोगी, अनुसंधान सहभागिता एवं नवाचार को मजबूती मिली है।

खबरें

एमआईटीएस में एआईसीटीई- अटल एफडीपी का शुभारंभ

Annexure 3

Quiz Questions with Answer key

S.No.	Question	Answer Key
1.	<p>Q1. Which quantum gate is used to create a superposition state from $0\rangle$?</p> <p>a) Pauli-X gate b) Pauli-Z gate c) Hadamard gate d) CNOT gate</p> <p>Answer: c) Hadamard gate</p>	C
2.	<p>Q2. The Pauli-X gate is equivalent to which classical logic operation?</p> <p>a) AND b) OR c) NOT d) XOR</p> <p>Answer: c) NOT</p>	C
3.	<p>Q3. Which gate flips the qubit and also introduces a phase change?</p> <p>a) Pauli-X b) Pauli-Y c) Pauli-Z d) Hadamard</p> <p>Answer: b) Pauli-Y</p>	B
4.	<p>Q4. The CNOT gate performs which operation?</p> <p>a) Flips both qubits b) Flips target qubit always c) Flips target qubit if control qubit is $1\rangle$ d) Creates superposition</p> <p>Answer: c) Flips target qubit if control qubit is $1\rangle$</p>	C
5.	<p>Q5. Which quantum gate is its own inverse?</p> <p>a) Pauli-X b) Hadamard c) Pauli-Z d) All of the above</p> <p>Answer: d) All of the above</p>	D
6.	<p>Q6. Which property must all quantum gates satisfy?</p> <p>a) Linearity b) Reversibility c) Unitarity d) All of the above</p> <p>Answer: d) All of the above</p>	D
7.	<p>Q7. Which of the following is a widely used open-source quantum simulator developed by IBM</p> <p>B</p> <p>a) Cirq b) Qiskit</p>	B

	c) Forest d) Strawberry Fields Answer: b) Qiskit	
8.	Q8. IBM Quantum Composer is primarily used for? a) Designing classical logic circuits b) Writing quantum programs only in Q# c) Graphical design and simulation of quantum circuits d) Quantum hardware fabrication Answer: c) Graphical design and simulation of quantum circuits	C
9.	Q9. Which of the following gates can be directly applied using IBM Quantum Composer? a) Classical AND gate b) Toffoli gate c) Hadamard gate d) All of the above Answer: c) Hadamard gate	C
10.	Q10. Which interface does IBM Quantum Composer provide to users? a) Command-line interface b) Text-only coding interface c) Drag-and-drop graphical interface d) Hardware control interface Answer: c) Drag-and-drop graphical interface	C
11.	Q11. Which quantum algorithm provides a speed-up for searching an unsorted database? a) Shor's algorithm b) Deutsch–Jozsa algorithm c) Grover's algorithm d) Simon's algorithm Answer: c) Grover's algorithm	C
12.	Q12. Shor's algorithm is mainly used for: a) Database search b) Solving linear equations c) Integer factorization d) Random number generation Answer: c) Integer factorization	C
13.	Q13. The security of BB84 protocol is based on: a) Computational hardness b) Quantum no-cloning theorem and measurement disturbance c) Classical encryption d) Shared secret key Answer: b) Quantum no-cloning theorem and measurement disturbance	B
14.	Q14. In BB84, how many polarization bases are used for encoding qubits? a) One b) Two c) Three d) Four Answer: b) Two	B
15.	Q15. Quantum sensing achieves higher sensitivity mainly by exploiting:	D

	<p>a) Classical signal amplification b) Thermal noise c) Error correction codes d) Quantum superposition and entanglement Answer: d) Quantum superposition and entanglement</p>	
16.	<p>Q16. Which of the following is a common application of quantum sensing?</p> <p>a) Magnetic field measurement using NV centers b) Database optimization c) Email encryption d) Quantum key distribution Answer: a) Magnetic field measurement using NV centers</p>	A
17.	<p>Q17. Quantum random number generators rely on:</p> <p>a) Algorithmic randomness b) Pseudo-random sequences c) Pre-stored random tables d) Intrinsic quantum randomness from measurement outcomes Answer: d) Intrinsic quantum randomness from measurement outcomes</p>	D
18.	<p>Q18. Which physical process is commonly used in QRNGs?</p> <p>a) Clock jitter b) Single-photon detection at a beam splitter c) Thermal noise d) Hash functions Answer: b) Single-photon detection at a beam splitter</p>	B
19.	<p>Q19. Which technology is directly threatened by Shor's algorithm?</p> <p>a) Symmetric key cryptography b) Public-key cryptography (RSA, ECC) c) QKD d) QRNG Answer: b) Public-key cryptography (RSA, ECC)</p>	B
20.	<p>Q20. Which statement is TRUE regarding QKD and QRNG?</p> <p>a) QKD distributes keys securely, while QRNG generates true random numbers b) QRNG requires pre-shared keys c) Both depend on computational complexity d) Both replace classical networks completely Answer: a) QKD distributes keys securely, while QRNG generates true random numbers</p>	A
21.	<p>Q21. What does quantum superposition imply?</p> <p>a) A qubit can exist only in state $0\rangle$ b) A qubit switches rapidly between $0\rangle$ and $1\rangle$ c) A qubit can exist in a linear combination of $0\rangle$ and $1\rangle$ d) A qubit always collapses to $1\rangle$ Answer: c) A qubit can exist in a linear combination of $0\rangle$ and $1\rangle$</p>	C
22.	<p>Q22. Which experiment best demonstrates the principle of quantum superposition?</p> <p>a) Bell's inequality experiment b) Photoelectric effect c) Quantum teleportation</p>	D

	d) Double-slit experiment Answer: d) Double-slit experiment	
23.	Q23. Quantum entanglement means that: a) Qubits behave independently b) Measurement outcomes are always predictable c) The state of one qubit depends on another, even at a distance d) Qubits lose coherence instantly Answer: c) The state of one qubit depends on another, even at a distance	C
24.	Q24. Which of the following is an advantage of quantum secure communication over classical cryptography? a) Higher data transmission rate b) Lower hardware cost c) Immunity to noise d) Security based on physical laws rather than computational complexity Answer: d) Security based on physical laws rather than computational complexity	D
25.	Q25. Entanglement-based QKD protocols mainly rely on which principle? a) Violation of Bell's inequality b) Heisenberg uncertainty principle c) Quantum superposition only d) Classical correlation Answer: a) Violation of Bell's inequality	A
26.	Q26. Which quantum principle ensures that an eavesdropper's presence increases the Quantum Bit Error Rate (QBER)? a) Heisenberg uncertainty principle b) Quantum entanglement c) Quantum superposition d) Quantum teleportation Answer: a) Heisenberg uncertainty principle	A
27.	Q27. Which operation is essential to convert a computational basis state into an equal superposition of all basis states in an n-qubit system? a) Phase gate on one qubit b) Hadamard gate on each qubit c) CNOT on adjacent qubits d) Pauli-X on all qubits Answer: b) Hadamard gate on each qubit	B
28.	Q28. Why does measuring one qubit of an entangled pair instantaneously define the state of the other qubit? a) Information travels faster than light b) The qubits exchange signals c) They are classically correlated d) The joint quantum state is non-separable Answer: d) The joint quantum state is non-separable	D
29.	Q29. Which statement correctly distinguishes classical correlation from quantum entanglement a) Classical correlation violates Bell's inequality b) Entanglement produces correlations unexplained by local hidden variables c) Quantum entanglement exists only at short distances	B

	d) Classical correlation is stronger than entanglement Answer: b) Entanglement produces correlations unexplained by local hidden variables	
30.	Q30. In BB84 protocol, what is the main purpose of basis reconciliation (sifting)? a) To keep only bits measured in the same basis b) To amplify privacy c) To encrypt the key d) To remove noise completely Answer: a) To keep only bits measured in the same basis	A
31.	Q31. Why is a classical communication channel required in QKD protocols? a) To transmit quantum states b) To generate randomness c) To synchronize photon sources d) To perform basis comparison and error correction Answer: d) To perform basis comparison and error correction	D
32.	Q32. Which of the following attacks exploits imperfections in practical QKD hardware rather than quantum theory itself? a) Intercept–resend attack b) Photon-number-splitting attack c) Basis mismatch attack d) Side-channel attack Answer: d) Side-channel attack	D
33.	Q33. The main objective of Quantum Machine Learning is to: a) Replace classical machine learning completely b) Reduce dataset size using quantum compression c) Leverage quantum computation to accelerate or enhance learning tasks d) Implement neural networks on quantum hardware only Answer: c) Leverage quantum computation to accelerate or enhance learning tasks	C
34.	Q34. Which quantum property is most commonly exploited in QML to represent high-dimensional data efficiently? a) Quantum tunneling b) Quantum superposition c) Decoherence d) Measurement collapse Answer: b) Quantum superposition	B
35.	Q35. Variational Quantum Circuits (VQCs) are trained by: a) Pure quantum backpropagation b) Exhaustive search c) Quantum annealing d) Hybrid quantum–classical optimization loops Answer: d) Hybrid quantum–classical optimization loops	D
36.	Q36. Which classical ML model is most closely analogous to a Quantum Support Vector Machine (QSVM)? a) Decision Tree b) Naïve Bayes c) k-Means Clustering d) Support Vector Machine	D

	Answer: d) Support Vector Machine	
37.	<p>Q37. Which challenge significantly limits near-term QML implementations on NISQ devices?</p> <p>a) Lack of quantum algorithms b) Infinite training time c) Excessive data availability d) Noise and decoherence</p> <p>Answer: d) Noise and decoherence</p>	D
38.	<p>Q38. The “barren plateau” problem in QML refers to:</p> <p>a) Hardware failure b) Exponential growth of qubits c) Vanishing gradients during training of variational circuits d) Measurement errors</p> <p>Answer: c) Vanishing gradients during training of variational circuits</p>	C
39.	<p>Q39. Which type of learning task is most commonly demonstrated using QML today?</p> <p>a) Reinforcement learning b) Regression c) Binary classification d) Time-series forecasting</p> <p>Answer: c) Binary classification</p>	C
40.	<p>Q40. Which library is widely used for implementing hybrid quantum-classical ML models?</p> <p>a) Scikit-learn b) TensorFlow only c) Cirq only d) PennyLane</p> <p>Answer: d) PennyLane</p>	D
41.	<p>Q41. One of the major future goals of quantum communication research is to:</p> <p>a) Replace classical networks entirely b) Eliminate the need for encryption c) Develop a global quantum internet d) Increase classical bandwidth only</p> <p>Answer: c) Develop a global quantum internet</p>	C
42.	<p>Q42. Quantum repeaters are essential for long-distance quantum communication because they:</p> <p>a) Amplify quantum signals b) Store classical keys c) Reduce computational cost d) Overcome photon loss and decoherence</p> <p>Answer: d) Overcome photon loss and decoherence</p>	D
43.	<p>Q43. The integration of quantum communication with 6G networks is mainly aimed at:</p> <p>a) Providing ultra-secure and resilient communication services b) Replacing classical modulation c) Increasing data rate only d) Reducing network latency to zero</p> <p>Answer: a) Providing ultra-secure and resilient communication services</p>	A
44.	<p>Q44. Which future application relies heavily on both quantum communication and quantum information mechanics?</p>	D

	<p>a) Classical cloud computing b) Blockchain mining c) Conventional IoT networks d) Distributed quantum computing Answer: d) Distributed quantum computing</p>	
45.	<p>Q45. In future quantum networks, entanglement swapping will primarily be used to:</p> <p>a) Generate random numbers b) Extend entanglement over long distances c) Perform error correction d) Encode classical data Answer: b) Extend entanglement over long distances</p>	B
46.	<p>Q46. Advances in quantum information mechanics are expected to contribute to:</p> <p>a) Classical encryption algorithms b) Better understanding and control of entanglement and decoherence c) Faster classical processors d) Elimination of measurement uncertainty Answer: b) Better understanding and control of entanglement and decoherence</p>	B
47.	<p>Q47. In quantum information mechanics, a qubit is mathematically represented as:</p> <p>a) A real-valued vector b) A probability distribution c) A normalized vector in a complex Hilbert space d) A Boolean variable Answer: c) A normalized vector in a complex Hilbert space</p>	C
48.	<p>Q48. Which operation preserves the total probability of a quantum state?</p> <p>a) Measurement b) Projection c) Unitary transformation d) Partial trace Answer: c) Unitary transformation</p>	C
49.	<p>Q49. The von Neumann entropy is a measure of:</p> <p>a) Classical uncertainty b) Quantum coherence c) Energy dispersion d) Quantum information content / mixedness Answer: d) Quantum information content / mixedness</p>	D
50.	<p>Q50. Quantum mutual information quantifies:</p> <p>a) Measurement error b) Energy exchange c) Only entanglement d) Total correlations (classical + quantum) between subsystems Answer: d) Total correlations (classical + quantum) between subsystems</p>	D