

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत

(Declared under Distinct Category by Ministry of Education, Government of India)

NAAC ACCREDITED WITH A++ GRADE

Department of Electronics Engineering

LECTURE PLAN

Name of Course with Code:
Linear Control Theory (14242105)

Class: B. Tech. IInd Year

Session: July-December 2025

Teaching	Content to be Covered	CO's	Blooms	%	Mode
Session				Coverage	
			Level		
			(BL)		
1.					
	Basic control system terminology	CO1	L2	2.9%	Blackboard Teaching
2.					
	Open-loop and closed-loop systems	CO1	L3	2.9%	Blackboard Teaching
3.					
	Feedback control and its	201		2.00/	
4.	significance	CO1	L4	2.9%	Online
4.	Feedback control and its significance	604		2.00/	Disable and Tasakins
5.	Modeling of physical mechanical systems Transfer function of linear	CO1	L5	2.9%	Blackboard Teaching
3.	systems	CO1	L4	2.9%	Plackboard Toaching
6.	•	001	L4	2.9%	Blackboard Teaching
0.	Block diagram algebra and signal flow	604		2.00/	District Transition
7.	graphs Effects of negative feedback on system	CO1	L2	2.9%	Blackboard Teaching
7.	behavior	CO1	L3	2.9%	Online
8.	Time response of first-order and second-	CO2		2.370	
	order systems		L3	2.9%	Blackboard Teaching
9.		CO2			
	Steady-state error and error constants		L2	2.9%	Blackboard Teaching
10		CO2			
	Time response specifications (Type 0, 1,				
1.1	and 2 systems)		L3	2.9%	Group-based Learning
11	Steady-state error and error constants	CO2	L5	2.9%	Blackboard Teaching
12	Impact of adding poles and zeros on the	CO2		2.570	S.ackboard reddining
	response		L3	2.9%	Online
13	Concept and importance of system	CO3			Learning through
	stability		L1	2.9%	Experimentation
14		CO3		2.001	D
1 5	stability Chalcility is polation to alread least pale.	603	L4	2.9%	Blackboard Teaching
15	Stability in relation to closed-loop pole locations	CO3		2.9%	Blackboard Teaching
	iocations		L1	2.9%	Diackboard reactiffig

16	Stability in relation to closed-loop pole locations	CO3	L2	2.9%	Blackboard Teaching
17	Routh-Hurwitz stability criterion and	CO3			
	applications		L4	2.9%	Online
18	Routh-Hurwitz stability criterion and	CO3			
	applications Problems		L3	2.9%	Blackboard Teaching
19	Routh-Hurwitz stability criterion and	CO3			
	applications Problems (Gate)		L5	2.9%	Activity-based Learning
20		CO3			
	Root locus plots and analysis		L3	2.9%	Online
21		CO3			
	Root locus plots and analysis Problems		L5	2.9%	Blackboard Teaching
22	1 2	CO3			
	(Gate)		L5	2.9%	Blackboard Teaching
23					
	Bode plots	CO4	L4	2.9%	Blackboard Teaching
24	Polar plots	CO4	L3	2.9%	Blackboard Teaching
25	Nyquist criterion	CO4	L5	2.9%	Blackboard Teaching
26		CO4			
	Introduction to Controllers: Proportional,		L1	2.9%	Blackboard Teaching
27		CO4			
	Introduction to Controllers: Integral,		L5	2.9%	Blackboard Teaching
28		CO4			
	PD Controllers		L2	2.9%	Blackboard Teaching
29		CO4		2.00/	
	PID Controllers		L4	2.9%	Blackboard Teaching
30		CO4	1.4	2.00/	Online
	PI Controllers Introduction to PLC		L4	2.9%	Online
		CO5	L2	2.9%	Blackboard Teaching
32	Introduction to PLA	CO5			
			L3	2.9%	Blackboard Teaching
33		CO5			
	Ladder programming		L4	2.9%	Online
34		CO5		2.001	
	SCADA		L3	2.9%	Blackboard Teaching
35	SCADA and its applications in industrial	CO5			Loorning through
	robotics.		1.4	2.00/	Learning through
			L4	2.9%	Experimentation

Online		Offline							
	Black	Black Group Learning Activity Onsite/field-							
	board	d based through based based learning							
	teaching Learning experimentation Learning								
20%	63%	11%	4%	3%	0%				

Dr. Jaydeep Singh Parmar

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA

Deemed to be University

(Declared under Distinct Category by Ministry of Education, Government of India)

NAAC ACCREDITED WITH A++ GRADE

Name of Course with Code: Communication Systems (14242103)

Class: (EC A & B) III Sem.

Session: July-December 2025

Department of Electronics Engineering LECTURE PLAN

Teaching Session	Content to be Covered	CO's	Blooms Level (BL)	% Coverage	Mode
1.	Amplitude modulation	CO1	L2	2%	Offline Teaching
2.	Power calculation for AM	CO1	L3	2%	Problem based Learning
3.	Amplitude modulation Generation	CO1	L2	3%	Offline Teaching
4.	Demodulation techniques	CO1	L3	3%	Learning through experiments
5.	DSB-SC modulation and demodulation techniques	CO1	L3	4%	Learning through experiments
6.	SSB-SC modulation and demodulation techniques	CO1	L2	2%	Offline Teaching
7.	VSB-SC modulation and demodulation techniques	CO1	L2	1%	Offline Teaching
8.	QAM	CO1	L2	3%	Offline Teaching
9.	Angle modulation	CO2	L2	2%	Offline Teaching
10.	Types of FM, Carson's rule,	CO2	L2	2%	Problem based Learning
11.	FM modulation technique	CO2	L2	3%	Offline Teaching
12.	FM demodulation	CO2	L3	3%	Learning through experiments
13.	Various sources of noise, types of noise	CO2	L2	3%	Offline Teaching
14.	Comparison of modulation scheme for noise.	CO2	L3	3%	Open Discussion
15.	Sampling theorem	CO3	L4	4%	Offline Teaching

16.	Reconstruction of signal	СОЗ	L3	2%	Learning through demonstration
17.	Quantization	CO3	L3	3%	Problem based Learning
18.	Generation and detection of PAM, PPM, PWM		L4	3%	Learning through experiments
19.	PCM	CO3	L2	4%	Offline Teaching
20.	DPCM	CO3	L2	3%	Offline Teaching
21.	Delta modulator and ADM	CO3	L3	3%	Offline Teaching
22.	GSOP	CO4	L3	3%	Offline Teaching
23.	ASK, FSK generation and detection	CO4	L2	5%	Offline Teaching
24.	PSK and QPSK generation and detection	CO4	L2	5%	Offline Teaching
25.	QAM generation and detection	CO4	L2	3%	Learning through experiments
26.	Optimum filter,	CO4	L2	4%	Offline Teaching
27.	Matched filter, Correlator detector	CO4	L4	3%	Offline Teaching
28.	5G & 6G Communication	CO5	L2	3%	Offline Teaching
29.	Modulation techniques for 5G & 6G Communication	CO5	L2	4%	Offline Teaching
30.	Software Defined Radio	CO5	L2	2%	Problem based Learning
31.	Cognitive Radio	CO5	L2	2%	Open Discussion
32.	Reconfigurable intelligence surface	CO5	L2	2%	Offline Teaching
33.	Spectral Efficiency and Bandwidth Trade- offs in Modulation Schemes		L2	2%	Offline Teaching
34.	Orthogonal Frequency Division Multiplexing (OFDM) and its Variants	CO5	L2	2%	Offline Teaching
35.	Multi-Carrier ModulationTechniques	CO5	L2	2%	Offline Teaching

Online		Offline							
	Black	Group Learning Activity Onsite							
	board	based	through	based learning					
	teaching	Learning	experimentation	Learning					
0 %	61.7 %	9.9 %	17.3 %	11.1 %	0 %				

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत

(Declared under Distinct Category by Ministry of Education, Government of India)

NAAC ACCREDITED WITH A++ GRADE

Department of Electronics Engineering

LECTURE PLAN

Name of Course with Code: Cyber Security (14242111) Class: B. Tech (EC) II Year Session: July-December 2025

Teaching Session	Content to be Covered	CO's	Blooms Level (BL)	% Coverage	Mode
1.	Overview of Cyber Security, Goals of Cyber Security (Confidentiality, Integrity, Availability)	CO1	L2	3%	Offline / Black Board Teaching/ Interactive Learning
2.	Types of cyber-attacks: Phishing, Malware, ransomware	CO1	L3	3%	Offline / Black Board Teaching
3.	Social Engineering, Malicious Softwares.	CO1	L4	3%	Open discussion
4.	Hacker and its types. Real-world incidents and their impact, Cyber Ethics and Legal Aspects.	CO1	L3	3%	Offline / Black Board Teaching
5.	Internetworking devices, Topologies OSI and TCP/IP models	CO1	L3	3%	Offline mode
6.	IP address, DNS, TCP, IP, HTTP	CO1	L3	3%	Offline / Black Board Teaching
7.	HTTPS, Web Browser, Web Server.	CO1	L3	3%	Offline / Black Board Teaching
8.	Firewalls, Anti-virus, Intrusion Detection Systems (IDS), intrusion Prevention Systems (IPS),	CO1	L3	3%	Open discussion
	Encryption and Decryption: Symmetric and Asymmetric, Cryptanalysis, Digital Signature,	CO1	L3	2%	Offline / Black Board Teaching
10	Authentication: Passwords, Biometrics, Multi-Factor Authentication	CO2	L3	2%	Offline / Black Board Teaching
11	Operating System security basics. Securing mobile devices and apps.	CO2	L5	3%	Offline / Black Board Teaching
12	Web application vulnerabilities: SQL Injection, XSS, CSRF. Secure coding practices.	CO2	L5	3%	Offline / Black Board Teaching
13	Cybercrime, Forensics, and Incident Response: Types of cybercrimes: Identity Theft, Financial Fraud, Cyberbullying.	CO2	L2	3%	Offline / Black Board Teaching
	Basics of digital forensics. Cyber law and IT Act (India) overview. Incident response	CO2	L2	2%	Offline / Black Board Teaching

	lifecycle and reporting.				
15	15 Cyber threats in microcontroller-based systems		L2	3%	Offline / Black Board Teaching
16	16 Protecting electronic devices, networks, and data from cyber threats.		L2	3%	Offline / Black Board Teaching
17	Hardware security, IoT Security. Jamming.	CO3	L2	3%	Offline / Black Board Teaching

Online		Offline							
	Black board teaching	Group based Learning	Learning through experimentation	Activity based Learning	Onsite/field- based learning/Open discussion				
-	85%	-	-	-	15%				

Dr. Varun Mishra

Assistant Professor
Department of Electronics Engineering

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA Deemed University (Declared under Distinct Category by Ministry of Education, Government of India)

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Multiple Modes Teaching Learning Pattern

Name of Course with Code: Integrated Circuit (20242104)		e: Integrated		Sessio	on: July-Dec 2025	
S. No.	Unit	Content to be Covered		Teaching Session	CO Level	Mode
1.			ntial amplifier figurations	1	1	Offline Teaching
2.		Block dia	agram of Op-amp	2	1	Offline Teaching
3.			practical (IC-741) eal op-Amp	3	1	Open discussion
4.	Unit	PSRR, CMF	PSRR, CMRR, Slew rate and its Effect		1	Activity /Problem based Learning
5.	1	Input and output offset voltages		6	1	Activity /Problem based Learning
6.			d Closed loop ion of Op-amp	7	1	Activity /Problem based Learning
7.			and non- inverting amplifier	8	1	Learning through experiment/Problem based Learning
8.		Sumn	ning amplifier	9	1	Learning through experiment/Problem based Learning
9.		Integrators and differentiators		10	1	Learning through experiment/Problem based Learning
10.		Logarithmic and anti- logarithmic amplifier		11	1	Learning through experiment/Problem based Learning
11.		Sch	mitt Trigger	12	1	Learning through experiment/Problem

					based Learning
12.		Characteristics and classifications of filters	13	2	Offline Teaching
13.	Unit	Magnitude and frequency response	14	2	Offline Teaching
14.	2	Frequency response of an amplifier	15	2	Learning through experiment/Problem based Learning
15.		1 st and 2 nd order Low pass and High pass filters	16	2	Learning through experiment
16.		Band pass filter	19	2	Learning through experiment
17.		Band reject filter	20	2	Offline Teaching
18.		Oscillators: Phase shift oscillator	21	3	Offline Teaching
19.	Unit 3	Clapp oscillator	22	3	Open discussion
20.		Wien bridge oscillator	23	3	Offline Teaching
21.		Hartley Oscillator	24	3	Offline Teaching
22.	Colpiit's oscillator		25	3	Open discussion
23.		Crystal oscillator using Op-amp	26	3	Offline Teaching
24.		Multivibrators: Introduction to 555 timer IC	27	4	Offline Teaching
25.		Block diagram	28	4	Open discussion

26.		Astable Multivibrator Circuits using 555 timer IC and their applications.	29	4	Learning through projects
27.	Unit 4	Monostable Multivibrator Circuits using 555 timer IC and their applications.	36	4	Learning through projects
28.		n Bistable Multivibrator Circuits using 555 timer IC and their applications.	37	4	Learning through projects
29.		Integrated Circuits for Industrial Applications	38	5	Learning through projects
30.	Unit 5	Low noise instrumentation amplifier for Signal Processing	39	5	Learning through projects
31.		Integrated Circuits in AI Edge Devices	40	5	Learning through projects
32.		EV Electronics	41	5	Learning through projects
33.		Review of Unit-V	42	5	Offline Teaching

Online	Offline						
-	Teaching	based	through	~	through experiment	/Problem based Learning	Onsite/ field- based learning/ Open Discussio n
	30%	-	21.21%	-	27.27%	9%	12.12%

Dr. Hemant Choubey

Assistant Professor Dept. of Electronics Engineering MITS, Gwalior

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA

Deemed to be University
(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

Name of Course with Code:
Data Structures (14242102)

Class: (EC A & B) III Sem.

Session: July-December 2025

Department of Electronics Engineering LECTURE PLAN

Teaching Session	Content to be Covered	CO's	Blooms Level (BL)	% Coverage	Mode	
1.	Introduction to Data Structures and Algorithms		L2	2%	Offline Teaching	
2.	Characteristics of Algorithms, Time and Space Complexity, Asymptotic Notations		L3	2%	Offline Teaching	
3.	Array Representations and Index to Address Translation		L3	2%	Offline Teaching	
4.	Introduction to Linked List and Implementation	CO1	L3	2%	Learning through Demonstration	
5.	Types of Linked Lists (Singly, Doubly, Circular) and Operations	CO1	L4	2%	Group-based Learning	
6.	Discussion on Unit I	CO1	L2	1%	Open Discussion	
7.	Introduction to Stack and its Operations	CO2	L2	2%	Offline Teaching	
8.	Applications of Stack: Infix to Postfix, Evaluation of Postfix	CO2	L3	3%	Offline Teaching	
9.	Concept of Recursion and its Applications	CO2	L3	3%	Offline Teaching	
10.	Introduction to Queue and its Types (Linear, Circular, Priority, Dequeue)	CO2	L2	3%	Offline Teaching	
11.	Queue Implementations and Operations	CO2	L3	3%	Group-based Learning	
12.	Discussion on Unit II	CO2	L2	2%	Open Discussion	
13.	Trees: Types, Terminologies, Binary Tree, Traversals	CO3	L2	3%	Offline Teaching	
14.	Binary Search Tree (BST) and Threaded Binary Tree	CO3	L3	3%	Learning through Demonstration	
15.	AVL Tree: Rotations and Balancing	CO3	L4	3%	Offline Teaching	

16.	Graphs: Terminology, Representations (Adjacency List, Matrix)	CO3	L2	3%	Offline Teaching	
17.	Graph Traversals: BFS and DFS		L3	3%	Group-based Learning	
18.	Minimum Spanning Trees: Prim's and Kruskal's Algorithm		L4	3%	Learning through Demonstration	
19.	Discussion on Unit III		L2	2%	Open Discussion	
20.	Searching: Linear and Binary Search	CO4	L2	3%	Offline Teaching	
21.	Hashing: Techniques and Collision Resolution	CO4	L3	3%	Offline Teaching	
22.	Sorting Techniques: Bubble, Selection, Insertion Sort	CO4	L3	3%	Learning through Demonstration	
23.	Time Complexity Comparison of Sorting Algorithms	CO4	L4	3%	Offline Teaching	
24.	Discussion on Unit IV	CO4	L2	2%	Open Discussion	
25.	Introduction to Advanced Data Structures and Applications in Big Data, AI, etc.	CO5	L2	3%	Offline Teaching	
26.	Use of Hashing in Large Scale Systems	CO5	L3	3%	Offline Teaching	
27.	Graph-based Structures in Real-time Industrial Systems	CO5	L4	3%	Learning through Demonstration	
28.	Introduction to Concurrent and Distributed Data Structures	CO5	L3	3%	Offline Teaching	
29.	Final Discussion on Advanced Concepts		L2	2%	Open Discussion	
30.	Time and Space Trade-offs in Algorithm Design		L4	2%	Offline Teaching	
31.	Real-world Applications of Stacks and Queues in OS and Compilers		L3	2%	Offline Teaching	
32.	Tree-based Indexing in Databases (B-Trees and B+ Trees)		L4	2%	Offline Teaching	

Online	Offline					
	Black	Group	Learning	Activity	Onsite/field-	
	board	based	through	based	based learning	
	teaching	Learning	experimentation	Learning		
0 %	61.7 %	9.9 %	17.3 %	11.1 %	0 %	