MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(A Govt. Aided UGC Autonomous Institute Affiliated to RGPV, Bhopal) NAAC Accredited with A++ Grade

Department of Electronics Engineering

Name	of Course	with Code	Class		Session		
	OC-I		B. Tech. III Year			Jan-June 2024	
Intelli	gent Contro	ol (900104)	(VI Sem)				
S. No.	Unit	Cont	ent to be Covered	Teaching		Mode	
				Session			
1.		Introduction of	f Subject, Scheme,	1	-3	Offline & Open discussions	
		Syllabus and	CO Discussion				
2.		Control Syste	m Basics, Few Examples	4	-6	Offline & group based problem solving based learning	
3.		Linear Contro and Automati	l System, Manual control c Control System		7	Offline & Open discussions learning through project	
4.	Unit 1	Introduction of Systems Oper adaptive Cont	of Adaptive Control Loop and Close loop rol System.		8	Offline & open discussion	
5.		Parameter est and recursive	mation using least square least square techniques		9	Offline & Open discussions	
6.		Self-tuning Co Regulators	ontroller, Self Tuning	1	0	Offline & Open discussions	
7.		Adaptive Smi	th predictor control]	1	Offline & problem solving based learning	
8.		Auto tuning a predictor.	nd self-tuning smith	12		Offline & problem solving based learning	
9.		Gain Scheduli	ng,	13		Offline & problem solving based learning	
10.		Model Refere	nce Adaptive Control	14		Offline & demonstration based learning	
11.		Introduction t (ANN)	o Artificial Neural Network	15	-18	Offline & problem solving based learning	
12.		Different activ	vation functions	1	9	Offline & problem solving based learning Activity and Demonstration	
13.	Unit 2	Different arch learning meth	itectures and different ods	2	20	Offline and open discussion, learning through project	
14.	14. Back Propagation.		21	-22	Offline & Open discussions		
15.		Radial Basis Function networks		2	23	Offline & Open discussions	
16.		Modeling of C Representatio	Control System: n and identification	2	24	Offline & Open discussions	
17.	Unit 3	Modeling the Supervised co	plant, Control Structures– ntrol	2	25	Offline & Open discussions	
18.		Model referen control, Predi	ce control, Internal model ctive control	2	26	Offline & Open discussions	

19.		Indirect and direct adaptive controller	27-28	Offline & Open discussions
		design using neural network.		
20.		Introduction Fuzzy Controllers	29	Offline & Open discussions
21.		Preliminaries–Mamdani and Sugeno inference methods	30	Offline & Open discussions
22.		Fuzzy sets in commercial products – basic construction of fuzzy controllers	31	Offline & Open discussions
23.	Unit 4	Basics of PI, PD, and PID Controllers	27	Offline & problem solving based learning
24.		Fuzzy PI, PD and PID controller	28	Offline & demonstration based learning, learning through project, activity based
25.		Analysis of static properties of fuzzy controller,	29	Offline & demonstration based learning
26.		Analysis of dynamic properties of fuzzy Controller.	30	Offline & Open discussions
27.		Simulation studies and case studies, Stability issues in fuzzy control.	31	Offline & activity based learning
28.	Unit 5	Introduction to Genetic Algorithm (GA).	32-33	Offline & Open discussions
29.		Neuro-Fuzzy based hybrid system design.	34-35	Offline & problem solving in group based learning
30.		Fuzzy-GA based hybrid system design.	36-37	Offline & Open discussions

Online		Offline						
	Black Board	Group based	Learning	Learning	Learning	Activity	Onsite/field	
	Teaching	Learning	through	through	through	based	based learning	
			projects	demonstration	experimentat	Learning		
					ion			
	63%	6%	2%	18%		11%		

Dr. Deepak Batham Assistant Professor Department of Electronics Engineering MITS, Gwalior

Department of Electronics Engineering

Name o	of Course	with Code:			Class: El	ectronics (EC A & B)	Session:
Artifici	al Intellig	ence &			VI Sem.		January-
Machin	ne Learnin	ng (140617)					June 2024
S. No.	Unit	Content	t to be Covered	Teachin	g CO	Mode	
				Session			
1.		Artificial Intelli	gence: Definition. Goals	1	1	Offline & Open dis	cussions
		of AI, Task of A	[-		1	
2.		AI - Computation	n, Psychology and	2	1	Black Board Tea	ching
2	Unit 1	Cognitive Science		2	1	Diastr Decard Tee	ahina
3.		AI - Perception,	Understanding, and	3	1	Black Board Tea	icning
4.		Artificial intellig	ence vs machine learning	4	1	Black Board Tea	ching
		vs deep learning	and other related fields				U
5.		Applications of A	Artificial intelligence and	5	1	Black Board Teaching	& problem
		Machine Learnin	g in the real world.	6		solving based lea	arning
6.		Problem, Proble	em Space	6	2	Unline & demonstra	uon based
7				7	2	Black Board Teaching	z Group based
		Search : Produc	tion Systems		_	Learning	
8.		Blind Search: B	FS	8	2	Black Board Teaching	& problem
0				0	2	solving based lea	arning & problem
9.		Blind Search: D	DFS	5	2	solving based lea	arning
10.		Heuristic Searc	h	10	2	Black Board Teaching	& problem
			11			solving based lea	arning
11.	Unit 2	Hill Climbing		11	2	Black Board Teaching	& problem
12.			1	12	2	Black Board Teaching	& problem
		Best First Searc	h			solving based lea	arning
13.		Introduction to	Neural Networks:	13	2	Online & demo	nstration
		History, Biolog	ical Neuron, Artificial			based learning	
1/		Neural Network	X	1/-15	2	Onling & demonstration based	
14.		Architectures	x	14-13	2	learning	uon based
15.		Classification, d	& Clustering	16	2	Black Board Tea	ching
16.		Introduction to	Machine Learning:	17	3	Black Board Tea	ching
		Traditional Prog	gramming vs Machine				
		learning. Key E	lements of				
17		Machine Learni	ing: Representation	10	2	Diastr Doord Too	ahina
1/.		Machine Learni	ng: process (Data	18	5	Diack Doald Tea	ching
		Collection. Dat	a Preparation. Model				
		selection, Mode	el Training,				
	Unit 3	Model Evaluati	on and Prediction),				
		Evaluation and	Optimization.				
18.		Types of Learn	ing: Supervised,	19	3	Online & demonstra	tion based
		reinforcement 1	nu earning Regression ve			learning	
		classification p	oblems.				
19.		Supervised Mac	chine Learning: Linear	20-21	4	Black Board Teachin	g & Open
		regression:impl	ementation,			discussions	3

	Unit 4	applications & performance3 parameters			
20.		Decision tree classifier, terminology	22	4	Black Board Teaching & problem solving based learning
21.		classification vs regression trees, tree creation with Gini index and information gain	23-24	4	Black Board Teaching / Slides & Group based Learning
22.		IDE3 algorithms, applications and performance parameters	25	4	Black Board Teaching / Slides + Learning through experimentation
23.		Random forest classifier	26	4	Black Board Teaching / Slides + Activity based Learning
24.		Case study on regression and classification for solving real world problems.	27	4	Black Board Teaching & Learning through projects
25.		Unsupervised Machine Learning: Introduction, types: Partitioning	28	5	Flipped Class Online Mode
26.		Types: density based, DBSCAN	29	5	Black Board Teaching / Slides
27.	Unit 5	Types : distribution model-based, hierarchical, Agglomerative and Divisive	30-31	5	Flipped Class Online Mode
28.	Omt 5	Common Distance measures, K-means clustering algorithm	32-33	5	Learning through projects + Learning through experimentation
29.		Case study on clustering for solving real world problems	34	5	Black Board Teaching & Learning through projects

Online	Offline							
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentat ion	Activity based Learning	Open discussion	
17.64%	61.75%	5.88%	5.88%	11.76%	5.88%	2.9%	2.9%	

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.) A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Name	e of Cours	e with Code:	Class: B. Tech. III Year		Session: Jan- june 2024	
VI	LSI Design	a (140603)				
S. No.	Unit	Content	to be Covered	Teac	ching	Mode
				Ses	sion	
1.		The Metal Oxide Structure	Semiconductor (MOS)		1	Offline & Open discussions
2.	Unit 1	The MOS Syster Structure and Op Transistor (MOS	n under External Bias, eration of MOS SFET)	2	-3	Offline & problem solving based learning
3.		MOSFET Curren Characteristics	nt-Voltage	4	5	Offline & problem solving based learning
4.		MOSFET Scalin Effects	MOSFET Scaling and Small-Geometry Effects			Offline & problem solving based learning
5.		MOSFET Capac	itances.	8	-9	Offline & problem solving based learning
6.		Introduction, Vo Characteristic (V	ltage Transfer TC)	1	LO	Offline & problem solving based learning
7.	Unit 2 Noise Immunity Resistive-Load n-Type MOSFE Inverter,		and Noise margins verter, Inverters with Γ Load and CMOS	11	12	Offline & problem solving based learning
8.		DC Characteristi Calculation of V and Vth, Design	cs of CMOS Inverter, IL, VIH, VOL, VOH of CMOS Inverters	13	-14	Offline & problem solving based learning
9.		Supply Voltage S Inverters, Power considerations.	Scaling in CMOS and Area	15		Offline & problem solving based learning
10.		Switching Chara Inverter- Delay-7	cteristics of CMOS Fime Definitions	1	16	Online & demonstration based learning
11.		CMOS Propagat	ion Delay	1	17	Online & demonstration based learning
12.	Unit 3	Calculation of Do Dissipation-Swit	elay times, Power ching	18	-19	Offline & problem solving based learning
13.		Short-Circuit and of Energy and Po DelayProduct	Leakage Components ower, Power-	Leakage Components 20 ver, Power-		Offline & problem solving based learning
14.		Combinational M	IOS logic circuits	25		Online & demonstration based learning
15.		CMOS Logic cir Complex Logic (cuits (NAND, NOR and Gates, Multiplexers etc.)	2	26	Offline & problem solving based learning

16.	Unit 4	CMOS Transmission Gates (Pass Gates), CMOS n-Well Process,	27-29	Offline & problem solving based learning
17.		Layout design rules, layout design of CMOS Inverter, designing of stick diagram.	30-31	Offline & demonstration based learning
18.		Semiconductor memories: non-volatile and volatile memory devices, flash memories	32	Offline & Open discussions
19.	Unit 5	SRAM cell design,	33	Offline & problem solving based learning
20.		1T DRAM cell design, dynamic CMOS logic circuits ,domino logic CMOS circuits	34-35	Offline & problem solving based learning

Online	Offline						
	BlackBoardTe	GroupbasedLe	Learningthro	Learningthrou	Learningthro	Activitybas	Onsite/fieldbas
	aching	arning	ughprojects	ghdemonstrati	ughexperime	edLearning	edlearning
				on	ntation		
13.22%	85.71%	37.21%	13.95	27.90%	48.84.%	13.95%	%

Mahar

Prof. Madhav Singh

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.)

A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Class: B. Tech. IIIrd Year Name of Course with Code: Session: Jan-June 2024 Mobile Communication (200619)Unit **Content to be Covered** Teaching S. No. Mode Session Offline & activity based 1 1. Introduction to cellular mobile systems: learning Basic Cellular System, Cellular communication infrastructure: Offline & Open 2 2. Cells, Clusters, Cell Splitting discussions Offline & Open discussions Frequency reuse concept, Cellular 3 3. system components. Fixed and dynamic, Cellular Offline & Experiment with 4. 4-5 problem solving in group Unit 1 interferences: Co-Channel and adjacent based learning channel and sectorization. Operations of cellular systems, Online & demonstration 6 5. Handoff/Handover, Channel assignment based learning Problem Solving Session 7 Offline & Open discussions 6. Properties of mobile radio channels -Offline & problem solving 7. 8-9 Intersymbol interference based learning Offline & problem solving Multipath and fading effects 8. 10 based learning Interleaving and diversity 9. Online & demonstration 11 based learning Offline & problem Multiple access schemes (TDMA, 10. 12 solvingbased FDMA) learning Unit 2 11. CDMA, SDMA Offline & problem solving 13 based learning Offline & problem solving 12. Interuser interference 14 based learning Offline & Experiment with 13. Traffic issues and cell capacity 15 problem solving in group based learning Offline & Open discussions 14. **Problem Solving Session** 16 Offline & Onsite/ field 15. Pulse shaping, Linear and non-linear 17 visit based Learning Modulation techniques Offline & Onsite/ field Constant Envelop modulation, 16. 18 visit based Learning OPSK, MSK, GMSK Offline & Open discussions 17. 19 Spread spectrum modulation techniques 18. 20 Online & demonstration Unit 3 based learning

19.		Direct sequence and Frequency Hopping	21-22	Offline & Onsite/ field
		Spread Spectrum and their applications.		visit based Learning
20.		Problem Solving Session	23	Offline & Open discussions
21.		2G Architecture such as GSM and	24	Online & demonstration
		CDMA based – 2.5G		based learning
22.		GPRS: GPRS and its features	25	Online & demonstration
23.		3G standard details such as UMTS	26-27	Offline & Open discussions
24.		Introduction to LTE	28	Online & demonstration based learning
25.	Unit 4	Basic concept of massive MIMO.	29	Online & demonstration based learning
26.		5G potential and applications	30	Offline & Open discussions
27.		Usage scenarios: enhanced mobile broadband (eMBB),	31	Offline & activity based learning
28.		ultra reliable low latency communications (URLLC)	32	Online & demonstration based learning
29.		massive machine type communications (MMTC)	33	Offline & Experiment with problem solving in group based learning
30.	Unit 5	D2D communications,	34	Offline & Open discussions
31.		V2X communications; Spectrum for 5G and sharing	35	Offline & Onsite/ field visit based Learning

Online		Offli ne							
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentati on	Activity based Learning	Onsite/field based learning		
20.93%	69.77%	37.21%	13.95	27.90%	48.84.%	13.95%	08.30%		

matook

Prof. Prateek Bhadauria

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.) A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Nan	ne of Cou	Irse with Code: Intellectual Property	Class: E	B. Tech. III	Session : Jan-June 2024
		Rights (100008)	Year	VI Sem	
S. No.	Unit	Content to be Covered	Teaching		Mode
			Session		
1.		Introduction to IPRs	1	Online and Op	pen discussions
2.		Basic concepts and need for	2-3	Online and Op	pen discussions
		Intellectual Property – Meaning and			
3.	Unit 1	Copyrights, Geographical Indications,	4	Online and Or	ben discussions
		IPR in India and Abroad.	•		
4.		Nature of Intellectual Property,	5	Online and Op	ben discussions
5		Industrial Property, Technological Research	6	Online and Or	oen discussions
<u> </u>		Inventions and Innovations –	7	Online and Or	oen discussions
0.		Important examples of IPR.	1		
7.		The IPR tool kit	8	Online and Op	ben discussions
8.		Patents and patenting process	9-10	Online and Op	ben discussions
9.		Patent cooperation treaties:	11-12	Online and Op	ben discussions
	Unit 2	International Treaties and conventions			
10.		TRIPS Agreement, PCT Agreement,	13-14	Online and Or	ben discussions
11.	-	Patent Act of India.	15-16	Online and Or	ben discussions
12.	-	Patent Amendment Act.	17-18	Online and Or	ben discussions
13.		Design Act	19-20	Online and Or	ben discussions
14.		Trademark Act. Geographical	21-22	Online and Or	ben discussions
		Indication Act.			
15.		IPR of Living Species, protecting	23	Online and Op	pen discussions
16.	-	Protections of traditional knowledge	24	Online and Or	ben discussions
100	Unit 3	bio-piracy and documenting traditional	2.		
1.		knowledge	25	0.1. 1.0	
17.		Digital Innovations and Developments as Knowledge Assets	25	Online and Op	ben discussions
18.		IP Laws- Cyber Law and Digital	26	Online and Op	ben discussions
		Content Protection			
19.		Case studies: The basmati rice issue,	27	Online and Op	ben discussions
20.		Case studies: revocations of turmeric	28	Online and Op	ben discussions
		patent, revocation of patent.			

21.		Rights of an IPR owner, licensing	29	Online and Open discussions
	Unit 4	agreements		
22.		Criteria for patent infringement. Case	30	Online and Open discussions
		studies of patent infringement		
23.		IPR – a contract	31	Online and Open discussions
24.		IPR – a contract, unfair competitions	32	Online and Open discussions
		and control,		
25.		Provisions in TRIPs.	33	Online and Open discussions
26.		Commercialization, Recent changes in	34	Online and Open discussions
		IPR laws impacting patents		
27.	TT :4 E	Recent changes in IPR laws impacting	35	Online and Open discussions
	Unit 5	copy rights		
28.		intellectual cooperation in the science	36	Online and Open discussions
		and allied industry		
29.		Patentable and non-patentable	37	Online and Open discussions
		research.		
30.		Case studies	38	Online and Open discussions
31.		Open Discussion	39-40	Online and Open discussions

Online		Offline								
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentation	Activity based Learning	Onsite/field based learning			
100%	0%	0%	0%	0%	0%	0%	0%			

Rot

Pooja Sahoo

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.)

A Govt. Added UGC Autonomous Institute, Affiliated to R.G.P.V, Bhopal NAAC Accredited with A++ Grade

DEPARTMENT OF ELECTRONICS ENGINEERING

Name	of Course	with Code:	Class: B. Tech. III rd Year			Session: Jan-June 2024	
Mobile C	ommunica	tion & 5G					
Network	s 2006	o19					
S. No.	Unit	Cont	ent to be Covered	Teac	ching	Mode	
				Ses	sion		
1.		Introduction t	o cellular mobile systems:]	1	Offline & activity based learning	
2.		Cellular comr	nunication infrastructure:	2	2	Offline & Open	
		Cells, Cluster	s, Cell Splitting			discussions	
3.		Frequency reu system compo	use concept, Cellular onents.		3	Offline & Open discussions	
4.	Unit 1	Fixed and dyr interferences: channel and s	namic, Cellular Co-Channel and adjacent ectorization.	4-	-5	Offline & Experiment with problem solving in group based learning	
5.		Operations of Handoff/Hand	cellular systems, lover, Channel assignment	6	6	Offline & demonstration based learning	
6.		Problem Sol	ving Session	,	7	Offline & Open discussions	
7.		Properties of a Intersymbol in	mobile radio channels – nterference	8.	-9	Offline & problem solving based learning	
8.		Multipath and	fading effects	1	.0	Offline & problem solving based learning	
9.		Interleaving a	nd diversity	1	.1	Offline & demonstration based learning	
10.	Unit 2	Multiple acce FDMA)	ss schemes (TDMA,	1	.2	Offline & problem solvingbased learning	
11.		CDMA, SDM	IA	1	.3	Offline & problem solving based learning	
12.		Interuser inter	ference	1	.4	Offline & problem solving based learning	
13.		Traffic issues	and cell capacity	1	5	Offline & Experiment with problem solving in group based learning	
14.		Problem Sol	ving Session	1	.6	Offline & Open discussions	
15.		Pulse shaping Modulation te	, Linear and non-linear	1	7	Offline & Onsite/ field visit based Learning	
16.		Constant Env	elop modulation,	1	8	Offline & Onsite/ field visit based Learning	
17.		QPSK, MSK,	GMSK	1	9	Offline & Open discussions	

10			20	
18.		Spread spectrum modulation techniques	20	Offline &
	Unit 3			demonstration
				based learning
19.		Direct sequence and Frequency Hopping	21-22	Offline & Onsite/ field
		Spread Spectrum and their applications.		visit based Learning
20		Problem Solving Session	22	Offline & Open discussions
20.		1 Toblem Solving Session	23	Offinite & Open discussions
21.		2G Architecture such as GSM and	24	Online & demonstration
		CDMA based – 2.5G		based learning
22.		GPRS: GPRS and its features	25	Offline &
				demonstration
				based learning
23		3G standard details such as UMTS	26-27	Offline & Open discussions
23.		Introduction to LTE	20 27	Offling & domonstration
24.	Unit 4		28	based learning
25	eme i	Desis concert of massive MIMO	20	
25.		Basic concept of massive MINIO.	29	Online & demonstration
				based learning
26.		5G potential and applications	30	Offline & Open discussions
27.		Usage scenarios: enhanced mobile	31	Offline & activity based
		broadband (eMBB),		learning
28.		ultra reliable low latency	32	Online & demonstration
		communications (URLLC)		based learning
20		massive machine type communications	33	Offline & Experiment with
47.		(MMTC)	55	problem solving in group
				based learning
20	Unit 5	DDD	24	Online & Onen discussion
30.	Unit 3	D2D communications,	54	Unline & Open discussions
31.		V2X communications; Spectrum for 5G	35	Offline & Onsite/ field
		and sharing		visit based Learning

Online		Offline								
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentati on	Activity based Learning	Onsite/field based learning			
20%	69.77%	37.21%	13.95	27.90%	48.84.%	13.95%	08.30%			

Rachiy Jain Assistant Prof, MITS Gwalior

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.) A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Name of Course with			Class:B. Tech. III Year		Se	Session: January- June 2024		
Cod	le:2006174	AI & ML						
S. No.	Unit	Conte	ent to be Covered	Teac	ching	Mode		
				Ses	sion			
1.		Definition,Go	als of AI, Task of AI		1	Offline&Opendiscussions		
2.		Computation, Science. Perce Action	Computation, Psychology and Cognitive Science. Perception, Understanding, and Action			Offline&Open discussions		
3.	T T 1 / 4	Artificial intel learning vs de related fields	lligence vs machine ep learning and other	3	-4	Offline&Open discussions		
4.	Unit I	Applications of and Machine	of Artificial intelligence Learning in the real world.	5	-6	Online&demonstrationbase dlearning		
5.		Production Sy	vstem		7	Offline & problem solving based learning		
6.		Blind Search:	BFS & DFS		8	Offline & problem solving based learning		
7.		Heuristic Sear	rch, Hill Climbing		9	Offline & problem solving based learning		
8.		Best First Se	arch	1	LO	Offline&Open discussions		
9.	Unit 2	History, Biolo	ogical Neuron	1	1	Online&demonstrationbase dlearning		
10.		Artificial Neu Network Arch	ral Network, Neural nitectures	12	-13	Offline & problem solving based learning		
11.		Classification	, & Clustering	14	-15	Offline& Experiment withproblem solvingin groupbasedlearning		
12.		Traditional Pr learning	ogramming vs Machine	1	.6	Offline&Open discussions		
13.	3. Key Element Representation Collection, D selection, Mo Evaluation an		of Machine Learning: n, process (Data ata Preparation, Model del Training, Model d Prediction)	17	-19	Online&demonstrationbase dlearning		
14.		Evaluation an	d Optimization	2	20	Offline& Onsite/ field visit based Learning		
15.		Typesof Learn Unsupervised	ning: Supervised, and reinforcement learning	21	-22	Online&demonstrationbase dlearning		

16.		Regression vs classification problems	23	Offline& Onsite/ field visit based Learning
17.		Linear regression: implementation, applications & performance parameters	24	Offline & activity based learning
18.		Decision tree classifier, terminology, classification vs regression trees, tree creation with Gini index and information gain	25-26	Offline & activity based learning
19.	Unit 4	IDE3 algorithms, applications and performance parameters	27-28	Offline&Opendiscussions
20.		Random forest classifier	29	Offline & activity based learning
21.		Case study on regression and classification for solving real world problems	30	Online&demonstrationbasedl earning
22.		Unsupervised Machine Learning:Introduction, types	31	Offline&Open discussions
23.		Partitioning, density based, DBSCAN	32	Offline & activity based learning
24.		distribution model-based, hierarchical	33	Offline&Open discussions
25.		Agglomerative and Divisive, Common Distance measures	34-35	Offline& Experiment withproblem solvingin groupbasedlearning
26.	Unit 5	K-means clustering algorithm	36	Offline&Open discussions
27.		Case study on clustering for solving real world problems	37	Offline& Onsite/ field visit based Learning

Online		Offline							
	BlackBoardT	GroupbasedLe	Learningthro	Learningthrou	Learningthro	Activitybas	Onsite/fieldbas		
	eaching	arning	ughprojects	ghdemonstrati	ughexperime	edLearning	edlearning		
				on	ntation				
21.6 %	24.32%	10.8%	10.8%	21.6%	10%	13.5%	8.1%		

Ro

Dr. R. P. Narwaria

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.)

A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Name of Course with Code: Class: B. Tech. III Year Session: Jan-June 2024 Embedded Systems(900116) S. No. Unit **Content to be Covered** Teaching Mode Session Offline & Demonstration 1. 1 based discussions Embedded system architecture, classification, challenges and design issues Offline & Open discussions 2. 2 - 3Unit 1 fundamentals of embedded processor and microcontrollers 4 Offline & Open discussions 3. Von Neumann/Harvard architectures Offline & Demonstration 5 4. based learning CISC vs. RISC, microcontrollers types and their selection 5. 6-8 Offline & problem solving based learning Overview of the 8051 family, architecture, pin description 9-10 Offline & Open discussions 6. Flags, Register Banks, Internal Memory Organization, I/O configuration, Special Function Registers, addressing modes. Offline & problem solving 7. 11-13 An Overview of 8051 instruction set, based learning Introduction to 8051 assembly Unit 2 programming, Offline & Open discussions 8. 14-15 Arithmetic, logic instructions and programs Offline & problem solving 9. 16 Jump, loop and call instructions, IO port based learning programming. 10. Offline & problem solving 17 based learning , Assembling and running an 8051 program Data types and Assembler directives Online & demonstration 11. 18

based learning

12.			19-20	Offline & problem solving based learning
13.	Unit 3	Basics of Timers/Counters, Programming 8051 timers/Counter	21-22	Offline & problem solving based learning

14.			23	Online & demonstration
		basics of serial communication, 8051		based learning
		connection to RS232		
15.			24	Online & demonstration
		8051 serial port programming, basics of		based learning
		8051 Interrupts, 8051 interrupts		
		hardware interrupts and serial		
		communication interrupt. 8051 Interrupt		
		priority		
16.			25-27	Offline & Open discussions
		Memory address decoding, 8051		
	Unit 4	interfacing with memory,	20.20	
17.		2051 interference ith 2255 DDI on the size	28-29	Online & demonstration
		8051 Interface with 8255 PPI and various		based learning
		Keyboard interfacing with 8051		
		microcontroller		
18.			30	Offline & Open discussions
		ADC, DAC and Temperature Sensor		
	Unit 5	interfacing with 8051 microcontroller,		
10	Chit 5	Stepper motor interfacing.	21.20	Online & demonstration
19.		Overview of Arduino, Configuration	51-52	based learning
		Interfacing		based rearning
20.			33	Offline & demonstration
		Board layout, Atmega328 specifications,		based learning
21.			34	Offline & demonstration
		Interfacing of Arduino with LED,		based learning
		Switches, Light dependent resistor (LDR)		
22.		PWM, 16*2 LCD, Serial, L293D for	35	Offline & problem solving
		motor interfacing, ADC		based learning

Online				Offline			
	Black Board	Group based	Learning	Learning	Learning	Activity	Onsite/field
	Teaching	Learning	through	through	through	based	based learning
			projects	demonstration	experimentat	Learning	
					ion		

20%	80%	37.21%	13.95%	25.71%	48.84.%	13.95%	-%

Dr. Shubhi kansal