

Department of Electronics Engineering

		with Code: 00511/2140511)	Class: III Year	(V Sem)		Session: July-December 2024	
S. No.	Unit	Content to be	Covered	Teaching Session	CO Leve l	Mode	
1.	Unit I	Need for data science, uses, facets of data	benefits and	1	1	Black Board Teaching & problem solving based learning	
2.		Data science process		2	1	Black Board Teaching & problem solving based learning	
3.		Introduction of basics Setting working Direct	•••	3	1	Black Board Teaching/Slides	
4.		Creating and saving a secution		4	1	Black Board Teaching/Slides	
5.		Removing variables fro environment, clearing Commenting script file	environment,	5	1	Black Board Teaching/Slides	
6.		Variable creation		6	1	Black Board Teaching/Slides	
7.		Data types and associated operations		7	1	Black Board Teaching/Slides	
8.		Arithmetic and logical	operators	8	1	Black Board Teaching/Slides	
9.	Unit II	Control structures		9	2	Black Board Teaching/Slides	
10.		Loop, Functions		10	2	Black Board Teaching & problem solving based learning	
11.		Data structures: Lists, Dictionary, Sets,	Arrays, Tuples,	11	2	Online & demonstration based learning	
12.		NumPy library		12	2	Black Board Teaching & problem solving based learning	
13.		Data Collection: Gettin data	ng to know your	13	2	Online & demonstration based learning	
14.		Types of Data		14	2	Online & demonstration based learning	
15.		Data collection strategies		15	2	Online & demonstration based learning	
16.		Data Preprocessing, Fe engineering	eature	16	2	Online & demonstration based learning	
17.		Exploratory Data Anal	ytics	17	2,3	Online & demonstration based learning	
18.		Descriptive Statistics		18	3	Black Board Teaching & problem solving based learning	

19.		Mean, Standard Deviation, Skewness	19	3	Black Board Teaching &Learning
		and Kurtosis			through projects
20.		Inferential statistics: hypothesis testing	20	3	Online & demonstration based learning
21.	Unit	Probability: probability theory	21	3	Black Board Teaching & problem solving based learning
22.	III	Conditional probability	22	3	Black Board Teaching & problem solving based learning
23.		Pandas library, dataframe and dataframe related operations	23	3	Black Board Teaching &Learning through experimentation
24.		Reading files	24	3	Black Board Teaching & problem solving based learning
25.	Unit IV	Data Cleaning and Preparation	25	4	Black Board Teaching & problem solving based learning
26.		Handling Missing Data	26	4	Black Board Teaching & Open discussions
27.		Data Transformations using pandas and sklearn library	27	4	Black Board Teaching & problem solving based learning
28.		Removing Duplicates, Replacing Values	28	4	Black Board Teaching / Slides &Group based Learning
29.		Detecting Outliers	29	4	Black Board Teaching / Activitybased learning
30.		Data visualization on different dataset using matplotlib and seaborn libraries	30	4	Black Board Teaching / Slides
31.		Scatter plot, Line plot, Bar plot, Histogram, Box plot, Pair plot	31	4	Black Board Teaching/Slides
32.	Unit V	Supervised learning: Regression	32	5	Black Board Teaching & problem solving based learning
33.		Classification	33	5	Black Board Teaching & problem solving based learning
34.		Linear regression	34	5	Black Board Teaching & problem solving based learning
35.		Logistic regression	35	5	Black Board Teaching & problem solving based learning
36.		Decision tree, tree creation with entropy and information gain	36	5	Black Board Teaching & problem solving based learning
37.		ID3 algorithm	37	5	Black Board Teaching & problem solving based learning
38.		Random forest, naïve bayes theorem	38	5	Black Board Teaching & problem solving based learning
39.		K-nearest neighbor and ensemble methods for solving real world problems	39	5	Black Board Teaching & problem solving based learning
40.		Unsupervised learning: Clustering, Reinforcement learning.	40	5	Black Board Teaching & problem solving based learning

Offline

Online		Learning	g	through demonstration	Learning through experimentat ion	/Problem based	Onsite/field based learning/Open Discussion
8.75%	53.75%	1.3%	1.3%	8.75%	1.3%	23.75%	1.3%

R. Junka

Shubbin

Dr. R. K.Suji

Dr. Shubhi Kansal

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.) A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Multiple Mode Teaching Learning Pattern

Mobile	Communi Netwo					Session: July-Dec 2024
· · · · · · · · · · · · · · · · · · ·	140512/22	/			-	
S. No.	Unit	Conte	ent to be Covered	Teaching Session		Mode
1.		Basic Cellular		1		Offline & activity based learning
2.			nunication infrastructure: s, Cell Splitting	2		Offline & Open discussions
3.		Frequency reu system compo	se concept, Cellular onents.	3		Offline & Open discussions
4.	Unit 1		namic, Cellular Co-Channel and adjacent ectorization.	4-5	5	Offline & Experiment with problem solving in group based learning
5.			cellular systems, lover, Channel assignment	6		Online & demonstration based learning
6.		Problem Solv	ving Session	7		Offline & Open discussions
7.		Properties of mobile radio channels – Intersymbol interference		8-9	Э	Offline & problem solving based learning
8.		Multipath and	fading effects	10)	Offline & problem solving based learning
9.		Interleaving a	nd diversity	11	-	Online & demonstration based learning
10.	Unit 2	Multiple acces FDMA)	ss schemes (TDMA,	12	2	Offline & problem solvingbased learning
11.	Unit 2	CDMA, SDM	A	13	}	Offline & problem solving based learning
12.		Interuser inter	ference	14	ļ	Offline & problem solving based learning
13.		Traffic issues	Traffic issues and cell capacity		5	Offline & Experiment with problem solving in group based learning
14.		Problem Solv	ving Session	16	5	Offline & Open discussions
15.		Pulse shaping Modulation te	, Linear and non-linear chniques	17	1	Offline & Onsite/ field visit based Learning
16.			elop modulation,	18		Offline & Onsite/ field visit based Learning
17.		QPSK, MSK,	GMSK	19)	Offline & Open discussions

18.	Unit 3	Spread spectrum modulation techniques	20	Online & demonstration based learning
19.		Direct sequence and Frequency Hopping Spread Spectrum and their applications.	21-22	Offline & Onsite/ field visit based Learning
20.		Problem Solving Session	23	Offline & Open discussions
21.		2G Architecture such as GSM and CDMA based – 2.5G	24	Online & demonstration based learning
22.		GPRS: GPRS and its features	25	Online & demonstration based learning
23.		3G standard details such as UMTS	26-27	Offline & Open discussions
24.		Introduction to LTE	28	Online & demonstration based learning
25.	Unit 4	Basic concept of massive MIMO.	29	Online & demonstration based learning
26.		5G potential and applications	30	Offline & Open discussions
27.		Usage scenarios: enhanced mobile broadband (eMBB),	31	Offline & activity based learning
28.		ultra reliable low latency communications (URLLC)	32	Online & demonstration based learning
29.		massive machine type communications (MMTC)	33	Offline & Experiment with problem solving in group based learning
30.	Unit 5	D2D communications,	34	Offline & Open discussions
31.		V2X communications; Spectrum for 5G and sharing	35	Offline & Onsite/ field visit based Learning

Online	Offli ne						
	Black Board Teaching	Learning		demonstration	Learning through experimentati on		Onsite/field basedlearning
20.93%	69.7 7%	37.21%	13.95	27.90%	48.84.%	13.95%	08.30%

Justian

ł

Prof. Prateek Bhadauria

Prof. Rachit Jain

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.) A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Multiple Mode Teaching Learning Pattern

Name	e of Cours	e with Code:	Class: B. Tech. III Y	'ear		Session: July- December 2024
	VLSI D	esign				
	2140515/2	<u></u>				
S. No.	Unit	Content	to be Covered		ching	Mode
				Ses	sion	
1.		Structure	Semiconductor (MOS)]		Offline & Open discussions
2.	Unit 1	The MOS System Structure and Op Transistor (MOS		2-	-3	Offline & problem solving based learning
3.		MOSFET Curren Characteristics	nt-Voltage	4.	-5	Offline & problem solving based learning
4.		Effects	g and Small-Geometry	6	-7	Offline & problem solving based learning
5.		MOSFET Capac	itances.	8.	-9	Offline & problem solving based learning
6.		Introduction, Vol Characteristic (V		1	.0	Offline & problem solving based learning
7.	Unit 2	Resistive-Load In	and Noise margins overter, Inverters with I Load and CMOS	11	-12	Offline & problem solving based learning
8.		Calculation of V	cs of CMOS Inverter, IL, VIH, VOL, VOH of CMOS Inverters	13	-14	Offline & problem solving based learning
9.		Supply Voltage S Inverters, Power considerations.	Scaling in CMOS and Area	1	.5	Offline & problem solving based learning
10.		Switching Chara Inverter- Delay-	cteristics of CMOS Fime Definitions	1	6	Online & demonstration based learning
11.		CMOS Propagat	ion Delay	1	7	Online & demonstration based learning
12.	Unit 3	Calculation of De Dissipation-Swit		18-	-19	Offline & problem solving based learning
13.			rcuit and Leakage Components gy and Power, Power- oduct		-24	Offline & problem solving based learning
14.		Combinational M	IOS logic circuits	2	25	Online & demonstration based learning
15.			cuits (NAND, NOR and Gates, Multiplexers etc.)	2	26	Offline & problem solving based learning

16.	Unit 4	CMOS Transmission Gates (Pass Gates), CMOS n-Well Process,	27-29	Offline & problem solving based learning
17.		Layout design rules, layout design of CMOS Inverter, designing of stick diagram.	30-31	Offline & demonstration based learning
18.		Semiconductor memories: non-volatile and volatile memory devices, flash memories	32	Offline & Open discussions
19.	Unit 5	SRAM cell design,	33	Offline & problem solving based learning
20.		1T DRAM cell design, dynamic CMOS logic circuits, domino logic CMOS circuits	34-35	Offline & problem solving based learning

Online		Offline							
	Black Board Teaching	Group based Learning	•	demonstration	through	based	Onsite/field based learning		
13.22%	85.71%	37.21%	13.95	27.90%	48.84.%	13.95%	%		

Mishra

Sharma

Dr. Varun Mishra

Dr. Varun Sharma

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA Deemed to be University

(Declared under Distinct Category by Ministry of Education, Government of India)

NAAC ACCREDITED WITH A++ GRADE

Department of Electronics Engineering

LECTURE PLAN

Electron	Class Course with Code: Class Class (V Solution 20/2200519)	s: B. Tech. l em)	III Year	Session: Ju	lly-December 2024
Teaching Session	Content to be Covered	CO's	Blooms Level (BL)	% Coverage (to be calculated based on the total syllabus)	Mode
1.	Introduction to Coulomb's Law	CO1	L2	3%	Offline / Black Board Teaching
2.	Electric Field Intensity	CO1	L3	2%	Offline / Black Board Teaching
3.	Numerical problems on Coulomb's Law and Electric Field Intensity	CO1	L4	3%	Group based Learning
4.	Coordinate Systems: Rectangular, Cylindrical and Spherical Coordinate Systems	CO1	L3	3%	Offline / Black Board Teaching
5.	Charge distribution: Line charge distribution	CO1	L3	3%	Online mode
6.	Electric Field Intensity due to Surface a Volume Charge Distribution	nd CO1	L4	3%	Offline / Black Board Teaching
7.	Electric flux and flux density, Gauss law Boundary relations	v, CO1	L3	3%	Offline / Black Board Teaching
8.	Curl of a vector field and Stoke's Theor		L3	3%	Offline / Black Board Teaching
9.	Gradient of a Scalar function, Poisson a Laplace Equations	nd CO1	L3	3%	Offline / Black Board Teaching
10.	Conservative nature of Electrostatic Fie and Equation of Continuity, Electric Fie in dielectric and conductor		L3	2%	Online mode
11.	Static Magnetic Field	CO2	L3	3%	Offline / Black Board Teaching
12.	Magnetic Field Intensity-Biot-Savart's l	Law CO2	L3	3%	Offline / Black Board Teaching
13.	Magnetic Field due to a current element	CO2	L5	2%	Offline / Black Board Teaching
14.	Ampere's Circuital Law and Magnetic Potentials	CO2	L5	2%	Offline / Black Board Teaching
15.	Numerical problems on Magnetic field	CO2	L4	2%	Group based Learning
16.	Boundary conditions in magnetic field, Scalar and vector potential, Poisson's equation	CO3	L2	2%	Offline / Black Board Teaching

17.	Magnetic force, force between current carrying wires	CO3	L2	2%	Online mode
18.	Maxwell's equations for steady, time varying field	CO3	L2	3%	Online mode
19.	Maxwell's equations for time harmonic fields	CO3	L3	3%	Offline / Black Board Teaching
20.	General wave equation	CO4	L3	2%	Online mode
21.	Uniform plane wave in free space	CO4	L3	2%	Offline / Black Board Teaching
22.	Uniform plane wave in Perfect dielectric	CO4	L3	3%	Offline / Black Board Teaching
23.	Uniform plane wave in Lossy medium	CO4	L3	3%	Online mode
24.	Uniform plane wave in conducting medium	CO4	L2	2%	Offline / Black Board Teaching
25.	Concept of Skin depth and Poynting vector	CO4	L3	2%	Online mode
26.	Derivation of Poynting vector theorem	CO4	L5	3%	Offline / Black Board Teaching
27.	Wave Polarization- Introduction	CO4	L3	3%	Online mode
28.	Linear polarization	CO4	L5	3%	Offline / Black Board Teaching
29.	Elliptic polarization	CO4	L5	3%	Offline / Black Board Teaching
30.	Circular polarization	CO4	L5	3%	Offline / Black Board Teaching
31.	Numerical problems on wave propagation	CO4	L4	2%	Group based Learning
32.	Introduction to reflection of waves	CO5	L2	2%	Offline / Black Board Teaching
33.	Reflection of uniform plane waves	CO5	L2	2%	Offline / Black Board Teaching
34.	Normal Incidence	CO5	L2	2%	Offline / Black Board Teaching
35.	Oblique Incidence	CO5	L2	2%	Offline / Black Board Teaching
36.	Total transmission phenomena	CO5	L5	3%	Learning through experimentation
37.	Total internal reflection	CO5	L5	3%	Learning through experimentation
38.	Critical angle	CO5	L4	3%	Activity based
39.	Brewster angle	CO5	L4	2%	Activity based
40.	Numerical problems on Reflection of waves	CO5	L4	2%	Group based Learning

Online		Offline							
	Black	Black Group Learning Activity							
	board	board based through based							
	teaching	teaching Learning experimentation Learning							
20%	61%	9%	6%	4%	-				

R. Junk-A

Si

Dr. R. K.Suji

Dr. Laxmi Shrivastava

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.)

A Govt. Added UGC Autonomous and NAAC Accredited Institute, Affiliated to R.G.P.V, Bhopal

DEPARTMENT OF ELECTRONICS ENGINEERING

Multiple Mode Teaching Learning Pattern

Name	of Course	with Code:	Class: B. Tech. III Ye	ar		Session: July-Dec 2024		
Digital Signal Processing								
(2	140520/22	200520)						
S. No.	Unit	Cont	ent to be Covered	Teach	ning	Mode		
			Sessi	ion				
1.		Review of discrete time signals and systems		1		Offline & Open discussions		
2.	Unit 1	Properties and applications of discrete time Fourier transform		2		Offline & activity based learning		
3.		Review of Z transform		3		Offline & Open discussions		
4.		Analysis of n	4-5	5	Offline & Experiment with problem solving in group based learning			
5.		Maximum pha	6		Online & demonstration based learning			
6.		Introduction a	and properties of DFT.	7		Offline & problem solving based learning		
7.	Unit 2	Computation of circular convolution using DFT.		8		Offline & problem solving based learning		
8.		Decimation in time FFT algorithm.		9		Offline & problem solving based learning		
9.		Decimation of frequency FFT algorithm with radix-2.		10)	Offline & problem solving based learning		
10.		Decimation of frequency FFT algorithm with radix-4.		11		Offline & problem solving based learning		
11.		Review of U	nit-II	12	2	Online		
12.		Characteristic selective filter	aracteristics of practical frequency ective filters.		B Offline & Experiment with problem solving in group based learning			
13.	Unit 3	Various signal flow graph structure of IIR filters.		14	ļ	Offline & Experiment with problem solving in group based learning		
14.		IIR Filter design.		15	i	Offline & Experiment with problem solving in group based learning		
15.		Overview of	w of Butterworth		16 Offline & Experiment problem solving in grou based learning			
16.		Chebyshevand	d Elliptic Approximations.	17	'	Offline & Experiment with problem solving in group		

				based learning	
17.		Design of discrete time IIR filters using Impulse invariant.	18	Offline & Open discussions	
18.		Bilinear transformation Methods.	19	Offline & Experiment with problem solving in group based learning	
19.		Spectral transformation of IIR filters.	20	Offline & Experiment with problem solving in group based learning	
20.		Introduction and Signal flow graph structure of FIR Filter.	21	Offline & Experiment with problem solving in group based learning	
21.	Unit 4	Symmetric, and Asymmetric FIR filters.	22	Offline & Experiment with problem solving in group based learning	
22.		Design of linear phase FIR filters using windows.	23	Offline & Learning through projects	
23.		Frequency sampling method.	24	Online & demonstration based learning	
24.		Design of Optimum Equiripple linear phase FIR filters.	25	Offline & group based learning	
25.		Design of FIR differentiators.	26	Online & demonstration based learning	
26.		Introduction	27	Online & demonstration based learning	
27.		Decimation and Interpolation.	28	Offline & group based learning	
28.	Unit 5	Sampling rate conversion by a Rational factor.	29	Online & demonstration based learning	
29.		Sampling rate conversion with Cascaded integrator.	30	Offline & Experiment with problem solving in group based learning	
30.		Comb filters	31	Offline & Open discussions	
31.		Polyphase structures for decimation.	32	Offline & Onsite/ field visit based Learning	
32.		Interpolation filters.	33	Offline & Onsite/ field visit based Learning	
33.		Application of multirate signal processing.	34	Offline & Onsite/ field visit based Learning	
34.		Review of Unit-V	35	Online & demonstration based learning	

Online	Offline								
	Black Board	Group	Learning	Learning	Learning	Activity	Onsite/field		
	Teaching	based	through	through	through experi-	based	based learning		
		Learning	projects	demonstration	mentation	Learning			
20.8	13.42	7.71	2.85	1.85	31.42	11.42	10.42		

Wowhen

Ad

Dr. Mukesh Kumar Mishra

Dr. R. P. Narwaria