MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA

Deemed University

(Declared under Distinct Category by Ministry of Education, Government of India)
NAAC ACCREDITED WITH A++ GRADE

DEPARTMENT OF ELECTRONICS ENGINEERING

Multiple Mode Teaching Learning Pattern

Name of Course with Code: Class: B. Tech. III Year Session: Jan-June 2025						
AIM	L(220061	.7/2140617)				
C N	T T •/		TD.		76.1	
S. No.	Unit	Content to be Covered		ching	Mode	
1		Definition, Goals of AI, Task of AI,		sion	Office & Oran discussions	
1.		Computation,	1	l	Offline & Open discussions	
2.		Psychology and Cognitive Science.	2	2	Offline & Open discussions	
	Unit 1	Perception, Understanding, and Action.			OCCIL 0 O 1'	
3.		Artificial intelligence vs machine	3	3	Offline & Open discussions	
		learning vs deep learning and other related fields.				
4.		Applications of Artificial	4-	-5	Offline & Demonstration	
		intelligence and Machine Learning in the real world.			based learning	
5.		Production System, Blind Search: BFS	6-8	3	Offline & problem solving	
		& DFS			based learning	
6.	Unit 2	Heuristic Search, Hill Climbing, Best First Search.	7-1	10	Offline & Open discussions	
7.		Introduction to Neural Networks: History, Biological Neuron	1	1	Offline	
8.		Artificial Neural Network,	12	2-	Offline & problem solving	
		Neural Network Architectures, Classification, & Clustering	1	.5	based learning	
9.		Traditional Programming vs Machine		6-	Offline	
		learning. Key Elements of Machine	1	7		
10		Learning: Representation, process (Data Collection, Data Preparation,	10	-20	Offline & problem solving	
10.	Unit 3	Model selection, Model Training,	16-	-20	based learning	
		Model Evaluation				
		and Prediction), Evaluation and				
		Optimization.			0.001	
11.		Types of Learning	21		Offline & problem solving based learning	

12.		Supervised, Unsupervised and reinforcement learning.	22	Offline & problem solving based learning
13.		Regression vs classification problems.	23- 24	Offline & problem solving based learning
14.	TT	Linear regression:implementation, applications & performance parameters.	25-26	Offline & Open discussions
15.	Unit 4	Decision tree classifier, terminology, classification vs regression trees, tree creation with Gini index and information gain,	27-29	Online & demonstration based learning
16.		Introduction, types: Partitioning, density based, DBSCAN	30	Offline & Open discussions
17.	Unit 5	distribution modelbased, hierarchical, Agglomerative and Divisive,	31-32	Online & demonstration based learning
18.		Common Distance measures, K-means clustering algorithm.	33	Offline & demonstration based learning
19.		Case study on clustering for solving real world problems.	34	Offline & demonstration based learning
20.		numerical based on it	35	Offline & problem solving based learning

Dr. Shubhi kansal

V

Dr. R. P. Narwaria

Madhav Institute of Technology & Science, Gwalior

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

Department of Electronics Engineering

	ontroller	with Code: Class: B. Tech. IIIYear Systems and	r	Session: January-June 2025			
	16/220061	6)					
S. No.	Unit	Content to be Covered	Teaching Session	Mode			
1.		Introduction to Microcontrollers: Definition, Classification (8-bit, 16-bit, 32-bit), Challenges and Design Issues	1.	Offline & Open discussions			
2.	Unit 1	Von Neumann/Harvard Architectures, CISC vs. RISC	2.	Black Board Teaching			
3.		Microcontroller Types and Selection Criteria	3.	Black Board Teaching			
4.		Overview of the 8051 Family: History and Variants	4.	Black Board Teaching			
5.		8051 Architecture: Block Diagram, Internal Components	5.	Black Board Teaching			
6.		8051 Pin Description and I/O Configuration	6.	Black Board Teaching			
7.		8051 Flags, Register Banks, and Special Function Registers (SFRs)	7.	Black Board Teaching			
8.		8051 Internal Memory Organization and Addressing Modes	8.	Black Board Teaching & problem solving based learning			
9.		Introduction to 8051 Instruction Set: Data Transfer Instructions	9.	Online&demonstrationbasedlea rning			
10.		Arithmetic and Logical Instructions	10.	Black Board Teaching & Group based Learning			
11.		Jump, Loop, and Call Instructions	11.	Black Board Teaching & problem solving based learning			
12.	Unit 2	Introduction to 8051 Assembly Programming: Assembler Directives, Program Structure	12.	Black Board Teaching & problem solving based learning			
13.		Assembling and Running an 8051 Program: Debugging Techniques	13.	Black Board Teaching & problem solving based learning			
14.		I/O Port Programming: Bit Manipulation, Simple I/O Programs	14.	Black Board Teaching & problem solving based learning			
15.		Introduction to Pipelining Based Processors: Basic Concepts, Advantages	15.	Black Board Teaching			
16.		Applications of ARM Processors	16.	Black Board Teaching			
17.		ARM Cortex-M3 Architecture: Overview, Block Diagram	17.	Black Board Teaching			
18.	Unit 3	ARM Cortex-M3 General Purpose Registers and Special Registers	18.	Black Board Teaching			
19.		ARM Cortex-M3 Exceptions, Interrupts,	19.	Online&demonstrationbasedlea			

		and Stack Operation		rning
20.		Memory Address Decoding and 8051	20.	Black Board Teaching & Open
		Interfacing with External Memory		discussions
21.		8051 Interface with 8255 PPI:	21.	Black Board Teaching &
		Programmable Peripheral Interface		problem solving based learning
22.		8051 Interfacing with LCD Displays:	22.	Black Board Teaching /
		Character LCDs, Programming		Slides&Group based Learning
23.		8051 Interfacing with Matrix Keyboards:	23.	Black Board Teaching / Slides
		Keypad Scanning Techniques		Learning through
24	TT24 A		2.4	experimentation
24.	Unit 4	8051 Interfacing with ADC (Analog-to-	24.	Black Board Teaching / Slides Learning through
		Digital Converter): Principles, Interfacing Methods		Learning through experimentation
25.		8051 Interfacing with DAC (Digital-to-	25.	Black Board Teaching / Slides
23.		Analog Converter): Principles, Interfacing	23.	Activity based Learning
		Methods		retivity based Learning
26.		8051 Interfacing with Stepper Motors:	26.	Black Board Teaching
		Control Methods, Programming		&Learning through projects
27.		Overview of Arduino: History,	27.	Flipped Class Online Mode
		Ecosystem, IDE		
28.		Arduino Configuration and Interfacing	28.	Black Board Teaching / Slides
		Basics		
29.		Arduino Board Layout and Atmega328	29.	Black Board Teaching / Slides
•		Specifications	20	+ Activity based Learning
30.		Arduino Interfacing with LEDs and	30.	Black Board Teaching / Slides
21		Switches	21	+ Activity based Learning
31.		Arduino Interfacing with Light Dependent Resistors (LDRs)	31.	Black Board Teaching / Slides + Activity based Learning
32.	Unit 5	Arduino PWM (Pulse Width Modulation)	32.	Flipped Class Online Mode
32.	Omt 5	and Applications	32.	1 hpped Class Online Wode
33.		Arduino Interfacing with 16x2 LCD	33.	Black Board Teaching / Slides
		Displays		+ Activity based Learning
34.			34.	Learning through projects +
		Arduino Serial Communication		Learning through
		A 1 1 X 1 C 1 1 X 2 C 2 T 2 T	2.5	experimentation
35.		Arduino Interfacing with L293D Motor	35.	Black Board Teaching
		Driver		&Learning through projects

	Online	Offline									
		BlackBoardTe	GroupbasedLe	Learningthro	Learningthrou	Learningthro	Activitybas	Open discussion			
		aching	arning	ughprojects	ghdemonstrati	ughexperime	edLearning				
					on	ntation					
	10.26%	56.1%	7.69%	7.69%	2.56%	10.26%	7.69%	5.13%			
L											

Dr. Jaydeep Singh Parmar

Dr. Varun Mishra

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

Deemed University
NAAC Accredited with A++ Grade

Department of Electronics Engineering

Multiple Mode Teaching Learning Pattern

	1	Name of Course with Code	Class	,	Session	
		OC-I	B. Tech.	III	Jan-June 2025	
	I	Intelligent Control (900117)	Year			
			(VI Sem)			
S. No.	Unit	Content to be Covered	Teaching	CO	Mode	
5.110.	Cint	Content to be Covered	Session		Wiode	
1		T . 1 . CO 1 C 1		1	Otal 0 O	
1.		Introduction of Subject, Scheme, Syllabus and CO Discussion	1-3	1	Offline & Open discussions	
2.		Control System Basics, Few Examples	4-6	1	Offline & group based	
		Control bystem Busies, I ew Examples	4.0	1	learning	
3.		Linear Control System, Manual control	7	1	Offline & Open	
		and Automatic Control System			discussions	
4.		Introduction of Adaptive Control	8	1	Offline & open discussion	
	Unit	Systems Open Loop and Close loop				
5.	1	adaptive Control System. Parameter estimation using least square	9	1	Offline & Open	
J.	•	and recursive least square techniques		1	discussions	
6.		Self-tuning Controller, Self Tuning	10	1	Offline & Open	
		Regulators			discussions	
7.		Adaptive Smith predictor control	11	1	Offline & problem	
0		1 16	10	-1	solving based learning	
8.		Auto tuning and self-tuning smith predictor.	12	1	Offline & problem solving based learning	
9.		Gain Scheduling,	13	1	Offline & problem	
7.		Guin Schedunig,	13	•	solving based learning	
10.		Model Reference Adaptive Control	14	1	Offline & demonstration	
					based learning	
11.		Introduction to Artificial Neural	15-18	2	Offline & problem	
12		Network (ANN) Different activation functions	10	2	solving based learning	
12.		Different activation functions	19	2	Offline & problem solving based learning	
13.		Different architectures and different	20	2	Offline and open	
	Unit	learning methods			discussion, learning	
	2				through project	
14.		Back Propagation.	21-22	2	Offline & Open	
15		Radial Basis Function networks	22	2	discussions Offling & Open	
15.		Kaulai Dasis Fullction networks	23	2	Offline & Open discussions	
16.		Modeling of Control System:	24	3	Offline & Open	
		Representation and identification			discussions	
17.	Unit	Modeling the plant, Control Structures-	25	3	Offline & Open	
		Supervised control			discussions	
18.	3	Model reference control, Internal model	26	3	Offline & Open	

		control, Predictive control			discussions
19.		Indirect and direct adaptive controller	27-28	3	Offline & Open
		design using neural network.			discussions
20.		Introduction Fuzzy Controllers	29	4	Offline & Open
					discussions
21.		Preliminaries–Mamdani and Sugeno	30	4	Offline & Open
		inference methods			discussions
22.		Fuzzy sets in commercial products –	31	4	Offline & Open
		basic construction of fuzzy controllers			discussions
23.	Unit	Basics of PI, PD, and PID Controllers	27	4	Offline & problem-
	4				solving based-learning
24.	4	Fuzzy PI, PD and PID controller	28	4	Offline & demonstration-
					based learning, learning
					through project, activity
					based
25.		Analysis of static properties of fuzzy	29	4	Offline & demonstration-
		controller,			based learning
26.		Analysis of dynamic properties of fuzzy	30	4	Offline & Open
		Controller.			discussions
27.		Simulation studies and case studies,	31	4	Offline & activity-based
		Stability issues in fuzzy control.			learning
28.	Unit	Introduction to Genetic Algorithm (GA).	32-33	5	Offline & Open
	5				discussions
29.		Neuro-Fuzzy based hybrid system	34-35	5	Offline & open
		design.			discussions
30.		Fuzzy-GA based hybrid system design.	36-37	5	Offline & Open
					discussions

Online	Offline								
	Black Board	Group based	Learning	Learning	Learning	Activity	Onsite/field		
	Teaching	Learning	through	through	through	based	based learning		
			projects	demonstration	experimentat	Learning			
					ion				
	63%	6%	2%	18%		11%			

Dr. Deepak Batham