

INDIA

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics & Computing

Faculty Details

r deuley Detulis	
Name of the Faculty:	Dr. Atul Kumar Ray
Designation:	Assistant Professor
Department:	Engineering Mathematics & Computing
Course Details	
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024
Branch:	Engineering Mathematics and Computing
Semester:	Second Year (Third Semester)
Title of the Subject:	Stochastic Process and Financial Mathematics
Subject Code:	3250321
Number of Students:	78
Guidelines to study the su	<u>ıbject:</u>

- 1. Basic concepts of probability and distributions.
- 2. Fundamental knowledge of Markov process
- 3. Basic knowledge of stocks
- 4. Basic knowledge of financial mathematics.

Recommended Books:

- R1. T. Veerarajan: Probability, Statistics and Random Processes, McGraw Hill, 3rd Edition 2008.
- R2. Marek Capinski and Tomasz Zastawniak, "Mathematics for Finance", Springer (201 1).
- R3. Kannoo Ravindran, The Mathematics of Financial Models: Solving Real-World Problems with Quantitative Methods, Wiley Finance, (2014)

S. No.	Date	Content to be covered	COs	Blooms Level (BL)	% coverage (based on the total syllabus)	Book(s) followed
		Unit-1: Fourier Series and Laplace				
		Transform				
1		Two dimensional random variables	1	1,2	2.5%	R1
2		Cumulative distribution function	1	1,2	2.5%	R1
3		Joint probability distribution	1	2,3	2.5%	R1
4		Marginal probability distribution,	1	1,2,3	2.5%	R1
5		Basic concept of stochastic process, Markov	1	2,3	2.5%	R1
		Chain				
6		classification of states and chain	1	1,2,3	2.5%	R1
7		Poisson process	1	2,3	2.5%	R1
8		Transient state	1	2,3,4	2.5%	R1
		Unit 2: Second order differential				
		equations				
9		Markov process	2	1,2	2.5%	R1
10		Markov process with continuous state space	2	1	2.5%	R1
11		Markov process with discrete state space	2	1,2,3	2.5%	R1
12		Birth & Death process	2	2,3	2.5%	R1
13		Random Walks	2	2,3	2.5%	R1
14		Wiener process	2	2,3	2.5%	R1
15		Kolmogorov equation	2	1,2	2.5%	R1
16		Pollaczek-Khinchine formula	2	2,3,4	2.5%	R1
		Unit 3: Partial differential equations				

LECTURE PLAN (3250321)

17	Basic Notions and Assumptions,	3	1,2	2.5%	R2, R3
18	No-Arbitrage Principle,	3	1,2	2.5%	R2, R3
19	One-Step Binomial Model,	3	1,2,3	2.5%	R2, R3
20	Risk and Return,	3	2,3	2.5%	R2, R3
21	Forward Contracts,	3	1,2	2.5%	R2, R3
22	Call and Put Options	3	2,3,4	2.5%	R2, R3
23	Growth and decay curves, Managing Risk	3	2,3,4	2.5%	R2, R3
	with Options,				
24	Credit and loan, Cost of credit and	3	2,3	2.5%	R2, R3
	amortization				
	Unit 4: Vector Calculus				
25	Time Value Of Money, Simple Interest,	4	1,2	2.5%	R2, R3
26	Periodic Compounding Streams of	4	1,2	2.5%	R2, R3
	Payments				
27	Discrete and Continuous Compounding	4	1,2	2.5%	R2, R3
28	how to Compare Compounding Methods	4	1,2,3,4	2.5%	R2, R3
29	Money Market	4	2,3	2.5%	R2, R3
30	Discrete Time Model: Stock and Money	4	1,2,3	2.5%	R2, R3
	Market Models				
31	Investment Strategies, The Principle of No	4	2,3,4	2.5%	R2, R3
	Arbitrage				
32	Fundarnental Theorem of Asset Pricing	4	1,2,3	2.5%	R2, R3
	Unit 5: Discrete Numeric function and				
	Recurrence relation				
33	Dynamics of Stock Prices	5	1,2	2.5%	R2, R3
34	Expected Return	5	1,2	2.5%	R2, R3
35	Binomial Tree Model	5	2,3	2.5%	R2, R3
36	Risk-Neutral Probability, Martingale	5	2,3	2.5%	R2, R3
	Property				
37	Numerical Techniques in Finance:	5	1,2,3	2.5%	R2, R3
	Continuous-Time Limit				
38	Monte-Carlo methods	5	1,2,3	2.5%	R2, R3
39	Lattice Method	5	2,3,4	2.5%	R2, R3
40	Portfolio Management: Risk and Expected	5	2,3,4	2.5%	R2, R3
	Return on a Portfolio				
	TOTAL LECTURES	S= 40			

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Modes of Teaching

Subject: Stochastic Process and Financial Mathematics (3250321)-Third SemesterName of the Program: B.Tech. in Mathematics & Computing,July-Dec. 2024

UNIT	CONTENT	MODE		
	Two dimensional random variables	Offline / Black Board Teaching		
Unit-1 Unit-2	Cumulative distribution function	Offline & Open discussions		
	Joint probability distribution	Offline & activity based learning		
	Marginal probability distribution,	Offline / Black Board Teaching		
	Basic concept of stochastic process, Markov Chain	Offline / Black Board Teaching		
	classification of states and chain	Teaching through demonstration by students		
	Poisson process	Teaching through video lecture		
	Transient state	Group based Learning		
	Markov process	Offline / Black Board Teaching		
	Markov process with continuous state space	Teaching through video lecture		
	Markov process with discrete state space	Offline / Black Board Teaching		
	Birth & Death process	Offline & project based learning		
	Random Walks	Offline & activity based learning		
	Wiener process	Teaching through demonstration by students		
	Kolmogorov equation	Offline / Black Board Teaching		
	Pollaczek-Khinchine formula	Offline & activity based learning		
	Basic Notions and Assumptions,	Offline / Black Board Teaching		
	No-Arbitrage Principle,	Offline & activity based learning		
	One-Step Binomial Model,	Offline / Black Board Teaching		
	Risk and Return,	Group based Learning		
Unit-3	Forward Contracts,	Teaching through demonstration by students		
	Call and Put Options	Offline / Black Board Teaching		
	Growth and decay curves, Managing Risk with Options,	Offline & project based learning		
	Credit and loan, Cost of credit and amortization	Offline & Open discussions		
	Time Value Of Money, Simple Interest,	Offline & activity based learning		
	Periodic Compounding Streams of Payments	Offline / Black Board Teaching		
	Discrete and Continuous Compounding	Learning through demonstration		
Unit-4	how to Compare Compounding Methods	Offline / Black Board Teaching		
	Money Market	Group based Learning		
	Discrete Time Model: Stock and Money Market Models	Activity based Learning		

	Investment Strategies, The Principle of No Arbitrage	Offline / Black Board Teaching
	Fundarnental Theorem of Asset Pricing	Teaching through demonstration by students
	Dynamics of Stock Prices	Offline / Black Board Teaching
	Expected Return	Group based Learning
Unit-5	Binomial Tree Model	Offline / Black Board Teaching
	Risk-Neutral Probability, Martingale Property	Offline & activity based learning
	Numerical Techniques in Finance: Continuous-Time Limit	Teaching through video lecture
	Monte-Carlo methods	Offline / Black Board Teaching
	Lattice Method	Teaching through demonstration by students
	Portfolio Management: Risk and Expected Return on a Portfolio	Offline / Black Board Teaching

Online		Offline							
	Black	ack Group Learning Learning Learning Activity Onsite/field based							
	Board	based	through	through	through	based	learning		
	Teaching	Learning	projects	demonstration	experimentation	Learning			
14.5%	47.50%	15.0%	7.5%	10.5%	-	5.00%	-		

INDIA Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Mathematics & Computing, MITS, Gwalior

Faculties Details

Name of the Faculty:	Dr. D K Jain				
Designation:	Professor (Mathematics)				
Department:	Engineering Mathematics & Computing				
Course Details					
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024				
Branch:	Mathematics & Computing				
Semester:	Second Year (Third Semester)				
Title of the Subject:	Discrete Mathematical Structures Subject Code: 3250322				
Number of Students:	78				
Guidelines to study the s	ıbiect:				

- 5. Scientific calculator is required.
- 6. Fundamental knowledge of set theory and its cardinality
- 7. Basic knowledge of graph theory
- 8. Basic knowledge of difference equation and its order and degree.

Recommended Books:

- R1. J.P Tremblay and Manohar: Discrete Mathematical Structures with Application to Computer science.
- R2. Narsingh Deo: Graph Theory with Applications to Engineering and Computer Science.
- R3: C.L. Liu: Discrete Mathematics.

S.	Date	Content to be covered	COs	Blooms	%	Book(s)
No.				Level	coverage	followed
				(BL)	(based	
					on the	
					total	
		Unit 1. Sata Delations and Eurotians			synabus)	
1		Unit-1: Sets, Relations and Functions	1	1.0	2.5%	D 1
1			1	1,2	2.5%	RI
		Introduction of Sets, Subsets and Power sets	-		0.70/	54
2		Complement, Union and Intersection of sets	1	1,2	2.5%	R1
3		Demorgan's law of sets and Cartesian product of two	1	2,3	2.5%	R1
		sets				
4		Relations, relational matrices, properties of relations,	1	1,2,3	2.5%	R1
5		Equivalence relation and their problems	1	2,3	2.5%	R1
6		Definition of functions, Injection, Surjection and	1	1,2,3	2.5%	R1
		Bijective mapping and its properties				
7		Composition of functions, Permutations and the	1	2,3	2.5%	R1
		characteristic functions				
8		Method of Mathematical induction	1	2,3,4	2.5%	R1
		Unit 2: Lattices				
9		Definition of Partial order set/Po-set	2	1,2	2.5%	R1
10		Determination of Upper bounds, lower bounds,	2	1	2.5%	R1
		Maximal and minimal element of a set				
11		Definition of Lattices and sub lattices and its properties	2	1,2,3	2.5%	R1
12		To construct Hasse diagrams of lattice	2	2,3	2.5%	R1
13		Isotonicity and distributive inequality of lattice	2	2,3	2.5%	R1
14		Lattice homomorphism and lattice isomorphism	2	2,3	2.5%	R1
15		complete lattice and complemented lattice	2	2,3,4	2.5%	R1
16		distribution lattice and its theorem	2	2,3,4	2.5%	R1
		Unit 3: Graphs				

LECTURE PLAN (3250322)

17	Introduction of graph and Operation of graphs (Union,	3	1,2	2.5%	R2, R3
	Intersection, complement, product and composition)				
18	Sub graph and Fusion of graphs	3	1,2	2.5%	R2, R3
19	Planer graphs, Region of graph and proof of Euler's	3	1,2,3	2.5%	R2, R3
	formula,				
20	connected graph, Brook's theorem and directed graphs	3	2,3	2.5%	R2, R3
21	Types of directed graphs, Digraphs and	3	1,2	2.5%	R2, R3
	binary relations of graph				
22	Euler graphs, Hamiltonian paths, Walks and circuits	3	2,3,4	2.5%	R2, R3
23	Graph colouring (vertex colouring), Chromatic	3	2,3,4	2.5%	R2, R3
	Number, upper bound and lower bound of chromatic				
	number				
24	Network flows and Matrix representation of graph	3	2,3	2.5%	R2, R3
	Unit 4: Trees				
25	Definition of Trees – Rooted and binary trees and its	4	1,2	2.5%	R2, R3
	Properties				
26	To find Distance and centres in tree	4	1,2	2.5%	R2, R3
27	Spanning trees, Binary Search tree	4	1,2	2.5%	R2, R3
28	Spanning trees in a weighted graph and minimal	4	1,2,3,4	2.5%	R2, R3
	spanning tree				
29	Connectivity and separability	4	2,3	2.5%	R2, R3
30	Network flows, and cut sets	4	1,2,3	2.5%	R2, R3
31	Properties of cut set, and some theorems	4	2,3,4	2.5%	R2, R3
32	Fundamental circuits and cut sets	4	1,2,3	2.5%	R2, R3
	Unit 5: Discrete Numeric function and Recurrence				
	relation				
33	Introduction to discrete numeric functions (DNF) and	5	1,2	2.5%	R3
	generating functions,				
34	Introduction to recurrence relations and recursive	5	1,2	2.5%	R3
	algorithms				
35	Determination of Generating from DNF	5	2,3	2.5%	R3
36	Determination of DNF from Generating	5	2,3	2.5%	R3
37	To find homogeneous solutions of linear recurrence	5	1,2,3	2.5%	R3
	relations with constant coefficients				
38	To find particular solutions of linear recurrence	5	1,2,3	2.5%	R3
	relations with constant coefficients				
39	To find total solutions of linear recurrence relations with	5	2,3,4	2.5%	R3
	constant coefficients				
40	To find total solutions by using Generating function	5	2,3,4	2.5%	R3
	TOTAL LECTURES= 40				

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Modes of Teaching

Subject: Discrete Mathematical Structures (3250322)-Third SemesterName of the Program:B.Tech. in Mathematics & Computing, July-Dec. 2024

UNIT	CONTENT	MODE		
	Introduction of Sets, Subsets and Power sets	Offline / Black Board Teaching		
	Complement, Union and Intersection of sets	Offline & Open discussions		
Unit-1	Demorgan's law of sets and Cartesian product of two sets	Offline & activity based learning		
	Relations, relational matrices, properties of relations	Offline / Black Board Teaching		
	Equivalence relation and their problems	Offline / Black Board Teaching		
	Definition of functions, Injection, Surjection and Bijective mapping and its properties	Teaching through demonstration by students		
	Composition of functions, Permutations and the characteristic functions	Teaching through video lecture		
	Method of Mathematical induction	Group based Learning		
	Definition of Partial order set/Po-set	Offline / Black Board Teaching		
Unit-2	Determination of Upper bounds, lower bounds, Maximal and minimal element of a set	Teaching through video lecture		
	Definition of Lattices and sub lattices and its properties	Offline / Black Board Teaching		
	To construct Hasse diagrams of lattice	Offline & project based learning		
	Isotonicity and distributive inequality of lattice	Offline & activity based learning		
	Lattice homomorphism and lattice isomorphism	Teaching through demonstration by students		
	complete lattice and complemented lattice	Offline / Black Board Teaching		
	distribution lattice and its theorem	Offline & activity based learning		
	Introduction of graph and Operation of graphs (Union, Intersection, complement, product and composition)	Offline / Black Board Teaching		
	Sub graph and Fusion of graphs	Offline & activity based learning		
	Planer graphs, Region of graph and proof of Euler's formula	Offline / Black Board Teaching		
	Connected graph, Brook's theorem and directed graphs	Group based Learning		
Unit-3	Types of directed graphs, Digraphs and binary relations of graph	Teaching through demonstration by students		
	Euler graphs, Hamiltonian paths, Walks and circuits	Offline / Black Board Teaching		
	Graph colouring (vertex colouring), Chromatic Number, upper bound and lower bound of chromatic number	Offline & project based learning		
	Network flows and Matrix representation of graph	Offline & Open discussions		
	Definition of Trees – Rooted and binary trees and its Properties	Offline & activity based learning		
	To find Distance and centres in tree	Offline / Black Board Teaching		
	Spanning trees, Binary Search tree	Learning through demonstration		
Unit-4	Spanning trees in a weighted graph and minimal spanning tree	Offline / Black Board Teaching		
	Connectivity and separability	Group based Learning		

	Network flows, and cut sets	Activity based Learning
	Properties of cut set, and some theorems	Offline / Black Board Teaching
	Fundamental circuits and cut sets	Teaching through demonstration by students
	Introduction to discrete numeric functions (DNF) and generating functions,	Offline / Black Board Teaching
	Introduction to recurrence relations and recursive algorithms	Group based Learning
Unit-5	Determination of Generating from DNF	Offline / Black Board Teaching
	Determination of DNF from Generating	Offline & activity based learning
	To find homogeneous solutions of linear recurrence relations with constant coefficients	Teaching through video lecture
	To find particular solutions of linear recurrence relations with constant coefficients	Offline / Black Board Teaching
	To find total solutions of linear recurrence relations with constant coefficients	Teaching through demonstration by students
	To find total solutions by using Generating function	Offline / Black Board Teaching

Online		Offline								
	Black	ack Group Learning Learning Learning Activity based Onsite/field based								
	Board	based	through	through	through	Learning	learning			
	Teaching	Learning	projects	demonstration	experimentation					
14.5%	47.50%	15.0%	7.5%	10.5%	-	5.00%	-			

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Mathematics & Computing, MITS, Gwalior

Faculty Details				
Name of the Faculty:	Ms. Manali Singh			
Designation:	Assistant professor			
Department:	Department of Computer Science and Business Systems			
Course Details				
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024			
Branch:	Mathematics & Computing			
Semester:	Second Year (Third Semester)			
Title of the Subject:	Operating System Concepts Subject Code: 3250323			
Number of Students:	78			
Guidelines to study the si	ubiect:			

- 1. Understand core concepts like processes, threads, and memory management.
- 2. Practice with real-world operating systems to reinforce learning.
- 3. Study key algorithms for scheduling, synchronization, and deadlock avoidance.
- 4. Use diagrams and flowcharts to visualize complex processes and data structures.

Recommended Books:

- R1. Silberschatz, Galvin: Operating System Concepts, Wiley, 9/E, 2013.
- R2. Stalling William: Operating Systems, Pearson Education, 5/E, 2006.
- R3. Andrew S. Tanenbaum: Modern Operating Systems, 3/E, PHI, 2006.

S. No.	Date	Content to be covered	COs	Blooms Level (BL)	% coverage (based on the total syllabus)	Book(s) followed
		Unit-1				
1		Introduction: Evolution of operating systems	1	1,2	2.5%	R1
2		Types of operating systems	1	1,2	2.5%	R1
3		Different views of operating system	1	2,3	2.5%	R1
4		Operating system concepts and structure	1	1,2	2.5%	R1
5		The Process Concept	1	2,3	2.5%	R1
6		Systems programmer's view of processes	1	1,2,3	2.5%	R1
7		Operating System Services for processes management	1	1,2	2.5%	R1
8		Scheduling algorithms	1	1,2,3	2.5%	R1
9		Performance evaluation	1	1,2	2.5%	R1
		Unit 2				
10		Memory Management: Memory management without swapping or paging	2	1,2	2.5%	R1
11		Swapping	2	1,2	2.5%	R1
12		Virtual memory	2	1,2	2.5%	R1
13		Page replacement algorithms	2	1,2	2.5%	R1
14		Modelling paging algorithms	2	1,2	2.5%	R1
15		Design issues for paging system	2	1,2	2.5%	R1
16		Segmentation	2	1,2	2.5%	R1
17		Thrashing	2	1,2	2.5%	R1
		Unit 3				

LECTURE PLAN (2250524)

18	Interprocess communication and Synchronization:	3	1,2	2.5%	R2, R3
	The need for interprocess synchronization				
10	Mutual analusian	2	1.0	2.5%	D2 D2
19	Nutual exclusion	2	1,2	2.5%	R_2, R_3
20	Semaphores	3	1,2	2.5%	R2, R3
21	Hardware support for mutual exclusion	3	1,2	2.5%	R2, R3
22	Queuing implementation of semaphores	3	1,2	2.5%	R2, R3
23	Classical problems in concurrent programming	3	1,2	2.5%	R2, R3
24	Critical region and conditional critical region	3	1,2	2.5%	R2, R3
25	Monitors messages	3	1,2	2.5%	R2, R3
26	Deadlocks: Deadlock prevention	3	1,2,3	2.5%	R2, R3
27	deadlock avoidance	3	2,3	2.5%	R2, R3
	Unit 4				
28	Mass Storage System_ Overview of Mass	4	1,2	2.5%	R2, R3
	Storage Structure		<i>,</i>		,
29	Disk Structure	4	1.2	2.5%	R2, R3
30	Disk Scheduling and	4	1.2	2.5%	R2. R3
20	Management	-	-,-	,	112, 110
31	swap space management	4	1.2	2.5%	R2. R3
32	File-System Interface File concept	4	1.2	2.5%	R2, R3
33	Access methods	4	1.2	2.5%	R2. R3
34	Directory Structure	4	1,2	2.5%	R2 R3
35	Directory organization	4	1,2	2.5%	R2 R3
36	File system mounting	1	1,2	2.5%	R2, R3
30	File Sharing and Protection	1	1,2	2.5%	R2, R3
38	File System Implementation	4	1,2	2.5%	R2, R3
30	Filó System Structure	4	1,2	2.5%	P2 P3
40	Directory implementation	4	1,2	2.5%	D2 D2
40	Allegation Matheda	4	1,2	2.5%	$\mathbf{K}_{2}, \mathbf{K}_{3}$
41	Allocation Methods	4	2,3	2.5%	R2, R3
42	Free Space Management	4	1,2,3	2.5%	R2, R3
43	Efficiency and Performance	4	2,3,4	2.5%	R2, R3
44	Recovery	4	1,2,3	2.5%	R2, R3
	Unit 5	-		a a a	
45	Performance measurement: Monitoring and	5	1,2	2.5%	R3
1.5	evaluation introduction	-		a a a	
46	Important trends affecting performance issues	5	1,2	2.5%	R3
47	Why performance monitoring and evaluation are	5	1,2	2.5%	R3
	needed				
48	Performance measures	5	1,2	2.5%	R3
49	Evaluation techniques	5	1,2	2.5%	R3
50	Bottlenecks and saturation	5	1,2	2.5%	R3
51	Feedback loops	5	1,2	2.5%	R3
52	Raid model	5	1.2	2.5%	R3
53	Case study: Unix Operating System	5	1.2	2.5%	R3
	TOTAL LECTURES-	53		2.070	
1		~~			

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Modes of Teaching

Subject: Operating System Concepts (3250323)-Third SemesterName of the Program:B.Tech. in Mathematics & Computing, July-Dec. 2024

UNIT	CONTENT	MODE
	Introduction: Evolution of operating systems	Offline / Black Board Teaching
Unit-1	Types of operating systems	Offline & Open discussions
	Different views of operating system	Offline / Black Board Teaching
	Operating system concepts and structure	Offline / Black Board Teaching
	The Process Concept	Offline / Black Board Teaching
	Systems programmer's view of processes	Offline & activity-based learning
	Operating System Services for processes management	Offline / Black Board Teaching
	Scheduling algorithms	Offline / Black Board Teaching
	Performance evaluation	Offline / Black Board Teaching
	Memory Management: Memory management without swapping or paging	Offline / Black Board Teaching
Unit-2	Swapping	Offline / Black Board Teaching
	Virtual memory	Offline / Black Board Teaching
	Page replacement algorithms	Offline / Black Board Teaching
	Modelling paging algorithms	Offline & activity-based learning
	Design issues for paging system	Offline / Black Board Teaching
	Segmentation	Offline / Black Board Teaching
	Thrashing	Offline & activity-based learning
	Interprocess communication and Synchronization: The need for interprocess synchronization	Offline / Black Board Teaching
	Mutual exclusion	Offline & activity-based learning
	Semaphores	Offline / Black Board Teaching
	Hardware support for mutual exclusion	Offline & Open discussions
Unit-3	Queuing implementation of semaphores	Offline / Black Board Teaching
	Classical problems in concurrent programming	Offline / Black Board Teaching
	Critical region and conditional critical region	Offline / Black Board Teaching
	Monitors messages	Offline & activity-based learning
	Deadlocks: Deadlock prevention	Offline / Black Board Teaching
	deadlock avoidance	Offline / Black Board Teaching
	Mass Storage System_ Overview of Mass Storage Structure	Offline & activity-based learning
	Disk Structure	Offline / Black Board Teaching
	Disk Scheduling and Management	Learning through demonstration

Unit-4	swap space management	Offline / Black Board Teaching
	File-System Interface _ File concept	Offline / Black Board Teaching
	Access methods	Offline / Black Board Teaching
	Directory Structure	Offline / Black Board Teaching
	Directory organization	Offline & activity-based learning
	File system mounting	Offline / Black Board Teaching
	File Sharing and Protection	Offline / Black Board Teaching
	File System Implementation	Offline & activity-based learning
	Filé System Structure	Offline / Black Board Teaching
	Directory implementation	Offline / Black Board Teaching
	Allocation Methods	Offline / Black Board Teaching
	Free Space Management	Activity based Learning
	Efficiency and Performance	Offline / Black Board Teaching
	Recovery	Teaching through demonstration by students
	Performance measurement: Monitoring and evaluation introduction	Offline / Black Board Teaching
	Important trends affecting performance issues	Group based Learning
Unit-5	Why performance monitoring and evaluation are needed	Offline / Black Board Teaching
	Performance measures	Offline / Black Board Teaching
	Evaluation techniques	Offline / Black Board Teaching
	Bottlenecks and saturation	Offline / Black Board Teaching
	Feedback loops	Offline / Black Board Teaching
	Raid model	Offline / Black Board Teaching
	Case study: Unix Operating System	Offline & activity-based learning

Online		Offline						
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentation	Activity based Learning	Onsite/field- based learning	
-	71.69%	1.88%	-	1.88%	-	16.98%	-	

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics & Computing

<u>Faculty Details</u>			
Name of the Faculty:	Prof. Prabhakar Sharma		
Designation:	Assistant professor (SG)		
Department:	Department of Computer Science and Engineering		
<u>Course Details</u>			
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024		
Branch:	Mathematics & Computing		
Semester:	Second Year (Third Semester)		
Title of the Subject:	Data Structure & Algorithms Subject Code: 3250324		
Number of Students:	78		

Modes of Teaching Subject: Data Structures & Algorithms (3250324)

UNIT	CONTENT	MODE		
	Array, Pointer, Recursion	Online mode		
	Stack and Operations	Offline / Black Board Teaching		
	Polish Representation	Online Mode		
Unit-1	Linear and Circular Queue	Learning through experimentation		
	Dequeue, Priority Queue	Activity based Learning		
	General List	Online mode		
	Contiguous Implementation of General List	Offline / Black Board Teaching		
	Singly Linked List and Operations on it	Offline / Black Board Teaching		
Unit-2	Doubly Linked List and Operations on it	Learning through experimentation		
	Circular List and Operations on it	Group based Learning		
	Polynomial Representation, Josephus Problem	Learning through projects		
	Tree types, Terminology, Definitions	Online		
	Tree Traversals	Offline / Black Board Teaching		
	Binary Search Tree and its implementation	Offline / Black Board Teaching		
Unit-3	Operations on Binary Search tree	Offline / Black Board Teaching		
	AVL tree, B and B+ Trees	Learning through experimentation		
	Searching and Searching Algorithms	Online		
Unit-4	Sorting and Sorting Algorithms	Offline / Black Board Teaching		
	Hashing, Collision and its Handling	Learning through projects		
	Graphs, terminology	Online		
	Graph representation	Offline / Black Board Teaching		
	Graph traversal	Offline / Black Board Teaching		

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

	Spanning Tree and Algorithms	Activity based Learning
Unit-5	Shortest Path Algorithms	Learning Through Demonstration
	Sparse Matrix	Group based Learning

Online		Offline						
	Black	Black Group Learning Learning Learning Activity Onsite/						
	Board	based	through	through	through	based	based	
	Teaching	Learning	projects	demonstration	experimentation	Learning	learning	
24%	36%	8%	8%	4%	12%	8%	-	

LECTURE PLAN

Name Class:	Name of Course with Code: Data Structures & Algorithms (3250324) Class: 2 nd Year 1 st Sem (MAC) Session: July-December 2024							
Sessio n	Date	Content to be covered	COs	BL	% Coverage			
1		Revision I: Array, Dynamic Allocation	CO1	1	1.7			
2		Revision II: Pointer and Structures	CO1	1,2	1.7			
3		Start and implementation of static stack	CO2	2,3	2.5			
4		Stack and its Uses	CO3	4	2.5			
5		Polish Representation: Basics, Infix to Postfix using Stack	CO2	2	2.6			
6		Evaluation of Expression in Posfix using Stack; implementation	CO4	3,4	2.5			
7		Polish Representation : Completing the Implementation	CO5	3,4	2.5			
8		Queue : Linear Queue Implementations	CO1	1	2.4			
9		Queue: Circular Queue Implementations	CO2	2,3	2.8			
		Dequeue and its implementation	CO3	2,3	2.5			
10		Searching: Linear and Binary Search	CO1, CO2	1,2	2.5			
11		Other searching Techniques	CO2	2	2.5			
12		Hashing Basics and Hashing Techniques	CO1,CO2	1	2.7			
13		Implementation of hashing	CO3	3,4	2.5			
14		Collision and its handling	CO4	3,4	2.6			
15		Sorting: Bubble Sort, Selection Sort	CO2,CO3	2,3	2.6			
16		Selection Sort, Insertion Sort	CO2,CO3	2,3	2.6			

17	Insertion Sort, Shell Sort, Radix Sort	CO3,CO4	3,4	2.7
	Quick Sort, Merger Sort	CO4	3,4	2.5
18	Introduction to linked implementation - I	CO1	1	2.3
19	Introduction to linked implementation - II	CO1	1	2.3
20	Formal Implementation of Linked List and traversal	CO3,CO4	2,3	2.8
21	Linked List: Searching, insert at head and other operations	CO4	3,4	2.8
22	Linked List: Deletions	CO4	4,5	2.7
23	Linked List: Reversing, breaking	CO5	5,6	2.6
24	Circular and Doubly Linked List	CO3	3,4	2.5
25	Linked Stack and Linked Queue	CO3,CO4	3,4	2.5
26	Josephus Problem, Polynomial Implementation	CO5	5,6	2.6
27	Binary Tree, definitions, types, traversals	CO1	1	2.4
	Forest, expression tree, binary search tree	CO1	1,2	2.4
28	Binary Search Tree: Creation and displaying	CO2,CO3	3,4	2.7
29	Recursive traversals, display tree and other functions	CO3,O4	3,4	2.5
30	Binary Search Tree: Searching, Tree Sort	CO2	2	2.6
31	Non-recursive traversals, height of a tree	CO2	2	2.4
32	Deletion in Binary search Tree	CO5	4,5	2.3
33	AVL Tree: Definition, Creation	CO1,CO2	1,2	2.6
34	AVL Tree: Deletion	CO3	3	2.4
35	Graph definition and representation	CO1	3	2.6
36	Graph: DFS, BFS, Kruskal Algorithm	CO2,CO3	3,4	2.6
37	Graphs: Prim's and Dijkstra Algorithms	CO4	3,4	2.5

INDIA Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics & Computing

<u>Faculty Details</u>	
Name of the Faculty:	Dr. J. K. Muthele
Designation:	Associated professor
Department:	Department of Engineering Mathematics & Computing
Course Details	
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024
Branch:	Mathematics & Computing
Semester:	Second Year (Third Semester)
Title of the Subject:	Numerical Techniques Subject Code: 3250325
Number of Students:	78

LECTURE PLAN[#]

Name of Course with Code: Numerical Techniques (3250325)

Class:	2 nd	Year	1II rd	Sem	(MAC)
---------------	-----------------	------	-------------------	-----	-------

Session: July-December 2024

Session	Date	Date Content to be covered		BL	%
					Coverage
1.		Algorithms and flow charts	CO1	1	1.7
2.		Introduction to numerical computing and approximations and errors	CO1	1,2	1.7
3.		Classification of Errors with Examples	CO1	2,3	2.5
4.		Introduction Algebraic & Transcendental and Bisection method	CO1	4	2.5
5.		Regula Falsi method and Iteration method	CO1	2	2.6
6.		Newton Raphson method	CO1	3,4	2.5
7.		Secant method	CO1	3,4	2.5
8.		convergence of iterative methods	CO1	1	2.4
9.		Introduction of Simultaneous linear algebraic Equations &	CO2	2,3	2.8
		Finite Difference and Gauss elimination			
10.		Gauss Jordan method, LU decomposition,	CO2	2,3	2.5
11.		Jacobi method, Gauss Seidel method	CO2	1,2	2.5
12.		SOR method, Ill and well condition of equations	CO2	2	2.5
13.		Discuss to Finite Differences and relation with various	CO2	1	2.7
		operators			
14.		Differences of a polynomial, Factorial Notation	CO2	3,4	2.5
15.		Interpolation, Extrapolation for equally and unequally with	CO4	3,4	2.6
		methods			

16.	Numerical differential up to second order for equally	CO3	2,3	2.6
	unequally			
17.	Numerical differential up to second order for unequally	CO3	2,3	2.6
	intervals			
18.	Numerical Integration	CO3	3,4	2.7
19.	Newton-Cotes integration formulas,	CO3	3,4	2.5
20.	Trapezoidal, Simpson's rules (1/3)	CO1	1	2.3
21.	Simpson's rules (3/8) and Weddle rules.	CO1	1	2.3
22.	Introduction of Numerical solution of ODE	CO4	2,3	2.8
23.	Picard's method, Euler's method	CO4	3,4	2.8
24.	Modified Euler's method, Taylor series method,	CO4	4,5	2.7
25.	Runge Kutta methods fourth order	CO4	5,6	2.6
26.	Multistep methods:	CO4	3,4	2.5
27.	Milne's Predictor corrector method	CO4	3,4	2.5
28.	Numerical solution of the simultaneous linear differential equation,	CO4	5,6	2.6
29.	Second order differential equation.	CO4	1	2.4
30.	Picard's method, Euler's method	CO4	1,2	2.4
31.	Modified Euler's method, Taylor series method,	CO4	3,4	2.7
32.	Runge Kutta methods fourth order	O4	3,4	2.5
33.	Introduction of Finite Difference Methods	CO5	2	2.6
34.	Classification of partial differential equation	CO5	2	2.4
35.	Finite difference method	CO5	4,5	2.3
36.	Numerical solution of Partial Differential equations,	CO5	1,2	2.6
37.	five-point formula for Laplace equation	CO5	3	2.4
38.	diagonal Five point formula for Laplace equation	CO5	3	2.6
39.	Numerical solution of Partial Differential equations, five-	CO5	3,4	2.6
	point formula for Poisson equation.			
40.	diagonal Five point formula for Poisson equation	CO5	3,4	2.5

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Modes of Teaching Subject: Numerical Techniques (3250305)

UNIT	CONTENT	MODE		
	Introduction to numerical computing and approximations and errors	Online mode		
Unit-1	Classification of Errors with Examples	Offline / Black Board Teaching		
	Introduction Algebraic & Transcendental and Bisection method	Online Mode		
	Regula Falsi method and Iteration method, Newton Raphson	Learning through experimentation		
	method and Secant method			
	Convergence of iterative methods	Activity based Learning		
	Introduction of Simultaneous linear algebraic Equations &	Online mode		
	Finite with various methods solve for linear Eqs.			
	Discuss some methods as Gauss Jordan method, LU	Offline / Black Board Teaching		
Unit_?	decomposition,			
CIIIt-2	Jacobi method Gauss Seidel method	Offline / Black Board Teaching		
	Differences of a polynomial, Factorial Notation	Learning through experimentation		
	SOR method, Ill and well condition of equations	Group based Learning		
	Discuss to Finite Differences and relation with various operators	Online		
	Interpolation, Extrapolation for equally and unequally with methods	Offline / Black Board Teaching		
Unit-3	Numerical differential and Integration	Offline / Black Board Teaching		
	Discuss some methods as Trapezoidal, Simpson's rules (1/3) Simpson's rules (3/8) and Weddle rules.	Offline / Black Board Teaching		
	Uses of Numerical Differentiation & Integration	Learning through experimentation		
	Introduction of Numerical solution of ODE	Online		
Unit-4	Picard's method, Euler's method, Modified Euler's method,	Offline / Black Board Teaching		
	Taylor series method,			
	Runge Kutta methods fourth order	Learning through projects		

	Multistep methods: Milne's Predictor corrector method	Offline / Black Board Teaching
	Numerical solution of the simultaneous linear differential	Offline / Black Board Teaching
	equation,	
	Introduction of Finite Difference Methods	Online
	Classification of partial differential equation	Activity based Learning
Unit-5	Numerical solution of Partial Differential equations, five-	Offline / Black Board Teaching
	point formula for Laplace equation	
	Numerical solution of Partial Differential equations, five-	Offline / Black Board Teaching
	point formula for Poisson equation	
	diagonal Five point formula for Laplace equation	Activity based Learning
	diagonal Five point formula for Poisson equation	Learning Through Demonstration
	Some Problems	Group based Learning

Online	Offline						
	Black	Group	Learning	Learning	Learning	Activity	Onsite/field
	Board Teaching	based Learning	through projects	through demonstration	through experimentation	based Learning	based learning
24%	36%	8%	8%	4%	12%	8%	-

