

Department of Engineering Mathematics and Computing

Faculty Details	
Name of the Faculty:	Utkarsh Sharma
Designation:	Assistant Professor
Department:	Computer Science and Business Systems
<u>Course Details</u>	
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024
Branch:	Mathematics & Computing
Semester:	Third Year (Fifth Semester)
Title of the Subject:	Computer Networks Subject Code: 2250521
Number of Students:	78
Recommended Books:	

- Behrouz A Forouzan: Data Communication and Networking, 4th edition. Peterson and Davie's "Computer Networks", 5th edition R1.
- R2.
- Tanenbaum A. S., "Computer Network", R3:

S. No.	Content to be covered	COs	Blooms Level (BL)	% coverage	Book(s) followed
	Unit-1: Computer Network				
1	Introduction to computer networks & their uses,	1	1	2.63%	R1
2	Different topologies	1	1	2.63%	R1
3	OSI Layered Architecture, Peer-to-Peer processes and encapsulation, Function and Services	1	1	2.63%	R1
4	The Physical layer: Digital Signals, Transmission Impairments and Maximum data rate of a channel	1	1,2,3	2.63%	R1
5	Shennons theorem, Nyquist theorem,	1	1, 2,3	2.63%	R1
6	Transmission media	1	1,2	2.63%	R1
7	Circuit, Packet and Message switching, virtual Circuit	1	3, 4	2.63%	R1
8	Introduction to ISDN & its components	1	1, 2	2.63%	R1
	Unit 2: The data link layer				
9	Design issues & function,	2	1,2	2.63%	R1
10	Error detection & correction, Forward error correction Versus Retransmission	2	2, 3, 4	2.63%	R1, R2
11	Hamming code & CRC codes	2	2,3	2.63%	R1, R2
12	Framing, Bit stuffing and Byte stuffing	2	2,3	2.63%	R1, R2
13	Data link layer protocols	2	1, 2,3	2.63%	R1
14	The medium access sublayer	2	1, 2	2.63%	R1
15	Protocols: ALOHA, CSMA, Collision Free Protocol	2	1, 2	2.63%	R1
	Unit 3: IEEE Standards				
16	IEEE 802 standards for LANs	3	1,2	2.63%	R1, R3
17	LAN Devices: HUB, Switches	3	1, 3	2.63%	R1, R3

I ECTURE PLAN (2250521)

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

18	Bridges: IEEE 802.x to IEEE 802.y,	3	1,2	2.63%	R1, R3
19	Spanning Tree, Remote Bridge	3	1, 2	2.63%	R1, R3
20	Internetworking Devices: Routers & gateways	3	1, 2, 3	2.63%	R2, R3
21	The network layer	3	1, 2	2.63%	R2, R3
22	Internal organization	3	1, 2	2.63%	R2, R3
	Unit 4: Rooting Algorithms				
23	Shortest path routing, Flooding	4	1, 2, 3	2.63%	R2, R3
24	LSR, Distance Vector Routing	4	1,2, 3	2.63%	R2, R3
25	Hierarchical Routing	4	1,2	2.63%	R2, R3
26	Introduction to TCP/IP Protocol	4	1	2.63%	R2, R3
27	ARP, RARP	4	2, 3, 4	2.63%	R2, R3
28	IP Datagram with options	4	1,2	2.6%	R2, R3
29	ICMP	4	1, 2	2.63%	R2, R3
	Unit 5: Subnet				
30	Subnet, Supernet	5	1,2	2.63%	R1
34	CIDR Transport Layer: Congestion control	5	1,2	2.63%	R1
35	Load Shedding, Jitter control	5	2,3	2.63 %	R1
36	Addressing and Multiplexing	5	2,3	2.63%	R1
37	Connection establishment and connection release, Flow control	5	1,2	2.63%	R1
38	Application layer: Introduction to DNS and Email.	5	1,2	2.63%	R1
1		1			

Department of Engineering Mathematics and Computing Modes of Teaching

Subject:Computer Network (2250521)-Fifth SemesterName of the Program:B. Tech. in Mathematics & Computing, July-Dec. 2024

UNIT	CONTENT	MODE
	Introduction to computer networks & their uses,	Offline / Black Board Teaching
	Different topologies	Offline / Black Board Teaching
	OSI Layered Architecture, Peer-to-Peer processes and encapsulation, Function and Services	Offline / Black Board Teaching
Unit-1	The Physical layer: Digital Signals, Transmission Impairments and Maximum data rate of a channel,	Offline / Black Board Teaching
	Shennons theorem, Nyquist theorem,	Offline & activity based learning
	Transmission media	Offline & activity based learning
	Circuit, Packet and Message switching, virtual Circuit	Teaching through video lecture
	Introduction to ISDN & its components	Group based Learning
	Design issues & function,	Offline / Black Board Teaching
	Error detection & correction, Forward error correction Versus Retransmission	Teaching through video lecture
Unit-2	Hamming code & CRC codes	Offline / Black Board Teaching
	Framing, Bit stuffing and Byte stuffing	Activity & Project based learning
	Data link layer protocols	Offline / activity based learning
	The medium access sublayer	Teaching through demonstration
	Protocols: ALOHA, CSMA, Collision Free Protocol	Offline / Black Board Teaching
	IEEE 802 standards for LANs	Offline / Black Board Teaching
	LAN Devices: HUB, Switches	Group based Learning
	Bridges: IEEE 802.x to IEEE 802.y,	Offline / Black Board Teaching
Unit-3	Spanning Tree, Remote Bridge	Group based Learning
	Internetworking Devices: Routers & gateways	Teaching through demonstration
	The network layer	Offline / Black Board Teaching
	Internal organization	Offline / Black Board Teaching
	Shortest path routing, Flooding	Offline / activity based learning
	LSR, Distance Vector Routing	Offline / activity based learning
	Hierarchical Routing	Offline / activity based learning
Unit-4	Introduction to TCP/IP Protocol	Offline / Black Board Teaching
	ARP, RARP	Group based Learning

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing

	IP Datagram with options	Offline / Black Board Teaching
	ICMP	Group based Learning
	Subnet, Supernet	Offline / Black Board Teaching
	CIDR Transport Layer: Congestion control	Group based Learning
Unit-5	Load Shedding, Jitter control	Group based Learning
	Addressing and Multiplexing	Activity & Project based learning
	Connection establishment and connection release, Flow control	Teaching through video lecture
	Application layer: Introduction to DNS and Email.	Offline / Black Board Teaching

Online		Offline					
	Black	Group	Learning	Learning	Learning through	Activity	Onsite/field
	Board	based	through	through	experimentation	based	based
	Teaching	Learning	projects	demonstration		Learning	learning
7.89%	39.47%	18.42%	5.26%	5.26%	-	21.05%	-

Utkarsh Sharma Assistant Professor Department of CSBS MITS, Gwalior

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत

MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing

Faculty Details	
Name of the Faculty:	Dr. Divya Chaturvedi
Designation:	Assistant Professor
Department:	Engineering Mathematics & Computing
Course Details	
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024
Branch:	Mathematics & Computing
Semester:	Third Year (Fifth Semester)
Title of the Subject:	Real and Complex Analysis Subject Code: 2250522
Number of Students:	78
Guidelines to study the sul	niect:

- 1. Fundamental knowledge of set theory.
- 2. Basic knowledge of continuity and differentiation.
- 3. Basic knowledge of integration
- 4. Basic knowledge of complex numbers and basic operations with complex numbers.

Recommended Books:

R1 Walter Rudin. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). 3rded. McGraw-Hill, 1976.

R2 S C Malik and Savita Arora, Mathematical Analysis, 4th Edition, New Age International Publishers, 2010.
R3 S. Ponnusamy, Foundation of Complex Analysis, Narosa Publishing House, 1997.

R4 J. W. Brown and R. V. Churchill, Complex variables and applications, MC Graw Hill Higher Education, EighthEdition 2009.

R5 Murray Spiegel, Seymour Lipschutz, John Schiller, Dennis Spellman, Schaum's Outlines: Complex variables, 2nd Edition, McGraw-Hill Education – Europe, 2009

S. No.	Date	Content to be covered	COs	Blooms Level (BL)	% coverage (based on the total syllabus)	Book(s) followed
		Unit-1: Real System				
1		The set of natural numbers, integers, rational numbers, set of real numbers as a complete Ordered fields, closed, open, semi-open and semi-closed intervals Real system and Real Field	1	1,2	2.5%	R1, R2
2		Set bounded above and below, supremum, infimum, order completeness of the set of real numbers, Archimedean property of the real-number system	1	1,2	2.5%	R1, R2
3		Cauchy-Schwarz inequality, Finite, Countable, and Uncountable Sets	1	2,3	2.5%	R1, R2
4		Neighbourhood of a point, properties of neighbourhood of a point, Interior point	1	1,2,3	2.5%	R1, R2

LECTURE PLAN (2250522)

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

5	Limit point, Existence of limit point, Open	1		2.5%	R1, R2
5	sets, Closed sets	1	2,3	2.3%	K1, K2
6	Sets, Closed sets Cover of a set , compact set and its	1	1,2,3	2.5%	R1, R2
0	properties	1	1,2,3	2.3%	K1, K2
7	Heine Borel Theorem, Perfect Sets	1	2,3,4	2.5%	R1, R2
8	Connected Sets, Bolzano-Weierstrass	1	2,3,4	2.5%	R1, R2 R1, R2
0	theorem	1	2,3,4	2.570	K 1, K 2
	Unit 2: Continuity and Differentiability				
9	Limits of Function, Algebra of limits, right	2	1,2	2.5%	R1, R2
	hand and left hand limits	2	1,2	2.570	1(1,1(2
10	Continuous Functions, Discontinuity of a	2	1,2,3	2.5%	R1, R2
10	function, Algebra of continuous function	-	1,2,0	2.0 /0	111, 112
11	Limits at Infinity and infinite limits,	2	1,2,3	2.5%	R1, R2
	Continuity of Derivatives	-	1,2,0	2.0 /0	111, 112
12	Cauchy Criterion for finite limits,	2	2,3,4	2.5%	R1, R2
	Continuity at point	-	_,_, .	,	,
13	Properties of a continuity of a function at a	2	2,3,4	2.5%	R1, R2
10	point, Continuity in an interval	-	_,_, .	,	,
14	Properties of a function continuous in a	2	2,3,4	2.5%	R1, R2
	closed finite interval, Theorems in	_			,
	Continuity				
15	Uniform continuity and examples	2	2,3,4	2.5%	R1, R2
16	Theorems on Uniform continuity	2	2,3,4	2.5%	R1, R2
	Unit 3: Riemann and Riemann-Stieltjes				,
	Integral				
17	Definition and existence of the integral	3	1,2	2.5%	R1, R2
18	Refinement of Partitions, Darboux theorem	3	1,2,3	2.5%	R1, R2
19	Condition of Integrability, Properties of	3	1,2,3	2.5%	R1, R2
	Reimann Integral				
20	Reimann Sums, Integrability of continuous	3	2,3	2.5%	R1, R2
21	Integrability of monotonic function,	3	1,2,3	2.5%	R1, R2
	Partitions				
22	Sufficient and existence conditions for	3	2,3,4	2.5%	R1, R2
	existence of Riemann-Stieltjes integrals,				
	Upper and lower bounds				
23	Upper and Lower integrals, fundamental	3	2,3,4	2.5%	R1, R2
	theorems of calculus				
24	Mean Value Theorems for Riemann-	3	2,3,4	2.5%	R1, R2
	Stieltjes integrals				
	Unit 4: Functions of Complex Variables				
25	Functions of Complex Variables, Limits	4	1,2	2.5%	R3, R4, R5
26	Continuity and differentiability of functions	4	1.2.2	2.50/	D2 D4 D5
26	Continuity and differentiability of functions	4	1,2,3	2.5%	R3, R4, R5
27	of a complex variable	Λ	100	2.50/	D2 D4 D5
27	Analytic functions, necessary condition for function to be applytic	4	1,2,3	2.5%	R3, R4, R5
28	function to be analytic sufficient condition for function to be	4	102	2.50/	D2 D4 D5
20		4	1,2,3	2.5%	R3, R4, R5
20	analytic, Cauchy-Reimann equations	4	224	2.50/	D2 D4 D5
29	Harmonic functions, Milne-Thomson	4	2,3,4	2.5%	R3, R4, R5
	method to find conjugate function				I

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

30	Cauchy-Reimann equations in Polar	4	1,2,3,4	2.5%	R3, R4, R5
	coordinates, Conformal Mapping				
31	Conformal Mappings examples, Bilinear	4	2,3,4	2.5%	R3, R4, R5
	Transformation: magnification				
32	Bilinear Transformation: rotation, inversion	4	2,3,4	2.5%	R3, R4, R5
	and reflection				
	Unit 5: Integration in a complex plane				
33	Integration in a complex plane along a	5	1,2,3	2.5%	R3, R4, R5
	contour				
34	Integration of regular function	5	1,2,3	2.5%	R3, R4, R5
			, ,		, ,
35	Cauchy's theorem, Cauchy's integral	5	2,3,4	2.5%	R3, R4, R5
	formula				
36	Examples on Cauchy's integral formula	5	2,3,4	2.5%	R3, R4, R5
	1 5 6		, ,		, ,
37	Morera's theorem, Liouville Theorem	5	1,2,3,4	2.5%	R3, R4, R5
	,		· · · ·		- 7 7 -
38	Taylor's and Laurents series	5	1,2,3,4	2.5%	R3, R4, R5
	5		, , , ,		, ,
39	Isolated and non-isolated singularity, poles	5	2,3,4	2.5%	R3, R4, R5
	guild and non horace on guilding, pores	1	_,_,.		10,10,10
40	Residues, Cauchy's residue theorem and its	5	2,3,4	2.5%	R3, R4, R5
-	applications	-			,,
I	TOTAL LECTUR	ES = 4	0		I

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing Modes of Teaching

Subject:	Real and Complex Analysis (2250522)-FIFTH Semester
Name of the Program:	B.Tech. in Mathematics & Computing,

July-Dec. 2024

UNIT	CONTENT	MODE
UNIT-	Ordered Sets, Real Field and Archimedean	Offline mode / Black Board
1	property	Teaching
	Cauchy-Schwarz inequality, finite countable and	Offline mode / Black Board
	uncountable set	Teaching
	Compact set and Heine Borel Theorem	Learning through seminar
	Perfect Set, Connected Set and Bolzano-	Offline mode / Black Board
	Weierstrass Theorem	Teaching
UNIT-	Limit of function and continuous function	Offline mode / Black Board
2		Teaching
	Continuity and Discontinuity, Limits at infinity,	Group based Learning
	continuity of derivatives	
	Cauchy Criterion for finite limits, continuity at	Online mode
	point and in an interval, Theorems in continuity	
	Functions continuous on closed interval, Uniform	Group based Learning
	continuity, Theorems on Uniform Continuity	
UNIT-	Riemann integral existence, Refinement of	Offline mode / Black Board
3	partition and Darboux Theorem	Teaching
	Condition of integrability, properties of Riemann	Offline / Black Board Teaching
	integral, Riemann Sum	
	Integrability of continuous and monotonic	Offline mode / Black Board
	function	Teaching
	Sufficient condition for the existence of Riemann	Learning through seminar
	Stieltjes integral, upper and lower Riemann	
	integral, Fundamental theorem of Calculus	
	Mean value theorem for Riemann Stieltjes	Online mode
	integral	
UNIT-	Functions of complex variables, Limits continuity	Online mode
4	and differentiability of function	
	Analytic function, necessary and sufficient	Offline / Black Board
	condition for function to be analytic, Harmonic	Teaching
	function	
	Milne- Thomson method to find conjugate	Learning through seminar
	function, Conformal mapping	
	Bilinear Transformation: magnification and	Offline / Black Board Teaching
	rotation, inversion and reflection	
UNIT-	Integration in a complex plane along a contour,	Activity based learning
5	integration of regular functions	
	Cauchy theorem and Cauchy integral formula	Offline / Black Board Teaching

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Morera's theorem, Liouville theorem, Taylors and	Learning through seminar
Laurents series	
Isolated and non-isolated singularity, poles	Offline / Black Board Teaching
Residues, Cauchy residue theorem and its	Offline / Black Board Teaching
applications	

Online	Offline								
	Black	Group	Learning	Learning through	Learning through	Activity	Onsite/field		
	Board	based	through	demonstration	experimentation	based	based learning		
	Teaching	Learning	Seminar			Learning			
13.64%	54.54%	9.09%	13.64%	-	-	9.09%	-		

<u>Faculty Details</u>		
Name of the Faculty:	Dr. Saumil Maheshwari	
Designation:	Assistant Professor	
Department:	CSBS	
<u>Course Details</u>		
Name of the Program:	B.Tech. in Mathematics & Comp	outing, July-Dec. 2024
Branch:	Mathematics & Computing	
Semester:	Third Year (Fifth Semester)	
Title of the Subject:	Software Engineering	Subject Code: 2250523
Number of Students:	78	

Lecture Plan SUBJECT: SOFTWARE ENGINEERING (2250523)

Teaching	Date	Content to be covered	COs	Blooms	0/ Coverage
Session	Date	Content to be covered	COS		% Coverage
Session				Level (BL)	(To be calculated
					based on the
					total
					syllabus)
1.		Introduction to Software	1,4	BL 1,2,3	1%
1.		Engineering:Definition	1,4	DL 1,2,3	1 70
2.		Software Engineering-Layered	1,2	BL 2,3	2%
۷.		Technology	$^{1, \angle}$	DL 2,5	290
3.		Software Characteristics and	1,2	BL 1,2	2%
5.			$^{1, \angle}$	DL 1,2	270
4		Component Software Model	1.4	DI 56	2%
<u>4.</u> 5.				BL 5,6 BL 3,4	3%
5.		Software Development Life Cycle	1,4	BL 3,4	3%
6		Model(SDLC) The Waterfall Model	2.4		2%
6.			2,4	BL 3,4	
7.		Iterative Waterfall Model	2,4	BL 3,4	2%
8.		Prototyping Model	2,4	BL 3,4	2%
9.		Spiral Model	2,4	BL 3,4	2%
10.		RAD Model	2,4	BL 3,4	2%
11.		Selection Criteria of Model:	1,4	BL 3, 5, 6	1%
		Characteristics of Requirements	• •		4.51
12.		Status of Development Team	2,4 2,4 2,4	BL 3, 5, 6	1%
13.		Users Participation	2,4	BL 3, 5, 6	1%
14.		Type of Project and Associated	2,4	BL 3, 5, 6	1%
		Risk			
15.		Requirement Engineering:	1,5	BL 1,2	1%
		Definition			
16.		Requirement Engineering Activity	1,5	BL 2,3	4%
17.		Types of Requirements	1,5	BL 2,3	1%
18.		Functional and Non-Functional	1,5	BL 3,4	2%
		Requirements			
19.		User and System Requirements	1,5	BL 2,3,4	1%

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

		its and Co.		
20.	Requirement Elicitation Methods	1,5	BL 2,3	2%
21.	Requirement Analysis Methods	2,5	BL 3,4	2%
22.	Requirement Documentation (SRS)	1,2,5	BL 4,5,6	1%
23.	Requirement Validation	1,2	BL 3,4	1%
24.	Requirement Management	1,2	BL 3,4,5	1%
25.	Design Fundamentals	1,2	BL 1,2	2%
26.	Design Principles	1,2,5	BL 3,4	1%
27.	Effective Modular Designs	2,5	BL 2,3,4	2%
28.	Design Representations	2,5	BL 1,2	1%
29.	Architectural Design	2, 5	BL 3,4	2%
30.	Procedural Design	2, 5	BL 3,4	2%
31.	Data Directed Design	2, 5	BL 3,4	2%
32.	Real Time Design	2, 5	BL 3,4,5	2%
33.	Object Oriented Design	2,5	BL 3,4	2%
34.	Coupling and Cohesion	2,5	BL 4,5	2%
35.	Software Metrices, Project	1,3	BL 1,2	2%
	Management andEstimation	1,5	DL 1,2	270
36.	Metrics in Process and Project Domains	1,3	BL 1,2	2%
37.	Software Measurement	1,3	BL 2,3	2%
38.	Software Quality Metrices	1,3	BL 1,2,3	2%
39.	Project Management: Basic-	1,3	BL 1,2	1%
	People Product, Process, Project	1,0		1,0
40.	Software Project Estimation	1,3	BL 3,4	2%
41.	Decomposition Techniques	3,5	BL 2,3	1%
42.	Function Point Estimation	3,5	BL 2,3	1%
43.	Line of Code (LOC) Based Estimation	3,5	BL 2,3	2%
44.	Empirical Estimation	3,5	BL 2,3	2%
45.	COCOMO Model	3,4,5	BL 3,4	2%
46.	Project Scheduling Techniques	1,3,5	BL 3,4	2%
47.	Software Testing: Definition	1,6	BL 1,2	1%
48.	Software Testing Life Cycle (STLC)	1,6	BL 4,5	3%
49.	Test Case Design	2,5,6	BL 5,6	2%
50.	Strategic Approach to Software Testing-	1,5,6	BL 1,2	1%
51.	Verification and Validation	1,5,6	BL 3,4	2%
52.	Strategic Issues	6	BL 1,2	1%
53.	Criteria for Completion of Testing	6	BL 1,2	1%
54.	Unit Testing	5,6	BL 3,4,5	1%
55.	Integration Testing	5,6	BL 3,4,5	1%
56.	Validation Testing	5,6	BL 3,4,5	1%
57.	System Testing	5,6	BL 3,4,5 BL 3,4,5	1%
58.	Black-Box Testing Techniques	<u> </u>	BL 3,4,5 BL 3,4,5	2%
<u>59.</u>	White-Box Testing Techniques	5,6	BL 3,4,5 BL 3,4,5	2%

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing

60. Acceptance Testing 5,6 BL 3,4,5 2%

Modes of Teaching SUBJECT: SOFTWARE ENGINEERING (250523)

UNIT	CONTENT	MODES		
	Introduction to Software Engineering: Definition	Black Board Teaching		
	Software Engineering-Layered Technology	Black Board Teaching		
	Software Characteristics and Component	Black Board Teaching		
	Software Model	Black Board Teaching		
	Software Development Life Cycle Model (SDLC)	Activity based Learning		
	The Waterfall Model	Learning through demonstration		
Unit-1	Iterative Waterfall Model	Learning through demonstration		
	Prototyping Model	Learning through demonstration		
	Spiral Model	Learning through demonstration		
	RAD Model	Learning through demonstration		
	Selection Criteria of Model: Characteristics of Requirements	Group based Learning		
	Status of Development Team	Group based Learning		
	Users Participation	Group based Learning		
	Type of Project and Associated Risk	Group based Learning		
	Requirement Engineering: Definition	Black Board Teaching		
	Requirement Engineering Activity	Black Board Teaching		
	Types of Requirements	Learning through projects		
Unit-2	Functional and Non-Functional Requirements	Learning through projects		
01111-2	User and System Requirements	Learning through projects		
	Requirement Elicitation Methods	Group based Learning		
	Requirement Analysis Methods	Learning through demonstration		
	Requirement Documentation (SRS)	Learning through projects		
	Requirement Validation	Black Board Teaching		
	Requirement Management	Black Board Teaching		

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

	Design Fundamentals	Black Board Teaching	
	Design Principles	Black Board Teaching	
	Effective Modular Designs	Learning through demonstration	
	Design Representations	Black Board Teaching	
Unit-3	Architectural Design	Learning through experimentation	
	Procedural Design	Learning through experimentation	
	Data Directed Design	Learning through experimentation	
	Real Time Design	Learning through experimentation	
	Object Oriented Design	Learning through experimentation	
	Coupling and Cohesion	Learning through demonstration	
	Software Metrices, Project Management and Estimation	Activity based Learning	
	Metrics in Process and Project Domains	Black Board Teaching	
	Software Measurement	Black Board Teaching	
	Software Quality Metrices	Black Board Teaching	
	Project Management: Basics-People Product, Process, Project	Group based Learning	
Unit-4	Software Project Estimation	Activity based Learning	
	Decomposition Techniques	Black Board Teaching	
	Function Point Estimation	Black Board Teaching	
	Line of Code (LOC) Based Estimation	Black Board Teaching	
	Empirical Estimation	Black Board Teaching	
	COCOMO Model	Black Board Teaching	
	Project Scheduling Techniques	Black Board Teaching	
	Software Testing: Definition	Black Board Teaching	
	Software Testing Life Cycle (STLC)	Black Board Teaching	
	Test Case Design	Activity based Learning	
	Strategic Approach to Software Testing	Learning through experimentation	
	Verification and Validation	Black Board Teaching	
	Strategic Issues	Black Board Teaching	
Unit-5	Criteria for Completion of Testing	Black Board Teaching	
	Unit Testing	Learning through demonstration	

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing

Integration Testing	Learning through demonstration
Validation Testing	Black Board Teaching
System Testing	Black Board Teaching
Black-Box Testing Techniques	Learning through demonstration
White-Box Testing Techniques	Learning through demonstration
Acceptance Testing	Learning through demonstration

Online	Offline								
	Black Board Teaching	Group based Learning	Learning through projects	Learning through demonstration	Learning through experimentation	Activity based Learning	Onsite/field based learning		
-	45%	10%	6.66%	21.66%	10%	6.66%	-		

Dr. Saumil Maheshwari Assistant Professor Department of CSBS MITS, Gwalior

Faculty Details			
Name of the Faculty:	Ms. Manali Singh		
Designation:	Assistant professor		
Department:	Department of Computer Science and Business Systems		
Course Details			
Name of the Program:	B.Tech. in Mathematics & Computing, July-Dec. 2024		
Branch:	Mathematics & Computing		
Semester:	Third Year (Fifth Semester)		
Title of the Subject:	Data Science using Python Subject Code: 2250524		
Number of Students:	78		
Guidelines to study the sub	ject:		

- 1. Understand syntax, data structures, and practice coding regularly.
 - 2. Focus on NumPy, Pandas, Matplotlib, Seaborn, and Scikit-Learn.
 - 3. Use real-world datasets, build end-to-end projects, and document your work.
 - 4. Join forums, take online courses, collaborate on projects, and participate in hackathons.

Recommended Books:

- R1. Mastering python for data science, Samir Madhavan
- R2. Data Analytics using Python Paperback, Bharti Motwani
- R3: Data Analytics Essentials, Bianca Szasz

S. No.	Date	Content to be covered	COs	Blooms Level (BL)	% coverage (based on the total syllabus)	Book(s) followed
		Unit-1				
1		Introduction of basics python tool	1	1,2	2.5%	R1
2		Setting working Directory	1	1,2	2.5%	R1
3		Creating and saving a script file	1	2,3	2.5%	R1
4		File execution	1	1,2	2.5%	R1
5		Clearing console	1	2,3	2.5%	R1
6		Removing variables from environment	1	1,2,3	2.5%	R1
7		Clearing environment	1	1,2	2.5%	R1
8		Commenting script files	1	1,2,3	2.5%	R1
9		Variable creation	1	1,2	2.5%	R1
10		Arithmetic and logical operators	1	1,2	2.5%	R1
11		Data types and associated operations	1	1,2	2.5%	R1

LECTURE PLAN (2250524)

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

1					
12	Unit 2	-	1.2	2.50/	
12	Sequence data types and associated	2	1,2	2.5%	R1
12	operations Strings	2	1.2	2 50/	D1
13	Lists	2	1,2	2.5%	R1
14	Arrays	2	1,2	2.5%	R1
15	Tuples	2	1,2	2.5%	R1
16	Dictionary	2	1,2	2.5%	R1
17	Sets	2	1,2	2.5%	R1
18	Range	2	1,2	2.5%	R1
19	NumPy	2	1,2	2.5%	R1
20	Array	2	1,2	2.5%	R1
	Unit 3				
21	Pandas data frame and data frame related operations on different dataset	3	1,2	2.5%	R2, R3
22	Reading files	3	1,2	2.5%	R2, R3
23	Exploratory data analysis	3	1,2,3	2.5%	R2, R3
24	Data preparation and preprocessing	3	2,3	2.5%	R2, R3
27	Data proparation and proprocessing	5	2,5	2.370	112,113
	Unit 4				
25	Linear regression	4	1,2	2.5%	R2, R3
26	Logistic regression	4	1,2	2.5%	R2, R3
27	Decision tree 4 1,2		1,2	2.5%	R2, R3
28	Tree creation with entropy and information gain	4	1,2	2.5%	R2, R3
29	IDE3 algorithm	4	2,3	2.5%	R2, R3
30	Random forest	4	1,2,3	2.5%	R2, R3
31	Naïve bayes theorem	4	2,3,4	2.5%	R2, R3
32	K-nearest neighbor and different ensemble	4	1,2,3	2.5%	R2, R3
-	methods for solving real world problems		_)_)0	,	,
	Unit 5				
33	Data visualization on different dataset using	5	1,2	2.5%	R3
	mat plotlib and sea born libraries		,		
34	Scatter plot	5	1,2	2.5%	R3
35	Line plot	5	1,2	2.5%	R3
36	Bar plot	5	1,2	2.5%	R3
37	Histogram	5	1,2	2.5%	R3
38	Box plot	5	1,2	2.5%	R3
39	Pair plot	5	1,2	2.5%	R3
40	Control structures using different dataset	5	1,2	2.5%	R3
40	if-else family	5	1,2	2.5%	R3
42	for loop	5	1,2	2.5%	R3
42	for loop with if breaks	5	1,2	2.5%	R3
43	while loop	5			R3
	Functions		1,2	2.5%	
45		5	1,2	2.5%	R3
<u> </u>	TOTAL LECTURES= 4	5	1	1	1

Department of Engineering Mathematics and Computing Modes of Teaching

Subject: Data Science using Python (2250524)-Fifth SemesterName of the Program:B.Tech. in Mathematics & Computing, July-Dec. 2024

UNIT	CONTENT	MODE
	Introduction of basics python tool	Offline / Black Board Teaching
	Setting working Directory	Offline & Open discussions
	Creating and saving a script file	Offline / Black Board Teaching
	File execution	Offline / Black Board Teaching
	Clearing console	Offline / Black Board Teaching
Unit-1	Removing variables from environment	Offline & activity-based learning
	Clearing environment	Offline / Black Board Teaching
	Commenting script files	Offline / Black Board Teaching
	Variable creation	Teaching through video lecture
	Arithmetic and logical operators	Offline / Black Board Teaching
	Sequence data types and associated operations Strings	Offline / Black Board Teaching
	Lists	Offline / Black Board Teaching
	Arrays	Offline / Black Board Teaching
Unit-2	Tuples	Offline / Black Board Teaching
	Dictionary	Offline & activity-based learning
	Sets	Offline / Black Board Teaching
	Range	Offline / Black Board Teaching
	NumPy	Offline / Black Board Teaching
	Array	Offline & activity-based learning
	Pandas data frame and data frame related operations on different dataset	Offline / Black Board Teaching
	Reading files	Offline & activity-based learning
Unit-3	Exploratory data analysis	Offline / Black Board Teaching
	Data preparation and preprocessing	Group based Learning
	Linear regression	Offline & activity-based learning
	Logistic regression	Offline / Black Board Teaching
	Decision tree	Learning through demonstration
Unit-4	Tree creation with entropy and information gain	Offline / Black Board Teaching

माधव प्रौद्योगिकी एवं विज्ञान संस्थान, ग्वालियर (म.प्र.), भारत MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR (M.P.), INDIA Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing

	Department of Engineering Wathematics and Computing						
	IDE3 algorithm	Offline / Black Board Teaching					
	Random forest	Activity based Learning					
	Naïve bayes theorem	Offline / Black Board Teaching					
	K-nearest neighbor and different ensemble methods for solving real world problems	Teaching through demonstration by students					
	Data visualization on different dataset using mat plotlib and sea born libraries	Offline / Black Board Teaching					
	Scatter plot	Group based Learning					
Unit-5	Line plot	Offline / Black Board Teaching					
	Bar plot	Offline / Black Board Teaching					
	Histogram	Offline / Black Board Teaching					
	Box plot	Offline / Black Board Teaching					
	Pair plot	Offline / Black Board Teaching					
	Control structures using different dataset	Offline / Black Board Teaching					
	if-else family	Offline & activity-based learning					
	for loop	Teaching through video lecture					
	for loop with if breaks	Offline / Black Board Teaching					
	while loop	Teaching through demonstration by students					
	Functions	Offline / Black Board Teaching					

ĺ	Online	Offline						
		Black	Group	Learning	Learning	Learning	Activity	Onsite/field-
		Board	based	through	through	through	based	based
		Teaching	Learning	projects	demonstration	experimentation	Learning	learning
	-	62.22%	4.44%	-	2.22%	-	15.55%	-

Manali Singh CSBS Dept.

Department of Engineering Mathematics & Computing LECTURE PLAN

	of Course with Code: Optimization Technique			
	3 rd Year 1 st Sem (MAC) Session:July-De			
Sessi on	Date Content to be covered	COs	BL	% Coverage
1.	Linear Programming Problem (LPP): Historic	cal CO1	1	1.5
2	development, models and modeling			
2.	Classification, general methods for solving O models	R CO1	1	1.5
3.	Formulation of LPP, Graphical method	CO1	2,3	2.0
4.	Simplex method	CO1	3,4	2.5
5.	Duality theory in linear programming and applications	CO1	2,3	2.6
6.	Assignment problems	CO1	3,4	2.5
7.	Transportation problem for BFS	CO2	2,3	2.6
8.	Optimal solution of Transportation problem	CO2	3	2.4
9.	Introduction of NLPP,	CO2	2	2.7
10.	Unconstraints problems of maxima and n		1,2	2.5
11.	constraints problems of maxima and mini		2,3	2.5
12.	constraints in the form of equations (Lagr method),		3,4	2.6
13.	Hassian Matrix	CO2	1,2	2.6
14.	constraints in the form of inequalities	CO2	3	2.5
15.	Dynamic Programming: Basic concepts	CO2	4,5	2.6
16.	Bellman's optimality principle	CO2	3	2.6
17.	dynamic programming approach in decisi making problems	on CO2	2,3	2.6
18.	optimal subdivision problems	CO2	3,4	2.7
19.	Introduction of queueing model	CO3	1,2	2.5
20.	Basic of queueing process	CO3	1,2	2.6
21.	state of the system, Poisson process	CO3	2,3	2.7
22.	Inter arrival time	CO3	3	2.8
23.	Some distribution, Classification of queueing	models CO3	2,3	2.8
24.	(M/M/1): (∞/FCFS) model and it s problem	CO3	3,4	2.7
25.	(M/M/1): (N/FCFS) model and it s problem	CO3	4,5	2.6
26.	(M//M/S): (∞ /FCFS) model and it s problem	CO3	4,5	2.5
27.	Introduction to game theory, competitive	games CO4	1,2	2.5
28.	finite and infinite games, two persons zer game, pure and mixed strategies	o sum CO4	2,3	2.6
29.	saddle point, maxmin and minimax prince	iple CO4	1,2	2.4
30.	solution of a rectangular game in terms of strategies	-	2,3	2.4
31.	Dominance rule	CO4	3,4	2.7

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Department of Engineering Mathematics and Computing

20				
	Graphical method of (2xm) games	CO4	3,4	2.5
33.	Graphical method of (nx2) games	CO4	3,4	2.6
34.	Introduction to inventory problems,	CO5	1,2	2.4
	Basic Characteristic of Inventory models	CO5	2,3	2.5
36.	Basic of Deterministic models	CO5	2,3	2.6
	Classical EOQ (Economic Order Quantity) models	CO5	2,3	2.4
38.	Inventory models with deterministic demand (No shortage and shortage allowed),	CO5	4,5	2.6
39.	Multi item deterministic models, Price break models	CO5	4,5	2.6
40.	Inventory models with probabilistic demand	CO5	4,5	2.5

BLOOMS LEVEL

1. REMEMBER, 2. UNDERSTAND, 3. APPLY, 4. ANALYSE, 5. EVALUATE, 6. CREATE

Modes of Teaching Subject: Optimization Techniques (2250525)

UNIT	CONTENT	MODE
	Linear Programming Problem (LPP): Historical development, models and modeling	Offline/Black Board Teaching
Unit-1	Classification, general methods for solving OR models	Offline/Black Board Teaching
CIIIt-1	Formulation of LPP, Graphical method	Learning through Demonstration
	Simplex method	Offline/Black Board Teaching
	Duality theory in linear programming and applications	Offline/Black Board Teaching
	Transportation and Assignment problems	Offline/Black Board Teaching
	Introduction of NLPP, constraints problems of maxima and minima,	Learning through demonstration
	Constraints in the form of equations (Lagrangian method)	Offline/BlackBoardTeaching
Unit-2	Constraints in the form of inequalities	Offline/BlackBoardTeaching
	Dynamic Programming: Basic concepts, Bellman's optimality principle	Offline/Black Board Teaching
	Dynamic programming approach in decision making problems	Offline/Black Board Teaching
	Optimal subdivision problems	Offline/Black Board Teaching
	Introduction of queueing model, basic of queueing process	Offline/Black Board Teaching
	State of the system, Poisson process	Offline/BlackBoardTeaching
Unit-3	Some distribution, Inter arrival time,	Offline/BlackBoardTeaching
	Classification of queueing models,	Learning through demonstration
	(M/M/1): (∞/FCFS), (M/M/1): (∞/FCFS), (M//M/S): (∞/FCFS)	Offline/Black Board Teaching
	Introduction to game theory	Offline/Black Board Teaching
Unit-4	Competitive games, finite and infinite games	Offline/BlackBoardTeaching
	Two persons zero sum game, pure and mixed strategies, saddle point, maxmin and minimax principle	Offline/Black Board Teaching
	Solution of a rectangular game in terms of mixed strategies	Offline/BlackBoardTeaching
	Graphical method of (2xm) and (nx2) games	Learning through demonstration
	Introduction to inventory problems	Offline/Black Board Teaching
	Deterministic models, classical EOQ (Economic Order Quantity) models	Offline/BlackBoardTeaching
Unit-5	Inventory models with deterministic demand (No shortage and shortage allowed)	Offline/BlackBoardTeaching

Deemed University (Declared under Distinct Category by Ministry of Education, Government of India) NAAC ACCREDITED WITH A++ GRADE

Multi item deterministic models, Price break models	Offline/Black Board Teaching
Inventory models with probabilistic demand	Offline/Black Board Teaching

Online	Offline						
	BlackB	Group	Learning	Learning	Learning	Activity	Onsite/field
	oard	based	through	through	through	based	based
	Teaching	Learning	projects	demonstration	experimentation	Learning	learning
-	90.00%	-	8.00%	2.00%	-	-	-