

### Modes of Teaching Subject: Computer Architecture & Microprocessor

| UNIT   | CONTENT                                                                                             | MODE                             |
|--------|-----------------------------------------------------------------------------------------------------|----------------------------------|
|        | CPU structure and functions,                                                                        | Online mode                      |
|        | Processor organization, ALU, data paths, internal registers, status flags                           | Offline / Black Board Teaching   |
| Unit-1 | System bus structure: Data, address and control buses.                                              | Online mode                      |
|        | Processor control, instruction fetch                                                                | Online mode                      |
|        | Micro-operations                                                                                    | Offline / Black Board Teaching   |
|        | Hardwired control, microprogrammed control                                                          | Online mode                      |
|        | Microinstruction sequencing and execution.                                                          | Activity based learning          |
|        | Instruction set principles, machine instructions                                                    | Online mode                      |
|        | Types of operations and operands, encoding an instruction set                                       | Group based Learning             |
| Unit-2 | Addressing modes and formats                                                                        | Offline / Black Board Teaching   |
|        | Assembly language programming                                                                       | Learning through experimentation |
|        | I/O organization; I/O techniques: interrupts,<br>polling, DMA; Synchronous vs. asynchronous<br>I/O. | Online mode                      |
| Unit-3 | Memory system, internal and external memory                                                         | Group based Learning             |
|        | Memory hierarchy, cache memory and its working, virtual memory concept.                             | Group based Learning             |
|        | 8085 microprocessor architecture                                                                    | Online mode                      |
|        | Instruction set, instruction types and formats                                                      | Learning through experimentation |
| Unit-4 | Instruction execution                                                                               | Learning through demonstration   |
|        | Instruction cycles, different types of machine cycles and timing diagram.                           | Offline / Black Board Teaching   |
|        | 8086 architecture, registers, memory segmentation,                                                  | Online mode                      |
|        | Addressing in 8086                                                                                  | Activity based learning          |
|        | 8255                                                                                                | Online mode                      |
| Unit-5 | Interfacing with LED's, ADC, DAC, stepper motors                                                    | Activity based learning          |
|        | I/O & Memory Interfacing                                                                            | Online mode                      |
|        | 8254, 8259, 8251                                                                                    | Online mode                      |

| Online |          | Offline  |          |               |                 |          |              |
|--------|----------|----------|----------|---------------|-----------------|----------|--------------|
|        | Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite/field |
|        | Board    | based    | through  | through       | through         | based    | based        |
|        | Teaching | Learning | projects | demonstration | experimentation | Learning | learning     |
| 44%    | 19%      | 14%      | -        | 2%            | 10%             | 11%      | -            |



Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

## LECTURE PLAN

Name of the course with code: Computer Architecture And Microprocessor (270401/280401) Class: IT (AIDS/AIML-IV semester) Session: January-July 2023

| Teaching | Content to be covered                                  | COs | Blooms | % Coverage (to     |
|----------|--------------------------------------------------------|-----|--------|--------------------|
| Session  |                                                        |     | Level  | be calculated      |
|          |                                                        |     | (BL)   | based on the total |
|          |                                                        |     |        | syllabus)          |
| 1        | CPU structure and functions,                           | 1   | Ι      | 2                  |
| 2        | Processor organization, ALU, data paths,               | 1   | Ι      | 4                  |
| 3        | Internal registers, status flags                       | 1   | Ι      | 4                  |
| 4        | System bus structure: Data, address and control buses. | 1   | Ι      | 4                  |
| 5        | Processor control, instruction fetch,                  | 1   | Ι      | 4                  |
| 6        | Micro-operations                                       | 1   | I      | 3                  |
| 7        | Hardwired control                                      | 1   | Ι      | 2                  |
| 8        | Microprogrammed control                                | 1   | Ι      | 2                  |
| 9        | Microinstruction sequencing and execution.             | 1   | Ι      | 2                  |
| 10       | Instruction set principles                             | 2   | II     | 2                  |
| 11       | Machine instructions                                   | 2   | II     | 2                  |
| 12       | Types of operations and operands                       | 2   | II     | 2                  |
| 13       | Encoding an instruction set                            | 2   | II     | 2                  |
| 14       | Addressing modes and formats                           | 2   | II     | 3                  |
| 15       | Assembly language programming                          | 4   | III    | 2                  |
| 16       | Assembly language programming                          | 4   | III    | 2                  |
| 17       | I/O organization;                                      | 3   | II     | 2                  |
| 18       | I/O techniques: interrupts, polling,                   | 3   | II     | 2                  |
| 19       | DMA; Synchronous vs. asynchronous I/O.                 | 3   | II     | 3                  |
| 20       | Memory system                                          | 3   | II     | 2                  |
| 21       | Internal and external memory                           | 3   | II     | 2                  |
| 22       | Memory hierarchy                                       | 3   | II     | 2                  |
| 23       | Cache memory and its working                           | 3   | II     | 2                  |
| 24       | Virtual memory concept.                                | 3   | II     | 2                  |
| 25       | 8085 microprocessor architecture                       | 4   | II     | 3                  |
| 26       | Instruction set                                        | 4   | III    | 3                  |
| 27       | Instruction types and formats                          | 4   | III    | 3                  |
| 28       | Instruction execution, instruction cycles,             | 4   | III    | 3                  |
| 29       | Different types of machine cycles and timing diagram.  | 4   | III    | 4                  |
| 30       | 16-bit microprocessors, 8086 architecture              | 4   | II     | 3                  |
| 31       | Registers, memory segmentation                         | 4   | II     | 2                  |
| 32       | Addressing in 8086                                     | 4   | III    | 3                  |
| 33       | 8255                                                   | 5   | III    | 2                  |
| 34       | Interfacing with LED's                                 | 5   | VI     | 2                  |
| 35       | Interfacing with ADC, DAC                              | 5   | VI     | 2                  |
| 36       | Interfacing with stepper motors                        | 5   | VI     | 2                  |
| 37       | I/O & Memory Interfacing                               | 5   | VI     | 3                  |
| 38       | 8254                                                   | 5   | III    | 2                  |
| 39       | 8259                                                   | 5   | III    | 2                  |
| 40       | 8251                                                   | 5   | III    | 2                  |



(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### Modes of Teaching Subject: Machine Learning and Optimization 270404

| Unit   | Content                                          | Mode                           |
|--------|--------------------------------------------------|--------------------------------|
| Unit-1 | Introduction to ML                               | Offline / Black Board Teaching |
|        | Statistical Learning, Supervised vs Unsupervised | Offline / Black Board Teaching |
|        | Learning                                         |                                |
|        | Regression vs Classification Problems,           | Offline / Black Board Teaching |
|        | Formulation of Design Problems as Mathematical   | Offline / Black Board Teaching |
|        | Programming Problem                              |                                |
|        | Linear Regression                                | Offline / Black Board Teaching |
|        | Multiple Linear Regression                       | Offline / Black Board Teaching |
|        | Logistic Regression                              | Offline / Black Board Teaching |
|        | K-Nearest Neighbour Classification               | Online mode                    |
| Unit-2 | Decision Tree Learning                           | Online mode                    |
|        | Decision Tree Representation,                    | Online mode                    |
|        | Appropriate Problems for Decision Tree Learning  | Online mode                    |
|        | Random Forest                                    | Online mode                    |
|        | Issues in Decision Tree Learning                 | Online mode                    |
|        | Naïve Bayes Classifier                           | Online mode                    |
|        | Support Vector Machines                          | Online mode                    |
| Unit-3 | Artificial Neural Network                        | Offline / Black Board Teaching |
|        | Neural Network Representation                    | Offline / Black Board Teaching |
|        | Neural Networks as a Paradigm for Parallel       | Online mode                    |
|        | Processing                                       |                                |
|        | Linear Discrimination                            | Online mode                    |
|        | Pairwise Separation                              | Online mode                    |
|        | Gradient Descent                                 | Group based Learning           |
|        | Perceptron, Training A Perceptron                | Online mode                    |
|        | Multilayer Perceptron                            | Offline / Black Board Teaching |
|        | Back Propagation Algorithm                       | Offline / Black Board Teaching |
|        | Dynamically Modifying Network Structure.         | Offline / Black Board Teaching |
| Unit-4 | Unsupervised Learning: Clustering, Common        | Offline / Black Board Teaching |
|        | Distance Measures                                |                                |
|        | Hierarchical Algorithms – Agglomerative and      | Offline / Black Board Teaching |
|        | Divisive Partitioning Algorithms–K-Means and     |                                |
| ]      | Derivatives                                      |                                |
|        | Design and Analysis of Machine Learning          | Group based Learning           |
|        | Experiments                                      |                                |

|        | Guidelines for Machine Learning Experiments,                                                                                          | Learning through               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|        | Factors, Response, and Strategy of Experimentation                                                                                    |                                |
|        | Ensemble Methods, Bagging and Boosting                                                                                                | Learning through               |
|        |                                                                                                                                       | experimentation                |
|        | Cross-Validation and Resampling Methods                                                                                               | Online mode                    |
|        | Measuring Classifier Performance, Assessing a<br>Classification Algorithm's Performance<br>(ROC Curve),                               | Group based Learning           |
|        | Measuring Classifier Performance, Assessing a<br>Classification Algorithm's Performance<br>(ROC Curve),                               | Group based Learning           |
|        | Comparing Two Classification Algorithms,<br>Comparing Multiple Algorithms :Analysis of<br>Variance, Comparison over Multiple Datasets | Group based Learning           |
| Unit-5 | Optimization Algorithms, Engineering Applications of Optimization Algorithms                                                          | Offline / Black Board Teaching |
|        | Objective Function, Optimization Algorithms for<br>Differentiable and Non-Differentiable Objective<br>Functions                       | Learning through Projects      |
|        | Stationary and Critical Point, Functions of Single<br>and Two Variables                                                               | Offline / Black Board Teaching |
|        | Global Optimum, Single Variable Optimization, Two<br>Variable Optimizations                                                           | Learning Through Projects      |
|        | First Order Algorithms, Local Descent Algorithms,<br>Bracketing Algorithms                                                            | Offline / Black Board Teaching |
|        | Stochastic Algorithms, Population Based<br>Algorithms: Introduction, Genetic Algorithms.                                              | Offline / Black Board Teaching |

| Online |          | Offline  |          |               |                 |          |              |
|--------|----------|----------|----------|---------------|-----------------|----------|--------------|
|        | Black    | Group    | Learning | Learning      | Learning        | Activity | Onsite/field |
|        | Board    | based    | through  | through       | through         | based    | based        |
|        | Teaching | Learning | projects | demonstration | experimentation | Learning | learning     |
| 35%    | 45%      | 10%      | 5%       |               | 5%              |          |              |

Dr. Vibha Tiwari Assistant Professor IT Department

## **LECTURE PLAN**

Name of Course with Code: Machine learning and optimization 270404 Class: Artificial Intelligence & Data Science (IV Sem) Session: January-June 2023

| Teaching | Content to be covered                                                                                 | COs | Blooms Level  | % Coverage              |
|----------|-------------------------------------------------------------------------------------------------------|-----|---------------|-------------------------|
| Session  |                                                                                                       |     | (BL)          | (to be calculated based |
|          |                                                                                                       |     |               | on the total syllabus)  |
| 1        | Introduction to ML                                                                                    | CO1 | Understanding | 2%                      |
| 2        | Statistical Learning, Supervised vs                                                                   | CO1 | Understanding | 2%                      |
|          | Unsupervised Learning                                                                                 |     |               |                         |
| 3        | Regression vs Classification Problems,                                                                | CO1 | Understanding | 2.5%                    |
| 4        | Formulation of Design Problems as                                                                     | CO1 | Understanding | 2.5%                    |
|          | Mathematical Programming Problem                                                                      |     |               |                         |
| 5        | Linear Regression                                                                                     | CO1 | Understanding | 2.5%                    |
| 6        | Multiple Linear Regression                                                                            | CO1 | Understanding | 2.5%                    |
| 7        | Logistic Regression                                                                                   | CO1 | Understanding | 2.5%                    |
| 8        | K-Nearest Neighbour Classification                                                                    | CO1 | Understanding | 2%                      |
| 9        | Decision Tree Learning                                                                                | CO2 | Creating      | 2%                      |
| 10       | Decision Tree Representation,                                                                         | CO2 | Creating      | 3%                      |
| 11       | Appropriate Problems for Decision<br>Tree Learning                                                    | CO2 | Creating      | 3%                      |
| 12       | Random Forest                                                                                         | CO2 | Creating      | 3%                      |
| 13       | Issues in Decision Tree Learning                                                                      | CO2 | Creating      | 3%                      |
| 14       | Naïve Bayes Classifier                                                                                | CO2 | Creating      | 2.5%                    |
| 15       | Support Vector Machines                                                                               | CO2 | Creating      | 3%                      |
| 16       | Artificial Neural Network                                                                             | CO5 | Analyzing     | 2%                      |
| 17       | Neural Network Representation                                                                         | CO5 | Analyzing     | 3%                      |
| 18       | Neural Networks as a Paradigm for                                                                     | CO5 | Analyzing     | 3%                      |
|          | Parallel Processing                                                                                   |     |               |                         |
| 19       | Linear Discrimination                                                                                 | CO6 |               | 2%                      |
| 20       | Pairwise Separation                                                                                   | CO6 |               | 3%                      |
| 21       | Gradient Descent                                                                                      | CO6 |               | 3%                      |
| 22       | Perceptron, Training A Perceptron                                                                     | CO5 | Analyzing     | 3%                      |
| 23       | Multilayer Perceptron                                                                                 | CO5 | Analyzing     | 3%                      |
| 24       | Back Propagation Algorithm                                                                            | CO6 |               | 3%                      |
| 25       | Dynamically Modifying Network Structure.                                                              | CO5 | Analyzing     | 2%                      |
| 26       | Unsupervised Learning: Clustering,<br>Common Distance Measures                                        | CO4 | Analyzing     | 2%                      |
| 27       | Hierarchical Algorithms –<br>Agglomerative and Divisive<br>Partitioning Algorithms–K- Means           | CO4 | Analyzing     | 2%                      |
| 28       | Design and Analysis of Machine<br>Learning                                                            | CO4 | Analyzing     | 2%                      |
| 29       | Guidelines for Machine Learning<br>Experiments, Factors, Response, and<br>Strategy of Experimentation | CO4 | Analyzing     | 3%                      |

| 30 | Ensemble Methods, Bagging and<br>Boosting Ensemble Methods, Bagging<br>and Boosting                                             | CO4 | Analyzing | 3% |
|----|---------------------------------------------------------------------------------------------------------------------------------|-----|-----------|----|
| 31 | Cross-Validation and Resampling<br>Methods                                                                                      | CO4 | Analyzing | 3% |
| 32 | Measuring Classifier Performance,<br>Assessing a Classification<br>Algorithm's                                                  | CO4 | Analyzing | 3% |
| 33 | Measuring Classifier Performance,<br>Assessing a Classification<br>Algorithm's Performance (ROC                                 | CO4 | Analyzing | 2% |
| 34 | Comparing Two Classification<br>Algorithms, Comparing Multiple<br>Algorithms :Analysis<br>of Variance, Comparison over Multiple | CO4 | Analyzing | 2% |
| 35 | Optimization Algorithms, Engineering<br>Applications of Optimization                                                            | CO3 | Applying  | 3% |
| 36 | Objective Function, Optimization<br>Algorithms for Differentiable and Non-<br>Differentiable Objective Functions                | CO3 | Applying  | 3% |
| 37 | Stationary and Critical Point, Functions of Single and Two Variables                                                            | CO3 | Applying  | 3% |
| 38 | Global Optimum, Single Variable<br>Optimization, Two Variable                                                                   | CO3 | Applying  | 3% |
| 39 | First Order Algorithms, Local Descent<br>Algorithms, Bracketing Algorithms                                                      | CO3 | Applying  | 3% |
| 40 | Stochastic Algorithms, Population<br>Based Algorithms: Introduction,<br>Genetic Algorithms.                                     | CO3 | Applying  | 3% |

Dr. Vibha Tiwari Assistant Professor IT Department



#### Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) Modes of Teaching Subject: IoT Architechture and Protocols

| Unit       | Content                                     | Mode                           |  |  |
|------------|---------------------------------------------|--------------------------------|--|--|
|            | IoT architecture outline, standards         | Offline/Blackboard Teaching    |  |  |
|            | IoT Technology Fundamentals-Devices and     | Offline/Blackboard Teaching    |  |  |
| Unit - I   | Local and wide area networking              | Group based Learning           |  |  |
|            | IoT Communication models                    | Group based Learning           |  |  |
|            | Data management                             | Offline/Blackboard Teaching    |  |  |
|            | Business processes in IoT                   | Group based Learning           |  |  |
|            | Everything as a Service(XaaS)               | Online                         |  |  |
|            | M2M and IoT Analytics                       | Learning through Demonstration |  |  |
|            | Introduction, Functional View               | Offline/Blackboard Teaching    |  |  |
|            | Information View                            | Group based Learning           |  |  |
| Unit - II  | Deployment and Operational View             | Group based Learning           |  |  |
|            | Other Relevant architectural views          | Group based Learning           |  |  |
|            | Real-World Design Constraints- Introduction | Offline/Blackboard Teaching    |  |  |
|            | Technical Design constraints                | Offline/Blackboard Teaching    |  |  |
|            | PHY/MAC Layer, 3GPP MTC                     | Offline/Blackboard Teaching    |  |  |
|            | IEEE 802.11, IEEE 802.15                    | Online                         |  |  |
|            | Wireless HART, Zwave                        | Online                         |  |  |
| Unit - III | Bluetooth Low Energy, Zigbee Smart Energy   | Online                         |  |  |
|            | DASH7                                       | Online                         |  |  |
|            | Network Layer, IPv4                         | Activity based Learning        |  |  |
|            | IPv6, 6LoWPAN                               | Group based Learning           |  |  |
|            | 6TiSCH,ND, DHCP                             | Offline/Blackboard Teaching    |  |  |
|            | ICMP, RPL                                   | Offline/Blackboard Teaching    |  |  |
|            | CORPL, CARP                                 | Offline/Blackboard Teaching    |  |  |
|            | Transport Layer, TCP                        | Activity based Learning        |  |  |
|            | MPTCP, UDP                                  | Group based Learning           |  |  |
| Unit - IV  | DCCP, SCTP                                  | Offline/Blackboard Teaching    |  |  |
|            | TLS, DTLS                                   | Offline/Blackboard Teaching    |  |  |
|            | Session Layer, HTTP                         | Learning through Demonstration |  |  |
|            | CoAP, XMPP                                  | Offline/Blackboard Teaching    |  |  |
|            | AMQP, MQTT                                  | Offline/Blackboard Teaching    |  |  |
|            | Service Layer, oneM2M                       | Offline/Blackboard Teaching    |  |  |
|            | ETSI, M2M                                   | Offline/Blackboard Teaching    |  |  |
| 11.4 37    | OMA, BBF                                    | Online                         |  |  |
| Unit - V   | Security in IoT Protocols                   | Learning through Demonstration |  |  |
|            | MAC802.15.4                                 | Activity based Learning        |  |  |
|            | 6LoWPAN, RPL                                | Online                         |  |  |
|            | Application Layer, UPnP                     | Online                         |  |  |
|            | SCADA                                       | Activity based Learning        |  |  |
|            | Authentication Protocols                    | Group based Learning           |  |  |

|        |                     | Offline              |                                 |                                          |                                            |                               |                        |
|--------|---------------------|----------------------|---------------------------------|------------------------------------------|--------------------------------------------|-------------------------------|------------------------|
| Online | Blackboard Teaching | Group based Learning | Learning<br>through<br>Projects | Learning<br>through<br>Demonstr<br>ation | Learning<br>throughEx<br>perimentat<br>ion | Activity<br>based<br>Learning | Onsite/fiel<br>d based |
| 20%    | 40.00%              | 22.50%               | -                               | 7.50%                                    | -                                          | 10%                           | -                      |

|                     | Lecture Plan                                             |              |                 |                                                                 |
|---------------------|----------------------------------------------------------|--------------|-----------------|-----------------------------------------------------------------|
| Name of C           | ourse with Code: IoT Architecture and Protocols (230404) | Class: IT    | IoT IV Sem      | Session: January - June<br>2023                                 |
| Teaching<br>Session | Content to be Covered                                    | COs          | Blooms<br>Level | % Coverage (to be<br>calculated based on the<br>total syllabus) |
|                     | UNIT-I: Introduction                                     | n            |                 |                                                                 |
| 1                   | IoT architecture outline, standards                      | 1            | 2               | 2.94                                                            |
| 2                   | IoT Technology Fundamentals-Devices and gateways         | 1            | 2               | 2.94                                                            |
| 3                   | Local and wide area networking                           | 1            | 2               | 2.94                                                            |
| 4                   | IoT Communication models                                 | 2            | 4               | 1.47                                                            |
| 5                   | Data management                                          | 3            | 6               | 1.47                                                            |
| 6                   | Business processes in IoT                                | 3            | 6               | 1.47                                                            |
| 7                   | Everything as a Service(XaaS)                            | 3            | 6               | 1.47                                                            |
| 8                   | M2M and IoT Analytics                                    | 3            | 6               | 2.94                                                            |
|                     | Unit-II: IoT Reference Arch                              | itecture     | -               |                                                                 |
| 9                   | Introduction, Functional View                            | 1            | 2               | 2.94                                                            |
| 10                  | Information View                                         | 1            | 2               | 1.47                                                            |
| 11                  | Deployment and Operational View                          | 1            | 2               | 2.94                                                            |
| 12                  | Other Relevant architectural views                       | 1            | 2               | 1.47                                                            |
| 13                  | Real-World Design Constraints- Introduction              | 6            | 6               | 1.47                                                            |
| 14                  | Technical Design constraints                             | 6            | 6               | 1.47                                                            |
|                     | Unit III: IoT Data Link Layer and Netw                   | ork Layer    | Protocols       |                                                                 |
| 15                  | PHY/MAC Layer, 3GPP MTC                                  | 2            | 4               | 2.94                                                            |
| 16                  | IEEE 802.11, IEEE 802.15                                 | 2            | 4               | 2.94                                                            |
| 17                  | Wireless HART, ZWave                                     | 2            | 4               | 2.94                                                            |
| 18                  | Bluetooth Low Energy, Zigbee Smart Energy                | 2            | 4               | 2.94                                                            |
| 19                  | DASH7                                                    | 2            | 4               | 1.47                                                            |
| 20                  | Network Layer, IPv4                                      | 2            | 4               | 2.94                                                            |
| 21                  | IPv6, 6LoWPAN                                            | 2            | 4               | 2.94                                                            |
| 22                  | 6TiSCH,ND, DHCP                                          | 2            | 4               | 4.41                                                            |
| 23                  | ICMP, RPL                                                | 2            | 4               | 2.94                                                            |
| 24                  | CORPL, CARP                                              | 2            | 4               | 2.94                                                            |
|                     | Unit IV: IoT Transport and Ses                           | ssion Laye   | r               |                                                                 |
| 25                  | Transport Layer, TCP                                     | 4            | 6               | 2.94                                                            |
| 26                  | MPTCP, UDP                                               | 4            | 6               | 2.94                                                            |
| 27                  | DCCP, SCTP                                               | 4            | 6               | 2.94                                                            |
| 28                  | TLS, DTLS                                                | 4            | 6               | 2.94                                                            |
| 29                  | Session Layer, HTTP                                      | 4            | 6               | 2.94                                                            |
| 30                  | CoAP, XMPP                                               | 4            | 6               | 2.94                                                            |
| 31                  | AMQP, MQTT                                               | 4            | 6               | 2.94                                                            |
|                     | Unit V: IoT Service Layer Protocol and                   | I Security I | Protocol        |                                                                 |
| 32                  | Service Layer, oneM2M                                    | 5            | 4               | 2.94                                                            |
| 33                  | ETSI, M2M                                                | 5            | 4               | 2.94                                                            |
| 34                  | OMA, BBF                                                 | 5            | 4               | 2.94                                                            |
| 35                  | Security in IoT Protocols                                | 5            | 4               | 1.47                                                            |
| 36                  | MAC802.15.4                                              | 5            | 4               | 1.47                                                            |
| 37                  | 6LoWPAN, RPL                                             | 5            | 4               | 2.94                                                            |
| 38                  | Application Layer, UPnP                                  | 5            | 4               | 2.94                                                            |
| 39                  | SCADA                                                    | 5            | 4               | 1.47                                                            |
| 40                  | Authentication Protocols                                 | 5            | 4               | 1.47                                                            |

| Teaching<br>Session | Content to be Covered                |                                    | Modes of Teaching             |                                  |                   |  |
|---------------------|--------------------------------------|------------------------------------|-------------------------------|----------------------------------|-------------------|--|
| 56991011            | UNIT-I: CI                           | oud Architecture and Model         |                               | -                                |                   |  |
| 1                   | Technologie                          | es for Network-Based System        |                               | Offline / Black                  | Roard Teaching    |  |
| 2                   | System Mod                           | dels for Distributed and Cloud Co  | omputing                      | Online mode                      | i Boura Touoning  |  |
| 3                   | NIST Cloud                           | Computing Reference Architect      | ure                           | Learning through experimentation |                   |  |
| 4                   | Cloud Mode                           | els:- Characteristics. Cloud Servi | ces                           | Online mode                      | -8                |  |
| 5                   | Cloud mode                           | els (JaaS. PaaS. SaaS)             |                               | Learning throu                   | 1gh demonstration |  |
| 6                   | Public vs Pr                         | ivate Cloud, Cloud Solutions Clo   | oud ecosystem                 | Group based I                    | earning           |  |
| 7                   | Service mar                          | nagement. Computing on demand      | <u> </u>                      | Offline / Blacl                  | K Board Teaching  |  |
|                     | Unit-II: Vi                          | rtualization                       |                               |                                  | 6                 |  |
| 8                   | Basics of V                          | irtualization                      |                               | Learning throu                   | igh demonstration |  |
| 9                   | Types of Vi                          | rtualization                       |                               | Learning throu                   | igh demonstration |  |
| 10                  | Implementa                           | tion Levels of Virtualization      |                               | Learning throu                   | igh demonstration |  |
| 11                  | Virtualizatio                        | on Structures                      |                               | Offline / Black                  | Board Teaching    |  |
| 12                  | Tools and M                          | Iechanisms                         |                               | Group based I                    | earning           |  |
| 13                  | Virtualizatio                        | on of CPU, Memory, I/O Devices     | ;                             | Offline / Black                  | K Board Teaching  |  |
| 14                  | Virtual Clus                         | sters and Resource management      |                               | Offline / Blacl                  | K Board Teaching  |  |
| 15                  | Virtualizatio                        | on for Data-center Automation      |                               | Offline / Blacl                  | K Board Teaching  |  |
|                     | Unit III: C                          | loud Infrastructure                |                               |                                  |                   |  |
| 16                  | Architectura                         | l Design of Compute and Storag     | e Clouds                      | Learning throu                   | igh demonstration |  |
| 17                  | Layered Clo                          | oud Architecture Development       |                               | Group based I                    | earning           |  |
| 18                  | Design Cha                           | llenges                            |                               | Offline / Black Board Teaching   |                   |  |
| 19                  | Inter Cloud                          | Resource Management                |                               | Learning through demonstration   |                   |  |
| 20                  | Resource Pr                          | ovisioning                         |                               | Learning through demonstration   |                   |  |
| 21                  | Platform De                          | eployment                          |                               | Learning through demonstration   |                   |  |
| 22                  | Global Excl                          | nange of Cloud Resources           |                               | Offline / Black                  | K Board Teaching  |  |
|                     | Unit IV: Pr                          | ogramming Models                   |                               |                                  |                   |  |
| 23                  | Parallel and                         | Distributed Programming Parada     | igms                          | Offline / Black                  | K Board Teaching  |  |
| 24                  | MapReduce                            |                                    |                               | Group based I                    | earning           |  |
| 25                  | Twister and                          | Iterative MapReduce                |                               | Offline / Black                  | K Board Teaching  |  |
| 26                  | Hadoop Lib                           | rary from Apache                   |                               | Offline / Black                  | K Board Teaching  |  |
| 27                  | Google App                           | Engine (GAE)                       |                               | Learning throu                   | igh demonstration |  |
| 28                  | Amazon We                            | eb Service (AWS)                   |                               | Learning throu                   | igh demonstration |  |
| 29                  | Smart Cloud                          | 1, Public Clouds                   |                               | Learning throu                   | igh demonstration |  |
| 30                  | Service Offe                         | erings                             |                               | Offline / Black                  | k Board Teaching  |  |
| 31                  | Microsoft W                          | Vindows Azure                      |                               | Offline / Black Board Teaching   |                   |  |
|                     | Unit V: Sec                          | curity in the Cloud                |                               |                                  |                   |  |
| 32                  | Security Ov                          | erview                             |                               | Learning throu                   | igh demonstration |  |
| 33                  | Cloud Secur                          | rity Challenges and Risks          |                               | Group based I                    | earning           |  |
| 34                  | Software-as-a-Service Security       |                                    |                               | Offline / Black                  | K Board Teaching  |  |
| 35                  | Security Governance                  |                                    |                               | Learning throu                   | igh demonstration |  |
| 36                  | Risk Management, Security Monitoring |                                    |                               | Learning throu                   | igh demonstration |  |
| 37                  | Security Architecture Design         |                                    |                               | Learning through demonstration   |                   |  |
| 38                  | Data Security, Application Security  |                                    |                               | Offline / Black                  | K Board Teaching  |  |
| 39 Virtual M        |                                      | hine Security                      |                               | Learning throu                   | igh demonstration |  |
| 40                  | Identity Mar                         | nagement and Access Control        |                               | Offline / Black                  | K Board Teaching  |  |
| kboard Le           | arning                               | Group based Learning               | Learning thro<br>Demonstratio | ough<br>on                       | Online            |  |

35%

10%

#### Name of Course with Code: Cloud Computing (240402)

40%

15%

|                     | Lecture Plan                                             |                      |                   |                                                                 |
|---------------------|----------------------------------------------------------|----------------------|-------------------|-----------------------------------------------------------------|
| Name of C           | ourse with Code: Cloud Computing (240402)                | Class: IT<br>AIML IV | r AIDS &<br>V Sem | Session: January - June<br>2023                                 |
| Teaching<br>Session | Content to be Covered                                    | COs                  | Blooms<br>Level   | % Coverage (to be<br>calculated based on the<br>total syllabus) |
|                     | UNIT-I: Cloud Architechture                              | e and Mod            | lel               | 1                                                               |
| 1                   | Technologies for Network-Based System                    | 1                    | 1                 | 1.85                                                            |
| 2                   | System Models for Distributed and Cloud Computing        | 1                    | 1                 | 3.7                                                             |
| 3                   | NIST Cloud Computing Reference Architecture              | 2                    | 2                 | 1.85                                                            |
| 4                   | Cloud Models:- Characteristics, Cloud Services           | 2                    | 2                 | 3.7                                                             |
| 5                   | Cloud models (IaaS, PaaS, SaaS)                          | 2                    | 2                 | 5.55                                                            |
| 6                   | Public vs Private Cloud, Cloud Solutions Cloud ecosystem | 1,2                  | 1,2               | 3.7                                                             |
| 7                   | Service management, Computing on demand                  | 2                    | 2                 | 3.7                                                             |
| -                   | Unit-II: Virtualizat                                     | ion                  | 1 -               | 1                                                               |
| 8                   | Basics of Virtualization                                 | l                    | l                 | 1.85                                                            |
| 9                   | Types of Virtualization                                  | 1                    | 1                 | 1.85                                                            |
| 10                  | Implementation Levels of Virtualization                  | 3                    | 3                 | 1.85                                                            |
| 11                  | Virtualization Structures                                | 3                    | 3                 | 1.85                                                            |
| 12                  | Tools and Mechanisms                                     | 3                    | 3                 | 1.85                                                            |
| 13                  | Virtualization of CPU, Memory, I/O Devices               | 3                    | 3                 | 5.55                                                            |
| 14                  | Virtual Clusters and Resource management                 | 3                    | 3                 | 3.7                                                             |
| 15                  | Virtualization for Data-center Automation                | 6                    | 6                 | 1.85                                                            |
|                     | Unit III: Cloud Infrast                                  | ructure              | 1 -               | 1                                                               |
| 16                  | Architectural Design of Compute and Storage Clouds       | 2                    | 2                 | 3.7                                                             |
| 17                  | Layered Cloud Architecture Development                   | 2                    | 2                 | 1.85                                                            |
| 18                  | Design Challenges                                        | 2                    | 2                 | 1.85                                                            |
| 19                  | Inter Cloud Resource Management                          | 2                    | 2                 | 1.85                                                            |
| 20                  | Resource Provisioning                                    | 2                    | 2                 | 1.85                                                            |
| 21                  | Platform Deployment                                      | 2                    | 2                 | 1.85                                                            |
| 22                  | Global Exchange of Cloud Resources                       | 2                    | 2                 | 1.85                                                            |
|                     | Unit IV: Programming                                     | Models               |                   | 1                                                               |
| 23                  | Parallel and Distributed Programming Paradigms           | 4                    | 3                 | 3.7                                                             |
| 24                  | MapReduce                                                | 4                    | 3                 | 1.85                                                            |
| 25                  | Twister and Iterative MapReduce                          | 4                    | 3                 | 1.85                                                            |
| 26                  | Hadoop Library from Apache                               | 4                    | 3                 | 1.85                                                            |
| 27                  | Google App Engine (GAE)                                  | 4                    | 3                 | 1.85                                                            |
| 28                  | Amazon Web Service (AWS)                                 | 4                    | 3                 | 1.85                                                            |
| 29                  | Smart Cloud, Public Clouds                               | 4                    | 3                 | 1.85                                                            |
| 30                  | Service Offerings                                        | 6                    | 6                 | 1.85                                                            |
| 31                  | Microsoft Windows Azure                                  | 4                    | 3                 | 1.85                                                            |
| 32                  | Unit V: Security in the Security Overview                | Cloud 5              | 4                 | 1.85                                                            |
| 33                  | Cloud Security Challenges and Risks                      | 5                    | 4                 | 1.85                                                            |
| 34                  | Software-as-a-Service Security                           | 5                    | 4                 | 1.85                                                            |
| 35                  | Security Governance                                      | 5                    | 4                 | 1.85                                                            |
| 36                  | Risk Management, Security Monitoring                     | 5                    | 4                 | 3.7                                                             |
| 37                  | Security Architecture Design                             | 5                    | 4                 | 1.85                                                            |
| 38                  | Data Security, Application Security                      | 5                    | 4                 | 3.7                                                             |
| 39                  | Virtual Machine Security                                 | 5                    | 4                 | 1.85                                                            |
| 40                  | Identity Management and Access Control                   | 6                    | 6                 | 3.7                                                             |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Modes of Teaching**

### SUBJECT: COMPUTER GRAPHICS & MULTIMEDIA (160411)

| UNIT   | CONTENT                                 | MODES                            |
|--------|-----------------------------------------|----------------------------------|
|        | Introduction to Computer Graphics       | Black Board Teaching             |
|        | Interactive Computer Graphics           | Black Board Teaching             |
|        | Application of Computer Graphics        | Black Board Teaching             |
|        | Random and Raster Scan Displays         | Learning through Demonstration   |
|        | Storage Tube Graphics Display           | Learning through Demonstration   |
| Unit-1 | Calligraphic Refresh Graphics Display   | Black Board Teaching             |
|        | Flat Panel Display                      | Learning through Demonstration   |
|        | Refreshing                              | Learning through Experimentation |
|        | Flickering                              | Learning through Experimentation |
|        | Interlacing                             | Black Board Teaching             |
|        | Resolution                              | Learning through Experimentation |
|        | Bit Depth                               | Black Board Teaching             |
|        | Aspect Ratio                            | Black Board Teaching             |
|        | Scan Conversion Technique               | Black Board Teaching             |
|        | Image representation                    | Learning through Demonstration   |
|        | Line drawing                            | Learning through Experimentation |
|        | DDA                                     | Learning through Experimentation |
|        | Bresenham's Algorithm                   | Learning through Experimentation |
| Unit-2 | Circle Drawing                          | Learning through Experimentation |
|        | Mid-Point                               | Learning through Experimentation |
|        | DDA                                     | Learning through Experimentation |
|        | Bresenham's Circle Generation Algorithm | Learning through Experimentation |
|        | Ellipse Generation Algorithm            | Black Board Teaching             |
|        | Curves                                  | Black Board Teaching             |
|        | Parametric Function                     | Black Board Teaching             |
|        | Bezier Method                           | Black Board Teaching             |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Modes of Teaching**

### **SUBJECT: COMPUTER GRAPHICS & MULTIMEDIA (160411)**

| UNIT   | CONTENT                                     | MODES                            |
|--------|---------------------------------------------|----------------------------------|
| Unit-2 | B-Spline Method                             | Black Board Teaching             |
|        | 2D & 3D Transformations                     | Learning through Projects        |
|        | Translation                                 | Learning through Projects        |
|        | Rotation                                    | Learning through Projects        |
|        | Scaling                                     | Learning through Projects        |
|        | Reflection                                  | Learning through Projects        |
| Unit 3 | Shearing                                    | Learning through Projects        |
| Unit-5 | Inverse Transformation                      | Black Board Teaching             |
|        | Composite Transformation,                   | Black Board Teaching             |
|        | World Coordinate System                     | Black Board Teaching             |
|        | Viewing Transformation                      | Black Board Teaching             |
|        | Representation of 3D object on Screen       | Learning through Experimentation |
|        | Parallel and Perspective Projections        | Learning through Demonstration   |
|        | Clipping                                    | Black Board Teaching             |
|        | Point Clipping                              | Black Board Teaching             |
|        | Line Clipping                               | Learning through Experimentation |
|        | Simple Visibility Line Clipping Algorithm   | Black Board Teaching             |
|        | Polygon Clipping                            | Black Board Teaching             |
|        | Hidden Surface Elimination                  | Black Board Teaching             |
|        | Z- Buffer algorithm and Painter's Algorithm | Black Board Teaching             |
| Unit-4 | Area Filling                                | Black Board Teaching             |
|        | Basic Illumination Models                   | Black Board Teaching             |
|        | Diffuse Reflection                          | Black Board Teaching             |
|        | Specular Reflection                         | Black Board Teaching             |
|        | Phong Shading                               | Black Board Teaching             |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Modes of Teaching**

### **SUBJECT: COMPUTER GRAPHICS & MULTIMEDIA (160411)**

| UNIT    | CONTENT                                             | MODES                          |
|---------|-----------------------------------------------------|--------------------------------|
|         | Gouraud Shading                                     | Black Board Teaching           |
|         | Color Models                                        | Black Board Teaching           |
|         | RGB                                                 | Black Board Teaching           |
| Unit-4  | YIQ                                                 | Black Board Teaching           |
|         | СМҮ                                                 | Black Board Teaching           |
|         | HSV                                                 | Black Board Teaching           |
|         | Multimedia System                                   | Black Board Teaching           |
|         | An Introduction                                     | Black Board Teaching           |
|         | Multimedia hardware and software                    | Learning through Demonstration |
|         | Multimedia System Architecture                      | Black Board Teaching           |
| IInit 5 | Multimedia Applications and evolving technologies   | Black Board Teaching           |
|         | Multimedia Authoring                                | Black Board Teaching           |
|         | Data & File Format Standards                        | Group based Learning           |
|         | Sampling                                            | Black Board Teaching           |
|         | Compression Standards                               | Black Board Teaching           |
|         | Compression Through Spatial and Temporal Redundancy | Black Board Teaching           |

| Online |                            |                            |                                 | Offline                              |                                        |                               |                                   |
|--------|----------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------------------|-------------------------------|-----------------------------------|
|        | Black<br>Board<br>Teaching | Group<br>based<br>Learning | Learning<br>through<br>projects | Learning<br>through<br>demonstration | Learning<br>through<br>experimentation | Activity<br>based<br>Learning | Onsite/field<br>based<br>learning |
| -      | 62.68%                     | 1.49%                      | 8.95%                           | 8.95%                                | 17.91%                                 | -                             | -                                 |



Bulbul Agrawal Assistant Professor Department of IT MITS, Gwalior

| Lecture Plan        |                                       |     |                      |                                                                      |
|---------------------|---------------------------------------|-----|----------------------|----------------------------------------------------------------------|
| Teaching<br>Session | Content to be covered                 | COs | Blooms<br>Level (BL) | % Coverage<br>(To be<br>calculated<br>based on the<br>total syllabus |
| 1.                  | Introduction to Computer Graphics     | 1   | BL 2                 | 2%                                                                   |
| 2.                  | Interactive Computer Graphics         | 1   | BL 2                 | 1%                                                                   |
| 3.                  | Application of Computer Graphics      | 1   | BL 2                 | 1%                                                                   |
| 4.                  | Random and Raster Scan Displays       | 1   | BL 1                 | 2%                                                                   |
| 5.                  | Storage Tube Graphics Display         | 1   | BL 1                 | 2%                                                                   |
| 6.                  | Calligraphic Refresh Graphics Display | 1   | BL 1                 | 2%                                                                   |
| 7.                  | Flat Panel Display                    | 1   | BL 1                 | 2%                                                                   |
| 8.                  | Refreshing                            | 1   | BL 2                 | 1%                                                                   |
| 9.                  | Flickering                            | 1   | BL 3                 | 1%                                                                   |
| 10.                 | Interlacing                           | 1   | BL 2                 | 1%                                                                   |
| 11.                 | Resolution                            | 1   | BL 3                 | 1%                                                                   |
| 12.                 | Bit Depth                             | 1   | BL 3                 | 1%                                                                   |
| 13.                 | Aspect Ratio                          | 1   | BL 3                 | 1%                                                                   |
| 14.                 | Scan Conversion Technique             | 2   | BL 1                 | 1%                                                                   |
| 15.                 | Image representation                  | 3   | BL 5                 | 2%                                                                   |
| 16.                 | Line drawing                          | 2   | BL 3                 | 1%                                                                   |
| 17.                 | DDA                                   | 2   | BL 3                 | 2%                                                                   |
| 18.                 | Bresenham's Algorithm                 | 2   | BL 3                 | 2%                                                                   |
| 19.                 | Circle Drawing                        | 2   | BL 3                 | 2%                                                                   |
| 20.                 | Mid-Point                             | 2   | BL 3                 | 2%                                                                   |
| 21.                 | DDA                                   | 2   | BL 3                 | 2%                                                                   |

| [   |                                             | 1   |      | 1  |
|-----|---------------------------------------------|-----|------|----|
| 22. | Bresenham's Circle Generation Algorithm     | 2   | BL 3 | 2% |
| 23. | Ellipse Generation Algorithm                | 2   | BL 3 | 2% |
| 24. | Curves                                      | 2   | BL 3 | 2% |
| 25. | Parametric Function                         | 2   | BL 3 | 1% |
| 26. | Bezier Method                               | 2   | BL 3 | 2% |
| 27. | B-Spline Method                             | 2   | BL 3 | 2% |
| 28. | 2D & 3D Transformations                     | 3   | BL 2 | 2% |
| 29. | Translation                                 | 3   | BL 3 | 1% |
| 30. | Rotation                                    | 3   | BL 3 | 1% |
| 31. | Scaling                                     | 3   | BL 3 | 1% |
| 32. | Reflection                                  | 3   | BL 3 | 1% |
| 33. | Shearing                                    | 3   | BL 3 | 1% |
| 34. | Inverse Transformation                      | 3   | BL 3 | 2% |
| 35. | Composite Transformation,                   | 3   | BL 3 | 1% |
| 36. | World Coordinate System                     | 3   | BL 3 | 2% |
| 37. | Viewing Transformation                      | 3   | BL 3 | 2% |
| 38. | Representation of 3D object on Screen       | 3   | BL 4 | 2% |
| 39. | Parallel and Perspective Projections        | 3   | BL 4 | 2% |
| 40. | Clipping                                    | 4   | BL 3 | 1% |
| 41. | Point Clipping                              | 4   | BL 3 | 2% |
| 42. | Line Clipping                               | 4   | BL 3 | 2% |
| 43. | Simple Visibility Line Clipping Algorithm   | 4   | BL 3 | 1% |
| 44. | Polygon Clipping                            | 4   | BL 4 | 2% |
| 45. | Hidden Surface Elimination                  | 5   | BL 3 | 2% |
| 46. | Z- Buffer algorithm and Painter's Algorithm | 5   | BL 3 | 2% |
| 47. | Area Filling                                | 5   | BL 3 | 2% |
| 48. | Basic Illumination Models                   | 5   | BL 2 | 2% |
| 49. | Diffuse Reflection                          | 5,6 | BL 2 | 1% |
| 50. | Specular Reflection                         | 5,6 | BL 2 | 1% |
| 51. | Phong Shading                               | 6   | BL 2 | 1% |
| 52. | Gouraud Shading                             | 6   | BL 2 | 1% |

| 53. | Color Models                                           | 6 | BL 4 | 1% |
|-----|--------------------------------------------------------|---|------|----|
| 54. | RGB                                                    | 6 | BL 4 | 1% |
| 55. | YIQ                                                    | 6 | BL 4 | 1% |
| 56. | СМҮ                                                    | 6 | BL 4 | 1% |
| 57. | HSV                                                    | 6 | BL 4 | 1% |
| 58. | Multimedia System                                      | 6 | BL 2 | 1% |
| 59. | An Introduction                                        | 6 | BL 2 | 1% |
| 60. | Multimedia hardware and software                       | 6 | BL 4 | 1% |
| 61. | Multimedia System Architecture                         | 6 | BL 4 | 2% |
| 62. | Multimedia Applications and evolving technologies      | 6 | BL 2 | 2% |
| 63. | Multimedia Authoring                                   | 6 | BL 1 | 2% |
| 64. | Data & File Format Standards                           | 6 | BL 5 | 2% |
| 65. | Sampling                                               | 6 | BL 3 | 1% |
| 66. | Compression Standards                                  | 6 | BL 4 | 1% |
| 67. | Compression Through Spatial and Temporal<br>Redundancy | 6 | BL 3 | 1% |



Bulbul Agrawal Assistant Professor Department of IT MITS, Gwalior

#### Madhav Institute of Technology & Science, Gwalior (A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal) **Department of Information Technology**

| Lecture Plan for SOFTWARE | ENGINEERING ( | (160412) |
|---------------------------|---------------|----------|
|---------------------------|---------------|----------|

| No. of<br>Teaching<br>Session | Unit | Content to be covered                     | CO | Bloom's<br>Level | Mode of Teaching                 | % Coverage |
|-------------------------------|------|-------------------------------------------|----|------------------|----------------------------------|------------|
| 1                             | Ι    | Software Characteristics and Components   | 1  | 2                | Black Board Teaching             | 2          |
| 1                             | Ι    | Software Development of Life Cycle Model  | 1  | 2                | Learning through demonstration   | 3          |
| 1                             | Ι    | The Waterfall Model                       | 1  | 6                | Learning through demonstration   | 3          |
| 1                             | Ι    | Iterative Waterfall and Prototyping Model | 1  | 6                | Learning through demonstration   | 4          |
| 2                             | Ι    | Spiral Model and RAD Model                | 1  | 6                | Learning through demonstration   | 4          |
| 2                             | Ι    | Selection Criteria of Model               | 4  | 4                | Activity based Learning          | 4          |
| 1                             | II   | Requirement Engineering Activities        | 1  | 2                | Black Board Teaching             | 3          |
| 1                             | II   | Types of Requirements                     | 1  | 2                | Black Board Teaching             | 3          |
| 2                             | II   | Requirement Elicitation Methods           | 2  | 3                | Learning through demonstration   | 4          |
| 2                             | II   | Requirement Analysis Methods              | 2  | 3                | Learning through demonstration   | 4          |
| 1                             | II   | Requirement Documentation                 | 5  | 6                | Activity based Learning          | 3          |
| 1                             | II   | Requirement Validation & Management       | 2  | 4                | Group based Learning             | 3          |
| 1                             | III  | Fundamentals of Software Design           | 2  | 2                | Black Board Teaching             | 4          |
| 2                             | III  | Effective Modular Design                  | 2  | 4                | Black Board Teaching             | 4          |
| 1                             | III  | Design Representations                    | 5  | 6                | Learning through demonstration   | 4          |
| 1                             | III  | Coupling                                  | 2  | 4                | Learning through experimentation | 4          |
| 1                             | III  | Cohesion                                  | 2  | 4                | Learning through experimentation | 4          |
| 1                             | IV   | Software Measurement                      | 1  | 2                | Black Board Teaching             | 2          |
| 1                             | IV   | Software Metrics                          | 3  | 2                | Black Board Teaching             | 2          |
| 1                             | IV   | Project Management                        | 1  | 2                | Learning through demonstration   | 2          |
| 1                             | IV   | Software Project Estimation               | 3  | 5                | Activity based Learning          | 2          |
| 1                             | IV   | Line of Code based estimation             | 3  | 3                | Activity based Learning          | 3          |
| 1                             | IV   | Function Point Estimation                 | 3  | 3                | Learning through experimentation | 3          |
| 2                             | IV   | COCOMO Model                              | 3  | 3                | Learning through experimentation | 4          |
| 1                             | IV   | Project Scheduling Techniques             | 3  | 3                | Learning through demonstration   | 2          |
| 1                             | V    | Introduction to Software Testing          | 1  | 2                | Black Board Teaching             | 2          |
| 1                             | V    | Software Testing Life Cycle               | 4  | 3                | Learning through demonstration   | 2          |
| 1                             | V    | Test Case Design                          | 6  | 2                | Learning through demonstration   | 2          |
| 1                             | V    | Software Verification & Validation        | 6  | 2                | Black Board Teaching             | 2          |
| 1                             | V    | Criteria for Completion of Testing        | 6  | 4                | Group based Learning             | 3          |
| 1                             | V    | Unit, Integration and system Testing      | 6  | 4                | Learning through demonstration   | 3          |
| 1                             | V    | Black Box Testing Techniques              | 6  | 3                | Learning through experimentation | 2          |
| 1                             | V    | White Box Testing Techniques              | 6  | 3                | Learning through experimentation | 2          |
| 1                             | V    | Acceptance Testing                        | 6  | 3                | Learning through projects        | 2          |

| Black Board<br>Teaching | Learning through demonstration | Activity based<br>Learning | Group based Learning | Learning<br>through<br>experimenta<br>tion | Learning<br>through<br>projects |
|-------------------------|--------------------------------|----------------------------|----------------------|--------------------------------------------|---------------------------------|
| 24%                     | 37%                            | 12%                        | 6%                   | 19%                                        | 2%                              |

#### **COURSE OUTCOMES**

After completion of the course students would be able to:

CO1. explain the various fundamental concepts of software engineering.

CO2. develop the concepts related to software design & analysis.

CO3. compare the techniques for software project management & estimation.

CO4. choose the appropriate model for real life software project.

CO5. design the software using modern tools and technologies.

CO6. test the software through different approaches.

Mir Shahnawaz Ahmad

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Lecture Plan**

### SUBJECT: NETWORK AND WEB SECURITY (240405)

| Dranci |                                                                                 |                                                                                                                  |       |                         |
|--------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------|-------------------------|
| S.No.  | Teaching<br>Session                                                             | Topics                                                                                                           | COs   | Blooms<br>Level<br>(BL) |
|        |                                                                                 | UNIT -I                                                                                                          |       |                         |
| 01.    | 2                                                                               | Security: Principles and Attacks, Basic Number<br>Theory: Prime Number, Congruence's, Modular<br>Exponentiation, | 2,4   | BL 1,2,3                |
| 02.    | 2. 2 Fundamentals of Cryptography, Steganography, Cryptanalysis, Code Breaking, |                                                                                                                  | 1,2,3 | BL 2,3                  |
| 03.    | 1     Block Ciphers and Steam Ciphers, Substitution Ciphers,                    |                                                                                                                  | 1     | BL 1,2                  |
| 04.    | 3                                                                               | Transposition Ciphers, Caesar Cipher, Play-Fair<br>Cipher, Hill Cipher, Cipher Modes of Operation.               | 1,2,3 | BL 5,6                  |
|        |                                                                                 | UNIT -II                                                                                                         |       |                         |
| 05.    | 1                                                                               | Cryptography: Symmetric Key Cryptography, Public<br>Key Cryptography,                                            | 1,2,3 | BL 4,5,6                |
| 06.    | 2                                                                               | Principles of Public Key Cryptosystem, Classical<br>Cryptographic Algorithms: DES,                               | 1,6   | BL 3,4                  |
| 07.    | 3                                                                               | Classical Cryptographic Algorithms: RC4, Blowfish,<br>RSA,                                                       | 3,4,5 | BL 3,4,5                |
| 08.    | 1                                                                               | Distribution of Public Keys and Key Management,                                                                  | 5,6   | BL 1,2                  |
| 09.    | 1                                                                               | Diffie-Hellman Key Exchange.                                                                                     | 5     | BL 3,4                  |
|        |                                                                                 | UNIT -III                                                                                                        |       |                         |
| 10.    | 3                                                                               | Hash Functions: Hash Functions, One Way Hash<br>Function, SHA (Secure Hash Algorithm).                           | 1,2,3 | BL 3,4                  |

| 11.      | 2 | Authentication: Requirements, Functions, Kerberos,                                                                                         |       | BL 2,3     |  |  |  |
|----------|---|--------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--|--|--|
| 12.      | 1 | Message Authentication Codes, Message Digest: MD5,                                                                                         |       | BL 3,4     |  |  |  |
| 13.      | 2 | SSH (Secure Shell), Digital Signatures,                                                                                                    |       | BL 2,3,4   |  |  |  |
| 14.      | 1 | Digital Certificates.                                                                                                                      | 5,6   | BL 2,3     |  |  |  |
| UNIT -IV |   |                                                                                                                                            |       |            |  |  |  |
| 15.      | 1 | IP & Web Security Overview: SSL (Secure Socket Layer),                                                                                     | 3,4,6 | BL 3, 5, 6 |  |  |  |
| 16.      | 2 | TLS (Transport Layer Security), SET (Secure Electronic Transaction).                                                                       | 3,4,6 | BL 3, 5, 6 |  |  |  |
| 17.      | 2 | IDS (Intrusion detection system): Statistical Anomaly<br>Detection and Rule-Based Intrusion Detection,                                     | 4,5   | BL 3, 5, 6 |  |  |  |
| 18.      | 1 | Penetration Testing, Risk Management.                                                                                                      | 5     | BL 1,2     |  |  |  |
| 19.      | 1 | Firewalls: Types, Functionality and Polices.                                                                                               |       | BL 2,3     |  |  |  |
| UNIT -V  |   |                                                                                                                                            |       |            |  |  |  |
| 20.      | 1 | Phishing: Attacks and its Types, Buffer Overflow Attack,                                                                                   | 2,4   | BL 3,4     |  |  |  |
| 21.      | 2 | Cross Site Scripting, SQL Injection Attacks, Session<br>Hijacking.                                                                         | 2,4,5 | BL 3,4     |  |  |  |
| 22.      | 2 | Denial of Service Attacks: Smurf Attack, SYN Flooding,<br>Distributed Denial of Service.                                                   | 5,6   | BL 3,4     |  |  |  |
| 23.      | 1 | Hacker: Hacking and Types of Hackers, Foot Printing,                                                                                       | 5,6   | BL 3,4     |  |  |  |
| 24.      | 2 | Scanning: Types: Port, Network, Vulnerability),<br>Sniffing in Shared and Switched Networks, Sniffing<br>Detection & Prevention, Spoofing. | 4,5,6 | BL 3, 5, 6 |  |  |  |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Modes of Teaching**

### SUBJECT: NETWORK AND WEB SECURITY (240405)

| UNIT   | CONTENT                                          | MODES                          |  |  |
|--------|--------------------------------------------------|--------------------------------|--|--|
|        | Security: Principles and Attacks,                | Black Board Teaching           |  |  |
|        | Basic Number Theory: Prime Number, Congruence's, | Black Board Teaching           |  |  |
|        | Basic Number Theory: Modular Exponentiation,     | Black Board Teaching           |  |  |
|        | Fundamentals of Cryptography,                    | Black Board Teaching           |  |  |
|        | Steganography,                                   | Learning through demonstration |  |  |
|        | Cryptanalysis,                                   | Learning through demonstration |  |  |
| Unit-1 | Code Breaking,                                   | Learning through demonstration |  |  |
|        | Block Ciphers and                                | Learning through demonstration |  |  |
|        | Steam Ciphers,                                   | Learning through demonstration |  |  |
|        | Substitution Ciphers,                            | Learning through demonstration |  |  |
|        | Transposition Ciphers,                           | Learning through demonstration |  |  |
|        | Caesar Cipher,                                   | Group based Learning           |  |  |
|        | Play-Fair Cipher,                                | Group based Learning           |  |  |
|        | Hill Cipher,                                     | Group based Learning           |  |  |
|        | Cipher Modes of Operation.                       | Group based Learning           |  |  |
|        | Cryptography: Symmetric Key Cryptography,        | Black Board Teaching           |  |  |
|        | Cryptography: Public Key Cryptography            | Black Board Teaching           |  |  |
|        | Principles of Public Key Cryptosystem,           | Learning through projects      |  |  |
| Unit_? | Classical Cryptographic Algorithms: DES,         | Learning through projects      |  |  |
| 0111-2 | Classical Cryptographic Algorithms: RC4,         | Learning through projects      |  |  |
|        | Blowfish,                                        | Group based Learning           |  |  |
|        | RSA,                                             | Learning through demonstration |  |  |
|        | Distribution of Public Keys and Key Management,  | Black Board Teaching           |  |  |
|        | Diffie-Hellman Key Exchange.                     | Black Board Teaching           |  |  |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Modes of Teaching**

### **SUBJECT: NETWORK AND WEB SECURITY (240405)**

| UNIT   | CONTENT                                                   | MODES                            |  |  |
|--------|-----------------------------------------------------------|----------------------------------|--|--|
|        | Hash Functions: Hash Functions,                           | Black Board Teaching             |  |  |
|        | One Way Hash Function,                                    | Black Board Teaching             |  |  |
|        | SHA (Secure Hash Algorithm).                              | Learning through demonstration   |  |  |
|        | Authentication: Requirements,                             | Black Board Teaching             |  |  |
| Unit-3 | Functions, Kerberos, Learning through experimenta         |                                  |  |  |
|        | Message Authentication Codes,                             | Learning through experimentation |  |  |
|        | Message Digest: MD5,                                      | Learning through experimentation |  |  |
|        | SSH (Secure Shell),                                       | Learning through experimentation |  |  |
|        | Digital Signatures,                                       | Learning through experimentation |  |  |
|        | Digital Certificates.                                     | Learning through demonstration   |  |  |
|        | IP & Web Security Overview:                               | Activity based Learning          |  |  |
|        | SSL (Secure Socket Layer),                                | Black Board Teaching             |  |  |
|        | TLS (Transport Layer Security),                           | Black Board Teaching             |  |  |
|        | IDS (Intrusion detection system):                         | Black Board Teaching             |  |  |
|        | Statistical Anomaly Detection and                         | Group based Learning             |  |  |
| Unit-4 | Rule-Based Intrusion Detection,                           | Activity based Learning          |  |  |
|        | SET (Secure Electronic Transaction). Black Board Teaching |                                  |  |  |
|        | Penetration Testing,                                      | Black Board Teaching             |  |  |
|        | Risk Management.                                          | Black Board Teaching             |  |  |
|        | Firewalls: Types,                                         | Black Board Teaching             |  |  |
|        | Functionality and                                         | Learning through experimentation |  |  |
|        | Polices.                                                  | Black Board Teaching             |  |  |

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

### **Department of Information Technology**

### **Modes of Teaching**

### **SUBJECT: NETWORK AND WEB SECURITY (240405)**

| UNIT   | CONTENT                                        | MODES                            |  |
|--------|------------------------------------------------|----------------------------------|--|
|        | Phishing: Attacks and its Types,               | Black Board Teaching             |  |
|        | Buffer Overflow Attack,                        | Black Board Teaching             |  |
|        | Cross Site Scripting,                          | Activity based Learning          |  |
|        | SQL Injection Attacks,                         | Learning through experimentation |  |
|        | Session Hijacking.                             | Black Board Teaching             |  |
|        | Denial of Service Attacks: Smurf Attack,       | Black Board Teaching             |  |
| Unit-5 | SYN Flooding,                                  | Black Board Teaching             |  |
|        | Distributed Denial of Service.                 | Learning through demonstration   |  |
|        | Hacker: Hacking and Types of Hackers,          | Learning through demonstration   |  |
|        | Foot Printing,                                 | Black Board Teaching             |  |
|        | Scanning: Types: Port, Network, Vulnerability, | Black Board Teaching             |  |
|        | Sniffing in Shared and Switched Networks,      | Learning through demonstration   |  |
|        | Sniffing Detection & Prevention,               | Learning through demonstration   |  |
|        | Spoofing.                                      | Learning through demonstration   |  |

| Online | Offline                    |                            |                                 |                                      |                                        |                               |                                       |
|--------|----------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------------------|-------------------------------|---------------------------------------|
|        | Black<br>Board<br>Teaching | Group<br>based<br>Learning | Learning<br>through<br>projects | Learning<br>through<br>demonstration | Learning<br>through<br>experimentation | Activity<br>based<br>Learning | Onsite/<br>field<br>based<br>learning |
| -      | 45%                        | 10%                        | 6.66%                           | 22.66%                               | 10%                                    | 5.66%                         | -                                     |