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Abstract: Format-Preserving Encryption (FPE) is a cryptographic method that converts plain text into cipher 

text while maintaining its original format. FPE plays a crucial role in databases by ensuring that encrypted data 

retains the struc- ture and attributes of the original information. CryptDB is a database manage- ment system 

designed to provide secure solutions for encrypted databases. By employing various encryption techniques, 

including FPE, CryptDB addresses se- curity concerns while preserving functionality. This study focuses on 

enhancing storage optimization for SQL-aware encrypted databases within CryptDB, utiliz- ing the FNR 

encryption scheme. The goal is to improve storage efficiency with- out compromising data integrity or format, 

thereby advancing secure and practi- cal database management in encrypted environments. 
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1 Introduction 

Migrating application stacks, legacy systems, and databases to the cloud provides numerous 

advantages. Nonetheless, protecting the privacy of sensitive fields while re- taining their computational 

functionality poses a significant challenge. To maintain pri- vacy in these scenarios, it is essential to 

identify sensitive fields within the system and then re-engineer them to enable encryption. Despite the 

potential advantages, many companies hesitate to move their critical applications to the cloud due to 

concerns about the privacy implications of handing over sensitive data to third-party cloud providers. 

For example, let's consider a data field meant for storing a 32-bit IPv4 address. Throughout the 

application and/or database, there are several checks in place to ensure that the input data adheres to 

IPv4 standards. Protecting the privacy of this field using a typical AES-128 encryption method would 

require modifying its capacity to accom- modate 128 bits, departing from its original 32-bit design. 

Additionally, any validations reliant on identifying the data type, such as recognizing the dotted notation 

of the IPv4 address, would need to be removed to make way for a randomized cipher string that 

represents the encrypted IPv4 address. 

Increasing the length of the field leads to higher demands on storage and/or band- width. However, 

removing validations can expose security vulnerabilities such as in- jection attacks. This concern isn't 

confined to IPv4 addresses; it also pertains to protect- ing the privacy of sensitive data fields like MAC 
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addresses, email addresses, usernames, account numbers, serial numbers, personal identifiable 

numbers, and credit card numbers. 

Contemporary encrypted database systems with SQL awareness, as showcased by CryptDB [14], 

represent significant progress in tackling confidentiality challenges. CryptDB is an advanced solution 

crafted to systematically address privacy concerns in SQL database-dependent applications. 

Importantly, it enables the execution of typical SQL queries on encrypted data without requiring 

decryption at any stage of the opera- tion. 

CryptDB utilizes traditional Symmetric Encryption algorithms like AES and Blow- Fish to safeguard 

data stored in the database. However, these cryptographic methods, including AES and BlowFish, do 

not maintain the original plaintext format after en- cryption. As a result, there is a change in both the 

length and type of fields in the data- base. For example, encrypting a 16-digit credit card number 

(originally an Integer data type) using AES yields a 128-bit ciphertext. A significant downside of 

conventional encryption schemes like AES and BlowFish is their contribution to increased storage 

space requirements for storing encrypted data. 

This article introduces the application of Format Preserving Encryption (FPE) to en- crypt data fields 

within CryptDB. FPE guarantees the retention of the length and for- mats of the original plaintext during 

encryption. Consequently, the version imple- mented is labeled as FPE-CDB. Experimental results 

showcased in the paper illustrate improvements in storage efficiency, albeit accompanied by a trade-off 

in performance degradation. 

2 Literature Review 

Boldyreva et al. [1] explore cryptographic analysis by introducing order-preserving symmetric 

encryption (OPE) with a new security concept (IND-OCPA), significantly enhancing efficient search 

capabilities on encrypted data. Bose and Bai [2] propose Homomorphic Encrypted Federated Learning, 

which securely integrates Big Data, Metaverse, and Large Language Models, addressing privacy and 

security concerns. Maryam et al. [3] implement and assess Zero Update (ZU) Encryption Adjustment 

for querying encrypted databases, emphasizing its secure and efficient client-side utiliza- tion. Gentry 

[4] presents a fully homomorphic encryption scheme, enhancing decryp- tion efficiency through ideal 

lattices and advancing practical applications. These studies collectively contribute to cryptographic 

advancements, covering OPE, federated learn- ing, encrypted querying, and fully homomorphic 

encryption, providing varied perspec- tives on evolving security landscapes. 

Song et al. [5] introduce cryptographic schemes designed for searching encrypted data, ensuring 

simplicity and efficiency while maintaining provable security. In a sim- ilar vein, Kim et al. [6] propose 

an secure database outsourcing, leveraging homomorphic cryptosystems to bolster secu- rity and 

surpass existing methods in query processing speed. Rautham and Vaisla [10] tackle security and 
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privacy concerns within cloud database frameworks by presenting the Verifiable Reliable Secure-

DataBase (VRS-DB) framework. This framework en- hances security through secret share distribution 

and encrypted operators operating within the same encrypted space. Furthermore, Munjal and Bhatia 

[11] delve into ad- vanced cryptographic techniques, comparing RSA with the Paillier algorithm to 

fortify data privacy in cloud services. Their work offers practical solutions for ensuring secure database 

operations. Collectively, these papers contribute diverse cryptographic per- spectives, presenting 

innovative frameworks for secure querying, outsourcing, and da- tabase operations within cloud 

environments. 

Bellare et al. [12] introduced format-preserving encryption (FPE), a method that en- crypts plaintext 

into ciphertext while maintaining an identical format. They explore the "rank-then-encipher" approach 

using unbalanced Feistel networks (FE1 and FE2), providing security analyses and discussing 

applications in finance, networking, and de- terministic encryption. Popa et al. [14] presented CryptDB, 

which addresses the confi- dentiality of SQL database applications through SQL-aware encryption and 

key linkage to user passwords. This ensures efficient queries while limiting information exposure. 

Implementations on MySQL and Postgres demonstrate minimal overhead, making CryptDB a versatile 

choice for various applications. Dara and Fluhrer [15] introduced the FNR encryption scheme, a practical 

small-domain block cipher that prioritizes input length preservation, relevant for ensuring data privacy 

in Software-as-a-Service appli- cations. Souza and Puttini [16] addressed concerns regarding entrusting 

sensitive data to cloud services by leveraging client-side encryption for health and financial records. 

They introduced homomorphic and order-preserving encryption systems for regular searches over 

encrypted records, thus maintaining confidentiality and end-users' pri- vacy in cloud environments. 

These papers contribute to the evolution of encryption solutions, considering practical applications and 

trade-offs in diverse contexts such as cloud computing scenarios. 

Ren et al. [18] delve into the application of fully homomorphic encryption (FHE) for unbounded 

aggregation queries in databases. They introduce two FHE schemes tailored for both numerical and binary 

values, alongside a novel mechanism for transforming ciphertext. Despite the slower processing 

compared to plaintext, their research show- cases the potential of FHE in OLAP queries within 

encrypted databases, with a strong focus on maintaining data privacy in aggregation scenarios. On a 

similar note, Miao et al. [19] present an Efficient Privacy-Preserving Spatial Range Query (PSRQ) 

scheme designed to bolster the security of outsourcing spatial data for Location-Based Services (LBS). 

By integrating the Geohash algorithm with the Circular Shift and Coalesce Bloom Filter framework, 

they enhance the confidentiality of spatial data. The extension of their work, the PSRQ+ scheme, 

incorporates a Confused Bloom Filter and spatial location conversion to achieve adaptive security and 

improved query efficiency, partic- ularly with large datasets reaching million-levels. These contributions 

collectively en-rich the landscape of privacy-preserving techniques in encrypted databases, addressing 
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both numerical and spatial domains and offering practical solutions for secure and ef- ficient query 

processing. 

3 Foundational Concepts 

3.1 Format Preserving Encryption. 

Format Preserving Encryption (FPE) ensures that the original format of input do- mains is preserved 

during encryption. While conventional encryption methods like AES result in a random string when 

encrypting an IPv4 address represented in dotted notation, FPE encryption schemes maintain the IPv4 

address format in the resulting ciphertext. 

 

Figure 1 Format Preserving Encryption 

We utilize simplified definitions of FPE schemes while maintaining their generality intact. Detailed 

definitions and proofs are available in [12]. FPE algorithms incorporate additional parameters known 

as tweak (t) and domain (d). The tweak (t) operates simi- larly to a cryptographic salt, adding extra 

randomness. On the other hand, the domain 

specifies the context of the plaintext, such as IPv4 addresses or credit card numbers, among other 

possibilities [12]. 

The fundamental algorithm of an FPE encryption scheme are outlined as follows: 

KeyGen(σ ): Generates a key (k) and tweak (t) based on a security parameter (σ). 

Encryption(p, k, t, d): The algorithm produces ciphertext (c) from a given plaintext (p), key (k), and 

tweak (t), ensuring that both the plaintext (p) and ci- phertext (c) fall within the same domain (d). This 

process involves utilizing rank and de-rank methods alongside a length-preserving block cipher (enc‘). 

Addi- tional details on ranking functions are discussed in following sections. 
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Decryption(c, k, t, d): For a given ciphertext (c), key (k), and tweak (t), the al- gorithm retrieves the 

corresponding plaintext (p). In this process, both the ci- phertext (c) and plaintext (p) belong to the same 

domain. 

FNR, a block cipher introduced in [15], is tailored for safeguarding the format and length of sensitive 

data within limited domains like MAC addresses, IPV4 (32), IPV6 (32), and similar instances due to its 

arbitrary length and small domain. Combining Pairwise Independent Permutations with classic Feistel 

Networks, FNR offers en- hanced security over alternative methods. 

3.2 SQL Aware Encryption 

SQL-Aware Encryption refers to a specialized approach in encryption that custom- izes the 

encryption process to suit specific predefined SQL operations. These operations include tasks like 

equality checks, joins, aggregates, and inequality checks, among oth- ers. With this 

methodology, each data item undergoes encryption in a manner that fa- cilitates computations 

on the resulting ciphertext, as detailed in [14]. 

4 Technical Architecture 

4.1 FPE-CDB 

The underlying framework of our modified edition closely resembles that of CryptDB. 

Nevertheless, variances emerge in the specific encryption methods utilized, as discussed 

further in the following sections. 

 

Figure 2 CryptDB Architecture 

CryptDB comprises three essential components, as depicted in Figure 2: the Appli- cation Server, 

Proxy Server, and DBMS Server. The Application Server acts as the primary server, hosting CryptDB's 

database proxy and managing the DBMS Server. The Proxy Server stores crucial elements such as a 

confidential Master Key, the data- base Schema, and the layered encryption for all database columns. 

In contrast, the DBMS server holds access to the anonymized database schema, encrypted database 

data, and certain cryptographic User-Defined Functions (UDFs). These cryptographic UDFs are 

employed by the DBMS server to execute specific operations on the en- crypted data (ciphertext). 

Below, we outline the steps entailed in processing a query within CryptDB. 

In the first stage, the application server initializes a query. Next, the query is received and handled 

by the proxy server, which anonymizes both the table name and indi- vidual column names. 
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Additionally, all constants within the query are encrypted us- ing a securely stored master key. 

Moreover, the encryption layers, also known as onion layers, are adjusted depending on the specific 

operation required by the query. For example, if the query involves equality checks, the proxy server 

employs the deterministic encryption scheme (DET) to encrypt all values within the designated column 

where the equality check is to be conducted. 

After encryption, the user's query is sent to the DBMS server. At this point, the DBMS server 

executes the queries using standard SQL and calls upon User-Defined Functions (UDFs) for performing 

particular tasks like token search and aggregation. Importantly, these tasks are conducted on the 

encrypted data within the database. 

The operations on the encrypted data are performed by the DBMS server, after which the encrypted 

results are transmitted back to the proxy server. 

 

The proxy server decrypts the encrypted query result it obtains, then returns it to the application 

server. 

4.2 Encryption Techniques 

CryptDB utilizes a variety of encryption techniques tailored to the operations speci- fied in a given 

query. For instance, if a query doesn't include any equality or inequality checks, it employs the random 

encryption scheme (RND layer). When the query in- volves SUM aggregate calculations, CryptDB 

utilizes homomorphic encryption (HOM layer). For executing equality checks, it applies the 

deterministic encryption scheme (DET layer). Notably, CryptDB employs different encryption schemes 

for managing inequality checks and joins. 

 

Figure 3 Onion Layers of CryptDB for an SQL INSERT query. 

 

This paper highlights the importance of employing two encryption layers: Random (RND) and 

Deterministic (DET). 
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Random (RND) 

This encryption method functions probabilistically, guaranteeing that two identi- cal plaintexts 

produce unique ciphertexts. This built-in probabilistic nature boosts security, making it IND-CPA 

secure. In CryptDB, the random encryption layer em- ploys AES-CBC-128 for strings and Blowfish 

(CBC mode) for integers. Both ap- proaches integrate a random initialization vector (IV) into their 

encryption process. 

Deterministic (DET) 

This encryption method functions in a deterministic manner, meaning that iden- tical plaintexts 

produce identical ciphertexts. This deterministic aspect makes it less secure when contrasted with the 

random (RND) layer. In CryptDB, the deterministic encryption layer is implemented using AES-CMC-

128 and Blowfish, with a zero- initialized vector. This layer is primarily used by the server for executing 

select que- ries that involve equality checks, equality joins, COUNT operations, and DISTINCT clauses. 

Figure 3 demonstrates the varied encryption layers employed by CryptDB when executing a 

fundamental INSERT query. Similar to Figure 2, the columns in the query undergo a two-step 

encryption process. Initially, they are encrypted using the DET layer, followed by encryption with the 

RND layer. Subsequently, the resulting cipher- text, generated by RND_int (for columns with Integer 

Input type) and RND_str (for columns with varchar input type), is stored within the database. 

FPE-CDB effectively achieves the two characteristics specified for Format Preserv- ing Encryption 

(FPE) schemes mentioned earlier. Figure 4 illustrates the various layers of security utilized by FPE-CDB. 

In addition to the initial two layers described earlier, CryptDB [1] integrates several supplementary 

layers akin to onion layers. These encompass the Order-Preserving En- cryption (OPE) layer, devised 

to streamline range queries; the Homomorphic Encryp- tion (HOM) layer [4] [13], aimed at enabling 

aggregation and counts; and the SEARCH layer, facilitating full word keyword searches on encrypted 

data [5]. 

 

Figure 4. Onion Layers of FPE-CDB for an SQL INSERT Query 
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The presence of these extra layers facilitates the performance of diverse SQL oper- ations on 

encrypted data without necessitating decryption. These layers remain intact within the adapted version, 

FPE-CDB. 

4.3 Toy Application 

Our study focuses on a network monitoring application that serves as the benchmark. This application 

utilizes a dataset commonly used by security analysts to monitor and analyze network traffic. The 

dataset includes crucial attributes such as Source IP ad- dress, Destination IP address, Protocol, Number 

of packets, Number of Records, No of Bytes, Start date, End date, and Sensor. These fields are essential 

for various network monitoring tasks like traffic analysis, intrusion detection, and packet filtering. For 

our analysis, we have chosen five specific fields from this dataset, which are outlined in Table 1. 

Table 1 Database Schema of FPE-CDB 

Column ID Field Plaintext (char) AES (char) FNR (char) 

1 Source IP 15 48 15 

2 Destination IP 15 48 15 

3 Start-Date 19 64 19 

4 End-Date 19 64 19 

5 Sensors 2 48 2 

 

4.4 Encryption of Datatypes 

Preserving the original formats and lengths of input strings is paramount in the mod- ified FPE-CDB. 

To achieve this, the Flexible Naor and Reingold (FNR) encryption scheme has been chosen. FNR is 

acknowledged for its capability as a length-preserving block cipher, accommodating input sizes from 

32 to 128 bits [15], [7]. This choice guarantees that both the lengths and formats remain intact 

throughout the encryption process, ensuring the preservation of data types such as IPv4 (referenced in 

Table 2) and Time Stamps (referenced in Table 3), as further discussed below. 

Table 2 Samples for IPv4 Addresses 

Plain Text Cipher Text 

Raw (Dotted) Ranked (In- 

teger) 

Raw (Inte- ger) De-ranked (Doted) 

64.243.129.86 941079480 1226870871 73.32.144.87 

56.23.187.184 2213763856 1067498731 63.160.188.235 
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131.243.91.16 4026531837 2739475379 163.73.19.179 

239.255.255.253 905584639 2223369266 132.133.236.50 

53.250.31.255 3222780570 2000079960 119.54.204.88 

IPv4 Address 

Ranking an IPv4 address involves interpreting it as a 32-bit integer. This integer is then encrypted 

using a block cipher like FNR, yielding another 32-bit integer. To maintain the original format, the 

resulting ciphertext is converted back (de-ranked) to the dotted notation of the IPv4 address. The 

algorithm's process is depicted in Figure 1. 

Time Stamp 

The process starts by converting the input timestamp into an epoch value, which represents a specific 

date and time used as a reference for computer clocks and timestamps. This epoch value is then 

encrypted using the FNR encryption scheme. After encryption, the encrypted epoch value is reversed to 

obtain a date string, main- taining the original format of the plaintext. This resulting date string serves 

as the ciphertext. 

Table 3  Samples for Timestamps 

 

Plain Text Cipher Text 

Raw (String) 
Ranked (Integer) Raw (Inte- ger) De-Ranked (String) 

Date String Unix Timestamp Unixtimestamp Date String 

16/11/2023T21:04:05 1100639045 1531152620 09/07/2021T16:10:20 

15/11/2023T15:44:38 1100533478 627185476 16/11/2018T02:11:16 

14/12/2022T09:27:05 569150825 3645016902 03/07/2085T16:41:42 

7/10/2023T41:33:07 1105205587 2685279782 03/02/2085T15:03:02 

6/11/2023T22:07:06 1105049226 3275728681 20/10/2073T12:38:01 

Integers 

In the application, there are certain fields, like Port Number and Packets Trans- ferred, which are of 

integer type. When encrypting these integers using the FNR scheme, the result is an integer ciphertext. 

These particular fields do not necessitate distinct ranking functions. In this implementation, we utilize 

an unsigned 64-bit in- teger data type to store the ciphertexts. 

5 Experiments 

The investigation utilized a setup comprising Ubuntu 23.10 on VMware, equipped with 7GB of RAM 

and powered by a 1.70GHz 12th Gen Intel(R) Core (TM) i5-1240P Pro- cessor. The reference data 
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originated from anonymized enterprise packet header traces obtained from Lawrence Berkeley National 

Laboratory and ICSI [8][9]. This dataset encompasses network traffic from late 2004 to early 2005, 

presented in SILK flow rec- ord format, and was restricted to specific hours and dates. The encryption 

process in- volved encrypting a maximum of 1 million SILK flow records [17] using the FNR en- 

cryption scheme, followed by a subsequent performance analysis. 

6 Results 

Storage: The results of our experiments show a roughly 50% increase in storage efficiency with FPE-

CDB. In Figure 5, we visually compare the estimated storage space needed for data encrypted in 

CryptDB (using AES) versus FPE-CDB (using FNR). The degree of storage improvement depends on 

the specific application data. 

For our dataset, we observed an approximate 50% enhancement in storage effi- ciency. The X-axis of 

the graph represents the number of records inserted into the database, while the Y-axis shows the 

Database Size in MB. Additionally, Table 1 provides details on the database schema of FPE-CDB, 

including the length (number of characters) of AES ciphertexts (used in CryptDB) and FNR ciphertexts 

(used in FPE-CDB). 

 

 

Figure 5 Storage for CryptDB versus FPE-CDB (in MB) 

Calculating the average row length in SQL databases involves considering various parameters such 

as the fixed data size (size of fixed-length SQL fields), variable data size (size of variable-length SQL 

datatypes like VARCHAR, number, etc.), null bit- map size, and row header size. Consequently, the 

total database size can be expressed as data length = Total Number of Rows × Average Row Length. In 

this particular setup, the database comprises five VARCHAR fields as illustrated in Table 1. Addi- 

tionally, the encrypted database stores salt values used for encrypting queries and onion layers in 
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CryptDB. Thus, the estimated average row length includes the sum of the variable data length (size of 

stored ciphertext) and the total size required to store the salt value for each field. Based on this 

calculation, the average row length of the encrypted table in FPE-CDB is approximately 197 bytes, 

considering some overhead. 

Performance: Figure 6 depicts a performance comparison between FNR and AES-128. The 

horizontal axis indicates the number of records inserted, while the vertical axis represents the time 

(measured in milliseconds) needed to execute a specific number of SQL INSERT queries. In the case 

of FPE-CDB, there's a decline in per- formance compared to CryptDB. Notably, the observed decrease 

in performance is approximately sevenfold (y ≈ 7x). This is consistent with the anticipated theoretical 

outcome, as the FNR scheme inherently involves seven rounds of AES as part of its design [15]. 

 

 

 

Figure 6 Performance of DPE-CDB versus CryptDB 

7 Conclusion 

In summary, this paper introduces FPE-CDB, an Encrypted Database that preserves format, with a 

focus on network monitoring as its primary application. Through exper- iments, the study demonstrates 

the storage benefits achievable through Format Preserv- ing Encryption (FPE) methods, albeit with a 

performance trade-off. Moving forward, enhancing security could involve integrating authentication 

and data integrity features into both CryptDB and FPE-CDB. 
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