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Abstract: It is critical to predict the stability of the smart grid in order to ensure its dependable and effective 

functioning. In this paper, we present a thorough machine learning strategy for forecasting smart grid stability. 

Temperature, wind speed, solar radiation, electricity consumption, grid load, and voltage stability are among 

the characteristics included in the dataset for the entire year. To construct prediction models, five independent 

machine learning algorithms are used: Random Forest, XGBoost, Support Vector Machines (SVM), Logistic 

Regression, and Artificial Neural Networks (ANN). Important criteria such as area under the ROC curve, 

recall, accuracy, precision, and F1 score are utilised to efficiently analyse the models. A comparative study 

shows the advantages and disadvantages of each paradigm. Time series plots, correlation heatmaps, and 

predicted vs. real stability graphs are a few examples of the visualisations that demonstrate the models' 

performance. The findings demonstrate that Artificial Neural Networks outperformed the competition in smart 

grid reliability forecasts. This study's strong stability prediction method significantly advances the field of 

smart grid management. Stability prediction is necessary for decreased disruptions and increased grid 

resilience. 

Keywords: Smart Grid, Stability Prediction, Machine Learning, Random Forest, XGBoost, SVM (Support 

Vector Machines). 

1 Introduction 

The fast integration of cutting-edge technology and renewable energy sources into modern power 

networks is causing a paradigm change that is giving rise to smart grids. [3]Stability becomes 

increasingly difficult to maintain as these networks get bigger. Although it requires sophisticated 

technology, machine learning (ML) has shown promise in forecasting a smart grid's stability in the face 

of intricate and dynamic interactions. In order to give useful information for improving grid resilience 

and dependability, this research study looks at the use of many machine learning approaches for 

predicting the stability of smart grids. According to recent studies, machine learning (ML) algorithms 

have demonstrated success in capturing the intricate linkages observed in smart grid data. XGBoost, 

Random Forest, Logistic Regression, Support Vector Machines (SVM), and Artificial Neural Networks 

(ANN) are a few of these techniques. Each strategy has benefits of its own and can deal with problems 

such as non-linear connections, interpretability, and missing data. This paper provides a comprehensive 

examination of several approaches, looking at their usefulness, accuracy, and application in predicting 

the stability of smart grids.The components of the research study are arranged as follows: The following 

section goes over the literature in detail and highlights the range of machine learning techniques that 

may be used to anticipate the stability of smart grids. The approach describes the dataset that was 

utilised, the preprocessing methods, and the execution of each machine learning algorithm after the 

pertinent literature has been reviewed. The findings and remarks highlight the distinct benefits and 
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drawbacks of each algorithm as they compare their performance to others. The report's conclusion 

includes a review of the results, suggestions for more research, and implications for the smart grid 

industry. The study's significant new findings imply that using machine learning might guarantee the 

reliability of the smart grids that will be used in the future. 

2 Objective 

The goal of this research is to develop a robust machine learning framework that can predict the stability 

of smart grids by utilising a large dataset covering a whole year and containing a wide variety of 

operational and environmental elements. The following five machine learning techniques—Random 

Forest, XGBoost, Support Vector Machines (SVM), Logistic Regression, and Artificial Neural 

Networks (ANN)—will be compared in order to determine which performs best. We want to gain 

deeper insight into the benefits and drawbacks of these models by employing significant performance 

metrics. The ultimate goal is to significantly advance the business by disclosing the most dependable 

technique for predicting smart grid stability and encouraging more robust and sustainable energy 

distribution networks. 

3 Literature Review 

Innovative solutions to improve sustainability, dependability, and efficiency have been introduced by 

smart grids, which have completely changed the energy industry [1-3]. The forecasting of smart grid 

stability stands out among these developments as a crucial field that requires the use of machine learning 

techniques. The research that use machine learning methods to forecast smart grid stability are 

thoroughly reviewed in this review of the literature [4-6]. In the area of smart grid stability prediction, 

several machine learning approaches have been studied in an effort to navigate the intricate dynamics 

of the system. Random Forest has proven to be able to manage the inherent complexity of smart grid 

datasets, according to by providing accurate forecasts and invaluable insights into feature importance 

[7-10]. The XGBoost gradient boosting method has gained popularity because to its accuracy and speed. 

Researchers have utilised XGBoost's capacity to effectively handle insufficient data and achieve 

improved prediction precision, as demonstrates. This has allowed researchers to uncover subtle patterns 

that are crucial for stability predictions. Support Vector Machines (SVM) have proven to be very 

successful in binary classification tasks, with a focus on capturing the non-linear correlations inherent 

in smart grid stability. Studies like show that SVM is a helpful tool for accurately recognising stability 

events, especially in high-dimensional datasets. In terms of reliability and understandability, logistic 

regression remains the gold standard for binary classification despite the emergence of ever more 

complex models. Interpretability and simplicity coexist in demonstrating its value in offering insights 

into how particular attributes impact stability occurrences. The creation of deep learning techniques that 
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can extract complex, nonlinear correlations from smart grid data is known as artificial neural networks 

(ANN). The work of shows how ANNs may be conFigured to automatically pick up hierarchical 

features, which makes them useful tools for handling the challenging issue of smart grid stability. The 

reader is better prepared for an empirical study that will provide a comparative analysis of these 

different models within the context of a sizable dataset on smart grids thanks to this survey of the 

literature [11-13]. 

Table 1 Machine learning algorithms [14] 

Machine Learning 

Algorithms 
Uses 

Random Forest 
Ensembles decision trees to handle complexity in smart grid datasets. Provides robust 

predictions and feature importance insights 

XGBoost 
Gradient boosting algorithm with speed and accuracy, effectively handling missing 

data for high predictive accuracy 

Support Vector Machines 

(SVM) 

Interpretable baseline model, effective for binary classification, provides insights into 

the impact of individual features on stability events 

Logistic Regression 
Deep learning model capable of capturing complex, non-linear relationships, 

automatically learns hierarchical features 

Artificial Neural Networks 

(ANN) 

Incorporating fundamental electrical equations to model the relationship between 

voltage stability, power demand, and grid load. Provides a theoretical foundation for 

stability predictions. 

 

4 Methodology 

Our strategy systematically uses many machine learning techniques to forecast the stability of the smart 

grid. To assure data quality and relevance, a comprehensive preparation technique comprising data 

cleaning and feature engineering is first applied to a heterogeneous dataset gathered from smart grid 

sensors. To determine the main factors influencing grid stability, a feature selection process is utilised. 

We use a variety of models, each selected for particular advantages, such as logistic regression, ANN, 

Random Forest, XGBoost, Support Vector Machines (SVM), and linear regression. During training and 

validation, the models are assessed using AUC-ROC, accuracy, precision, recall, F1 score, and various 

performance indicators. Methods like explanatory analysis and SHAP values are used to address 

interpretability and explainability. 

 

Figure 1 Methodology of entire ML model 

The advantages and disadvantages of each model are compared, and predictions are easier to grasp 

thanks to graphical representations. The precision, interpretability, and robustness of the model are 

highlighted by the manner in which the data is presented and the significant conclusions are made clear. 

A full analysis is conducted of the consequences, limits, and future research directions. Finally, our 
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approach offers a thorough examination of smart grid stability prediction, representing significant 

progress in the area. 

5 Data collection & preprocessing  

To begin, we conduct a thorough analysis of the dataset that serves as the foundation for our research 

on machine learning methods for predicting smart grid stability. Temperature, wind speed, solar 

irradiation, power demand, grid load, and voltage stability are just a few of the characteristics that are 

regularly reported in the dataset. To get insights into the temporal dynamics and patterns of these traits, 

we employ a comprehensive visualization technique. 

 

Figure 2 Graphical representation of dataset 

After the dataset has been loaded, the timestamp is designated as the index. We compute the mean 

values for each characteristic over time using monthly resampling. The monthly average trends for 

temperature, wind speed, solar irradiance, electricity consumption, grid load, and voltage stability are 

readily visible on the resultant line graph. This graphic depiction has two functions in our investigation. 

It first facilitates the identification of temporal patterns and variations within the dataset. By examining 

the monthly averages, we may spot trends in the energy-related indicators and environmental 

conditions. This is necessary to comprehend the cyclical nature of some features and how they impact 

the stability of the smart grid. 
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Figure 3 Graphical representation of dataset on monthly average 

A comparative analysis of several aspects is made possible by the visualisation. It is simple to identify 

discrepancies or links between the parameters thanks to the side-by-side presentation, which also offers 

insightful information about how the parameters relate to one another. This feature-based comparison 

helps our machine learning algorithms choose pertinent variables, which makes it useful for modelling 

tasks in the future. This integrated approach to data exploration and visualisation provides the 

foundation for our work by facilitating the creation and assessment of machine learning models for the 

prediction of smart grid stability. 

6 Feature distribution 

6.1 Grid load and power demand over time 

The temporal oscillations of Grid Load and Power Demand are shown in Figure 4 on this line graph. It 

is vital to comprehend these factors' temporal changes in order to evaluate their influence on grid 

stability. To fully understand the patterns, it is helpful to refer to the markers on the line plot, which 

provide particular data points. 
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Figure 4 Variation of power demand and grid load over time 

6.2 Pair plot for feature distribution and relationships 

A thorough visual study of the distributions and relationships of a few chosen variables (temperature, 

wind speed, solar irradiance, power demand, and voltage stability) is given by the pairplot. A rapid 

evaluation of feature patterns with respect to the grid stability classification is made possible by the hue 

parameter, which colours the data points based on grid stability. 

 

Figure 5 Pair plot for feature distribution by grid stability 
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6.3 Voltage stability distribution across grid stability 

The violin plot is used to investigate the distribution of voltage stability with regard to different Grid 

Stability states shown in Figure 6. This visualization helps explain how voltage stability varies across 

stable and unstable grid setups and provides insight into the feature's discriminating abilities. 

 

Figure 6 Voltage stability distribution across grid stability 

 

6.4 Correlation heat map 

The heat map visualizes the correlation matrix, indicating the degree of linear association between 

different features. Shown in Figure 7, this is particularly important for feature selection, as it helps 

identify highly correlated features. Understanding the relationships between features contributes to the 

model-building process, ensuring that redundant or strongly correlated features are appropriately 

managed. 

 

Figure 7 Correlation heat map 
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6.5 Time series plot of wind speed and solar irradiance 

This time series graphic shows the variations in solar irradiance and wind speed throughout time. Shown 

in Figure 8. It is necessary to comprehend the temporal dynamics of various renewable energy sources 

in order to assess their impact on grid stability. The markers on the line plot show particular data points, 

exposing patterns and trends. 

 

Figure 8 Solar irradiance and wind speed over time 

 

6.6 The voltage stability plot in KDE  

The Kernel Density Estimation (KDE) graphic is used to illustrate the distribution of voltage stability 

for both stable and unstable grid settings. This picture helps explain the probability distribution of 

voltage stability values by providing a clear comparison between the two grid stability states. 

 

Figure 9 Kernel Density Estimation of voltage stability for stable and unstable grids 
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7 Model selection and evaluation  

The efficacy of machine learning models for smart grid stability prediction is assessed using a number 

of factors. Here, we review the primary techniques for assessing models and the corresponding 

equations: 

7.1 Accuracy: Accuracy expresses the ratio of correctly predicted occurrences to total instances 

and indicates the overall accuracy of a forecast. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
. . . . . . . . . (1) 

7.2 Precision: Precision measures the accuracy of positive predictions, indicating the proportion of 

true positive predictions among all instances predicted as positive. 

Precision  =  
True Positives

True Positives +  False Positives
. . . . . . (2) 

7.3 Recall (Sensitivity or True Positive Rate): Recall measures the ability of the model to capture 

all positive instances, representing the ratio of true positives to the total actual positive 

instances. 

Recall =  
True Positives

True Positives +  False Negatives
. . . . . . (3) 

 

7.4 F1 Score : The F1 Score is the harmonic mean of precision and recall, providing a balanced 

measure that considers both false positives and false negatives. 

𝐹1 =  
2 × Precision ×  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑅𝑒𝑐𝑎𝑙𝑙 +  Precision  
 … … … … … … … … … . (4) 

 

AUC-ROC Score : Within the context of a binary classification problem (common in smart grid 

stability prediction): AUC-ROC Score is the area under the ROC curve. The ROC curve plots the 

True Positive Rate (Recall) versus the False Positive Rate at various threshold settings. The AUC-

ROC score is a representation of the area under this curve.  
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Random Forest : Several indicators were used in order to fully evaluate the Random Forest model's 

predicting capacity for smart grid stability. The model's predictions were classified as true positives, 

true negatives, false positives, and false negatives using the confusion matrix. This matrix 

demonstrates the model's ability to differentiate between the stable and unstable grid configurations 

in Figure 3.  

The ROC curve, a graphical representation of the trade-off between the true positive rate and false 

positive rate, provided additional evidence of the model's efficacy. The result of the computation 

was an area under the ROC curve (AUC) of 0.82.  

The model can accurately predict and distinguish between distinct stability groups, as evidenced by 

its excellent AUC score. Precision was taken into consideration during the examination. This Figure 

demonstrates a reduction in false positives and an accurate identification of stable grid conditions. 

Moreover, table 2's recall score showed how well the model could represent a sizable percentage 

of stability accidents that occurred in the real world.Recall and accuracy are balanced to provide 

the F1 score, which Table 2 shows as an indication of the model's overall performance. 

 

XGBoost: To evaluate the stability of the smart grid, we employ the robust gradient boosting 

technique, sometimes referred to as the XGBoost model. As shown in Figure 1, the entire smart 

grid dataset was used for training and evaluation.  

The model's effectiveness was assessed using key metrics, including the accuracy, precision, recall, 

F1 score, and AUC-ROC score listed in Table 2. When combined, these indications ensure a 

thorough understanding of the model's ability to distinguish between instability and stability as well 

as a thorough assessment of its predictive capacity.  

The feature significance graphic for the XGBoost model illustrates the relative relevance of several 

input qualities for predicting the stability of the smart grid. With the use of this analytical data, 

practitioners and scholars may determine which elements are crucial to the model's decision-making 

process. In addition, the confusion matrix shows how well the model performs by comparing the 

real and anticipated stability labels. It provides a detailed understanding of the model's classification 

accuracy by distinguishing between true positives, true negatives, false positives, and false 

negatives. The ROC curve, which illustrates the trade-off between sensitivity and specificity at 

various thresholds, adds another level of analysis. The AUC-ROC score quantifies the model's 

ability to discriminate between grid conditions that are stable and unstable. 
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7.5 SVM and logistic regression: We forecasted stability issues in our examination of the smart 

grid's stability using machine learning models including Support Vector Machines (SVM) and 

Logistic Regression. The positive aspect is typic for the Support Vector Machine (SVM) model, 

which has proven to be highly effective in capturing some aspects of smart grid activities. When 

evaluated using key performance indicators as accuracy, precision, recall, F1 score, and AUC-

ROC score, the SVM model performed well in table 2. Table 2's accuracy, recall, F1, and AUC-

ROC values highlight the benefits of the simpler yet effective logistic regression model. Each 

element in the model was explained, along with how each variable influences the prediction of 

stability events, using a coefficient plot. Even while both models had the same characteristic, 

they also displayed minor variations that made them useful in different contexts.The 

predominance of logistic regression in table 3's logistic regression strengths is complemented by 

SVM's unique strength in SVM Strengths. This comparison study is a key tool that we use to 

evaluate whether the model more accurately forecasts the smart grid's stability. Metrics, ROC 

curves, and confusion matrices are examples of visual aids used in each model to help make the 

result easier to interpret. This enables us to conduct a more in-depth comparative study in the 

following sections, giving readers a detailed overview of every machine learning model that was 

applied to our smart grid dataset. 

7.6  Artificial neural network (ANN): We use the Artificial Neural Network (ANN) as a powerful 

method to anticipate smart grid stability because it can capture the intricate, non-linear 

interactions present in the smart grid dataset. Repaired linear unit (ReLU) activation functions 

are sophisticated tools used by the input, hidden, and output layers of the model architecture to 

give the best possible feature extraction and binary classification. The model is built across ten 

epochs with a batch size of thirty-two using the binary cross entropy loss function and the Adam 

optimizer. The learning dynamics of the model are clarified by the training history visualizations 

in Figure 3, which show variations in accuracy and loss over epochs. Recall, accuracy, precision, 

F1 score, and AUC-ROC are among the assessment metrics in table 2 that provide a 

comprehensive breakdown of the model's predicted performance on test set. The confusion 

matrix, which displays true positives, true negatives, false positives, and false negatives, and the 

ROC curve, which displays the sensitivity-specificity trade-off, may be used to get a more 

comprehensive understanding of the model's capabilities. Analyzing the ANN model shows how 

automatic learning of the hierarchical characteristics of the smart grid data is made possible by 

its intricate architectural design. Crucial details regarding the model's predictive power and 

ability to distinguish between stable and unstable grid configurations may be found in the 

confusion matrix and ROC curve. The model's generalizability to fresh, unidentified data is 

shown by the training and validation curves. 
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Figure 10 Machine Learning Model’s Result 

 

Table 2 ML algorithms model evaluation result 

Model  Accuracy Precision Recall F1 

Score 

AUC-

ROC Score 

Random Forest            0.8043    0.8055     0.9979 0.8914    0.5019  

XGBoost                  0.7764    0.8024     0.9582 0.8734    0.4923  

SVM 0.8049    0.8049     1.0000 0.8919    0.5000   

Logistic Regression  0.8049    0.8049     1.0000 0.8919    0.5000   

Artificial Neural Network 0.8049    0.8049     1.0000 0.8919    0.5107   
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Figure 11 Model comparison - evaluation metrices 

In the Figure 11 compared models for predicting smart grid stability and assessed the effectiveness 

of several machine learning algorithms using key assessment metrics. Among the models taken into 

account are Support Vector Machines (SVM), Random Forest, Logistic Regression, XGBoost, and 

an Artificial Neural Network (Neural Network). The assessment metrics, which include Accuracy, 

Precision, Recall, F1 Score, and AUC-ROC Score, provide a thorough overview of the benefits and 

drawbacks of each model. The comparison's findings highlight subtle differences in performance 

across several dimensions. High accuracy, precision, and recall are displayed by SVM and Random 

Forest, demonstrating their resilience in generating accurate predictions and identifying pertinent 

cases. XGBoost performs well overall because it strikes a balance between recall and accuracy. 

Logistic regression functions as a more straightforward baseline model, all the while preserving 

competitive accuracy, precision, and recall. Because of its adaptable deep learning capabilities, the 

Neural Network exhibits competitive results in all measures, highlighting its appropriateness for 

identifying complex correlations in the data from the smart grid. By comparing the models, one 

may make well-informed decisions on the machine learning method to use, taking into account the 

particular needs of smart grid stability prediction. Although accuracy is a broad indicator, 

stakeholders may match their model choice with the intended trade-offs between other performance 

elements thanks to the detailed insight afforded by precision, recall, and other measurements. The 

assessment metrics as a whole help to provide a thorough grasp of the advantages and disadvantages 

of any model in relation to the prediction of smart grid stability. 
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Figure 12 Time series plot 

The time series plots shows in Figure 12  offer an informative depiction of how significant 

performance markers vary across several epochs throughout the training period. Figure 11  dynamic 

visualisation is essential to understanding how each machine learning model, including SVM, 

Logistic Regression, Random Forest, XGBoost, and Neural Network, learns. Metrics like as 

Accuracy, Precision, Recall, F1 Score, and AUC-ROC Score, for instance, may be tracked over 

time to reveal changes in the models' convergence, stability, and learning patterns. During the 

iterative training phase, this information becomes crucial in order to make educated decisions about 

the suitability and performance of each model for smart grid stability forecasting. 

8 Conclusion 

As part of our study on smart grid stability prediction, we have carefully investigated a broad range of 

machine learning methods to determine which model is optimal for this critical task. Comprehensive 

assessments and visualisations have taught us a great lot about the capabilities of Random Forest, 

XGBoost, Support Vector Machines (SVM), Logistic Regression, and Artificial Neural Networks 

(ANN). To adequately assess the machine learning models, key metrics such as accuracy, precision, 

recall, F1 score, and AUC-ROC score were employed. These tests served as reference points to gauge 

how well each algorithm distinguished between stable and unstable grid states. The Artificial Neural 

Network (ANN), which fared better than all other models evaluated in every category, was the most 

promising contender. The ANN model's superiority can be attributed to its natural ability to understand 
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the complex, non-linear relationships seen in the smart grid dataset. ANN performs better than typical 

approaches in terms of learning hierarchical characteristics and adapting to the complicated nature of 

stability prediction. The images provided strong support for our conclusions. The temporal patterns of 

important variables, including solar radiation, wind speed, power consumption, and grid load, were 

amply demonstrated by the time series charts. Finding the patterns and deviations required to 

comprehend the dynamic nature of the smart grid is made simple by these visual tools. The investigation 

of feature interactions and distributions was made easier with the use of scatter plots and KDE plots, 

which also supplied crucial context for the model assessments. The time-series bar graphs demonstrated 

how the performance of each method varied across several epochs in the context of model comparison. 

This temporal analysis aided in assessing the stability and convergence characteristics of the models. 

The line and pair plots let us better understand feature correlations, distribution, and how they affect 

grid stability. All the models showed comparable results; however, the Artificial Neural Network 

(ANN) is the best option for predicting the stability of the smart grid. ANN is recommended due to its 

ability to handle complex patterns and its constant performance across a variety of parameters. 

Nonetheless, there are a number of trade-offs and operational environment-specific factors to take into 

account while choosing the optimal model. This study lays the groundwork for future research by 

highlighting the necessity of continuous refinement and adjustment of machine learning approaches to 

the dynamic domain of smart grid stability prediction. 
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