



## Electric Drives: 3130611

### Course Objectives:

To provide an overview of complete electric drive systems to students, including the mechanical parts, electrical machines, and power converters and control.

**Unit-I Basic Concepts:** Elements of drive system, Requirements of electric drives. Ratings and selection of drives, Group and individual drives, constant power and constant torque drive. Dynamics of Electric drive convention and multi quadrant operation. Transient and steady state stability of Electrical drive. Control of Electrical drive, modes of operation, speed control and drive classification, closed loop control of drive.

**Unit-II DC Drives:** Speed control of DC motors using single-phase and three-phase fully controlled and half controlled rectifiers in continuous and discontinuous mode of operation. Single quadrant, two quadrant and four quadrant chopper controlled drives in continuous and discontinuous mode of operation.

**Unit-III Induction Motor Drives:** Speed control of cage induction motors with constant V/f control for open-loop and closed-loop (slip speed compensation) schemes by voltage source inverter (VSI), slip power recovery scheme, static Scherbius and Krammer methods, current source inverter (CSI)-fed induction motor drive (stator current control), comparison of VSI and CSI-fed induction motor drives, and AC and DC dynamic braking methods.

**Unit-IV Synchronous Motor Drives:** Speed control of Permanent Magnet Synchronous Motor (PMSM) drive with variable voltage and frequency control schemes, speed control of brushless direct current motor (BLDC) drives by current control using hall effect sensors and its applications. Switched Reluctance Motor Drives: Torque expression, converters for SRM drives, Control of SRM drives.

**Unit-V Special Drives:** Solar and battery powered drives, solar powered electrical vehicles and boat, Traction Drives nature of traction load, conventional DC and AC Traction drives, Energy conservation in electric drives, Servo drives.

### Recommended Books:

1. Fundamentals of Electrical Drives by G.K. Dubey, CRC Press, 2<sup>nd</sup> Ed. 2007
2. A first course in Electric Drives by S.K. Pillai, New Age International, 2<sup>nd</sup> Ed. 2007
3. Power Electronics and AC Drives by B.K. Bose, IEEE Press, New Jersey, 2001
4. Electrical Drives Concept & Application by Vedam Subrahmanyam, Tata McGraw Hill, 2<sup>nd</sup> Ed. 2011.

### Course Outcomes:

After the completion of the course, the student will be able to –

CO1. **Analyze** various components of a drive system along with modes of operation, control needs and identify stable/unstable regions

CO2. **Classify** various drives & loads, their characteristics and control methods under various operating

CO3. **Demonstrate** Induction Motor Drives, Speed control of cage induction motors with constant V/f control for open-loop and closed-loop methods.

CO4. **Evaluate** the performance and control strategies of AC and DC drives

CO5. **Compare** the functioning of solar, battery powered and traction drives and explain energy conservation methods



## Artificial Intelligence & Machine Learning: 3130612

### Course Objective:

- To provide the fundamental knowledge of Artificial Intelligence, Neural Network and Machine Learning.
- To present the basic representation and reasoning paradigms used in AI & ML
- To understand the working of techniques used in AI & ML.

**Unit – I: Introducing Artificial Intelligence:** Definition, Goals of AI, Task of AI, Computation, Psychology and Cognitive Science. Perception, Understanding and Action. Artificial intelligence vs machine learning vs deep learning and other related fields. Applications of Artificial intelligence and Machine Learning in the real world.

**Unit – II: Problem, Problem Space and Search:** Production System, Blind Search: BFS & DFS, Heuristic Search, Hill Climbing, Best First Search

**Introduction to Neural Networks:** History, Biological Neuron, Artificial Neural Network, Neural Network Architectures, Classification, & Clustering

**Unit – III: Introduction to Machine Learning:** Traditional Programming vs Machine learning. Key Elements of Machine Learning: Representation, process (Data Collection, Data Preparation, Model selection, Model Training, Model Evaluation and Prediction), Evaluation and Optimization. Types of Learning: Supervised, Unsupervised and reinforcement learning. Regression vs classification problems.

**Unit – IV: Supervised Machine Learning:** Linear regression: implementation, applications & performance parameters. Decision tree classifier, terminology, classification vs regression trees, tree creation with Gini index and information gain, IDE3 algorithms, applications and performance parameters. Random forest classifier. Case study on regression and classification for solving real world problems.

**Unit –V: Unsupervised Machine Learning:** Introduction, types: Partitioning, density based, DBSCAN, distribution model-based, hierarchical, Agglomerative and Divisive, Common Distance measures, K-means clustering algorithm. Case study on clustering for solving real world problems.

### Recommended Books:

1. Artificial Intelligence: A Modern Approach by Stuart J. Russell and Peter Norvig, PrenticeHall.
2. Artificial Intelligence: Elaine Rich, Kevin Knight, Mc-GrawHill.
3. Introduction to AI & Expert System: Dan W. Patterson, PHI.
4. Pattern Recognition and Machine Learning, Christopher M. Bishop
5. Introduction to Machine Learning using Python: Sarah Guido
6. Machine Learning in Action: Peter Harrington

**COURSE OUTCOMES:** After completing the course, the student will be able to:

- CO1.** Describe the fundamental concepts of Artificial Intelligence and Machine Learning.
- CO2.** Summarize techniques for search and information processing in Artificial Intelligence.
- CO3.** Analyze various techniques in Artificial Intelligence and Machine Learning for their effectiveness.
- CO4.** Apply Artificial Intelligence and Machine Learning techniques to design solutions for real-world problems.
- CO5.** Develop AI-enabled intelligent systems to address and solve complex real-world challenges.



## Annexure-7 DE - 1 for VI Semester



### Details of Department Elective (DE - 1): SWAYAM/NPTEL/MOOC

| Code    | Course Name                                                          | Offered By    | Duration of the course | Start date        | End date       | Exam date      | Name of the Mentor Faculty |
|---------|----------------------------------------------------------------------|---------------|------------------------|-------------------|----------------|----------------|----------------------------|
| 3130661 | Renewable Energy Engineering: Solar, Wind And Biomass Energy Systems | IIT Guwahati  | 12 Weeks               | January 19, 2026  | April 10, 2026 | April 18, 2026 | Prof. Kuldeep K Swarnkar   |
| 3130662 | Non-conventional energy Resources                                    | IIT Madras    | 12 Weeks               | January 19, 2026  | April 10, 2026 | April 18, 2026 | Dr. Nikhil Paliwal         |
| 3130664 | Industrial Automation and Control                                    | IIT Kharagpur | 12 Weeks               | January 19, 2026  | April 10, 2026 | April 25, 2026 | Dr. Ankit Tiwari           |
| 3130665 | Design Of Power Electronic Converters                                | IIT Guwahati  | 8 Weeks                | February 16, 2026 | April 10, 2026 | April 17, 2026 | Prof. Manoj Kumar          |
| 3130666 | EV - Vehicle Dynamics and Electric Motor Drives                      | IIT Delhi     | 12 Weeks               | January 19, 2026  | April 10, 2026 | April 17, 2026 | Dr. Vishal Chaudhary       |



## Annexure-8 Syllabus of Courses under OC 1 Category



## Energy Conservation & Management: 910104

### Course Objectives:

- To familiarize the students to the concepts of Energy Audit, various terminology, rules and regulations, policy, energy economics, energy tariff, analysis techniques and energy conservation.

**Unit I: Energy Scenario:** Classification of Energy, Indian energy scenario, energy needs of growing economy, long term energy scenario, energy conservation and its importance, Energy conservation Act 2001 and its features, Schemes of Bureau of Energy Efficiency (BEE) including Designated consumers, Electricity Acts, National action plan on climate change.

**Unit II: Energy Sources & conservation:** Conventional & Non-Conventional sources of energy, Renewable & non-renewable source of energy, Various methods of energy Conservation, Generation of Electrical Energy using non-conventional Sources.

**Unit III: Energy Audit:** Introduction, Energy Audit- Need, Scope, Methodology, Types of Energy Audit, Energy Flow Diagram, Baseline data for energy audit, Instruments for energy auditing, Sankey Diagram, Questionnaire for energy audit, Preparations & presentations of energy audit reports, Functions of Energy Auditor

**Unit IV: Energy Management:** Definition and objective of energy management, General Principles of energy Management, Energy Management Approach, Energy supply side Management, Management of energy distribution, Functions of energy management team.

**Unit V: Energy Economics:** Introduction, Parameters for energy economics, Energy Tariff, Economic Analysis Technique- Simple payback period, Discounted Cash Flow Method or Time Audited Technique (Net present value NPV, Present value index method PI, Internal rate of return Method IRR), Return on Investment (ROI).

### Recommended Books:

1. Energy Management by W. R. Murphy, G. A. McKay, Butterworth, 2<sup>nd</sup> ed., 2009.
2. Energy Management Principles by C.B. Smith, Pergamon Press, 2<sup>nd</sup> ed., 2015.
3. Electrical Energy Conservation & Utilization by S.C. Tripathi, McGraw Hill Edu. India, 1<sup>st</sup> ed., 1980.
4. Non-Conventional Energy Resources by N. K. Bansal, Laxmi Publication, 1<sup>st</sup> ed., 2014.
5. Energy Management Hand book by W.C. Turner, John Wiley& Sons, 6<sup>th</sup> ed., 2006.
6. Energy Conservation guide book by Pattrick, Prentice Hall, 1<sup>st</sup> ed. 1993.

### Course Outcomes:

After the completion of the course, the students will be able to –

- CO1** Explain the basic concepts of Energy Audit & its various terminologies, rules and regulations, policy and how to write reports.
- CO2** Discuss the conventional and non-conventional energy technologies
- CO3** Describe different energy auditing methods and the implementation procedures
- CO4** Identify present scenario of energy utilization, management and corresponding ACT of regulatory commission
- CO5** Apply energy tariff and power factor improvements to achieve energy efficient systems.



## Biomedical Instrumentation: 910105

### Course Objectives

- To introduce students to the basic biomedical engineering technology and different biological signals, their acquisition, measurements and related constraints.

**Unit I: Introduction to Biomedical Electrodes & Transducers:** Development of biomedical instrumentation, Man-Instrument System, Problems Encountered in Measuring a Living System, transducers for biomedical applications; Cell and its structure, Resting and Action Potential, origin of bio-potential and its propagation, sources of bioelectric potentials, electrocardiogram, electro encephalogram, electromyogram and other bioelectric potentials. Bio-potential Electrodes, the nervous system.

**Unit II: Cardiovascular System & Measurement:** The Cardiovascular system, ECG lead configuration, ECG recording, (Einthoven Triangle) Mechanical & electrical Activity of the Heart, electrocardiography, measurement of blood pressure, blood flow and cardiac output, plethysmography, heart sounds, pacemakers and defibrillators. Respiratory Mechanism, measurements of gas volume, flow rate, carbon dioxide and oxygen concentration in exhaled air, respiration controller, spirometer.

**Unit III: Neuromuscular & Nervous System:** Muscles in human body, Muscle response: Electromyography, EMG Signal characteristics, MUAP, MUAP abnormality and anatomic correlation, Clinical important features, Nerve conduction velocity measurement, Measurements from the nervous System, Neural communication, EEG: EEG Electrodes & Neuronal communication-EEG waveforms and features, EEG correlation between mental activity and frequency.

**Unit IV: Patient Care, Monitoring and Safety:** Elements of intensive care, Monitoring, Hospital System & components, respiratory therapy equipments, inhalators, ventilators & respirations, humidifiers, nebulizers &Aspirators. Electrical safety of patients & medical equipment, physiological effects of electric current, shock hazards from equipments, Patient care and monitoring: elements of intensive care unit, safety measures.

**Unit V: Noninvasive Diagnostic Instrumentation:** Ultrasonic Waves and Ultrasonic Vibrations, Propagation, Acoustic Intensity, Applications, Super Imposition, Potential Health Hazard, Measurement of Velocity, Ultrasonic Scanning techniques for bone fracture detection, Applications, Comparison between X-rays and ultrasonic scanning, Applications. **Case study:** Applications of soft computing techniques for diagnosis of cardiovascular, neuromuscular disorders & bone fracture detection.

### Recommended books:

1. Biomedical Instrumentation and Measurement by Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, 2<sup>nd</sup> ed., 1980.
2. Biomedical Instrumentation: Technology and Applications by Raghbir Singh, McGraw-Hill Education, 1<sup>st</sup> ed., 2004.
3. Medical Instrumentation for Health Care by Leslie Cromwell, Prentice Hall, 1<sup>st</sup> ed., 1976.
4. Introduction to Bioinstrumentation: With Biological, Environmental, and Medical Application by Clifford D. Ferris, 2<sup>nd</sup> ed., 1978.

### Course Outcomes:

After completing this course, the students will be able to:

**CO 1.** Explain the origin of bio potentials and the role of bio potential electrodes & transducers



- CO 2.** **Apply** the physical and medical principles in the measurements of cardiovascular system parameters
- CO 3.** **Apply** the physical and medical principles used a respiratory system measurement
- CO 4.** **Evaluate** patient safety issues associated with biomedical instrumentation and propose preventive measures
- CO 5.** **Analyze** the techniques for noninvasive Diagnostic Instrumentation



### Course Objective:

- To familiarize the students with the Industrial aspects of automation, planning and model making
- To provide the understanding of the control of a different PLCs and their applications in various low , medium and high power drives
- To expose the students to understand various sensors, transducers and data acquisition systems and IoT Pre-requisite: Basics of Power Electronics, digital electronics and Electrical Drives

**Unit I: Introduction:** Overview of industry environment, Different type of switches & their operation, Architecture of industrial automation system, Relay and contactor logic, AC and DC relays and their role for load control. Review of starters: Power and Auxiliary contactors and their usage for load control. Overview of standards (BIS, ISO) & star and delta starters and their rating.

**Unit II: Sensors:** Temperature& speed Measurement, Humidity, Pressure, Force and Torque Sensors, Motion Sensing (speed sensor), proximity sensor, Signal Conditioning, Data Acquisition Systems,Characteristics of Sensors and control logic, control using potential free output sensors, linear potentiometer timer hardware architecture, Controlling industrial system using timers and counters (case study)

**Unit III: Industrial Drives:** AC & DC Drive basics, Electrical specifications and hardware architecture .AC drive and AC motor specification matching (sizing of drive), Load characteristics and its types, Servo Drives Stepper motor drive and VFD(Variable frequency drives) drives.AC drive power wiring and Interfacing input and output signals. Energy Savings with Variable Speed & multi motor Drives. Braking motoring and regenerative operation of drives Selection of power, motor and signal cables for AC drive application. Heat management of Drives, Drives protection

**Unit IV: Programmable Logic Controllers:** Programmable controllers, Programmable logic controllers, Analog/Digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, , Advantage of using PLC for Industrial automation, Application of PLC to process control industries.Different types of Network Communication Protocol, DH-485, Ethernet, Device Net, Control Net, Modbus, Profibus Proprietary Protocol, open Protocol.

**Unit V: Automatic Control:** Introduction to P-I-D Control, manual and auto PID Control Tuning, Feed forward Control Ratio Control, Time Delay Systems and Inverse Response Systems, PWM control in drives.

### Recommended Books:

1. LingeFeng Wang, Kay Chen Tan,"Modern Industrial Automation and Software Design" John Wiley & Sons Inc.
2. K. L.S. Sharma, "Overview of Industrial Process Automation", Elsevier
3. KokKiong "Drives and Control for Industrial Automation", Springer
4. John Webb, "Programmable Logic Controllers Principles & Applications", PHI
5. John G. Webster,"The Measurement, Instrumentation and Sensors Handbook", CRC Press.

### Course Outcomes:

After completing the course, the students will be able to:



- CO 1. Analyze** architecture of industrial automation system
- CO 2. Select** appropriate sensors
- CO 3. Analyze** the knowledge of PID control technique
- CO 4. Develop** small application using PLC & transducer,
- CO 5. Compare** AC and DC drives for particular applications.



### Annexure-9 List of Experiments (VI Semester)



## Electric Drives Lab: 3130611

### List of Experiments

1. To perform speed Control of DC shunt motor using single phase Semi-converter.
2. To perform the operation of single phase full wave controlled rectifier with DC motor load.
3. To perform and analyze the Non-circulating current mode of three phase dual converter.
4. To perform and analyze the Circulating current mode of three phase dual converter.
5. To perform the V/f control of 3 phase Induction Motor using Voltage Source Inverter (VSI).
6. To perform and analyze the Open loop speed control of DC Motor using chopper in all four quadrants.
7. To operate and perform microcontroller (DSP) based VSI for speed control of 3 phase Induction Motor.
8. To perform Speed control of Induction Motor using single phase SCR based regulator.
9. To perform Speed control of three phase motor using Three phase SCR based regulator.
10. To determine of performance characteristic of single phase SCR full bridge inverter with R load.

### Course Outcomes:

After completing the course, the students will be able to:

**CO 1. Compare** the performance of converters with and without modulation

**CO 2. Plot** the characteristics of drives with changing parameters.

**CO 3. Comment** on the advantages & limitations of various converters used in industrial drives.

**CO 4. Develop** teamwork skills for working effectively in groups.

**CO 5. Prepare** technical report on experiments conducted in the lab



## Artificial Intelligence & Machine Learning: 3130612

### List of Programs

1. Explore NumPy, Pandas, SciPy, Matplotlib and Scikit Learn libraries in Python
2. Implement Linear Regression model in Python.
3. Implement Logistic Regression model in Python.
4. Implementation of ANN to predict the output of a function using Python.
5. Study and implement various dimensionality reduction, Feature selection and Normalization techniques in Python.
6. Implement decision tree classification model using C4.5 and CSRT algorithms in Python.
7. Implement Random Forest classifier over any given dataset.
8. Implement K-means clustering technique.
9. Implement Fuzzy C-means clustering technique.
10. Study various performance parameters used for evaluating the performance of various regression, classification and clustering models

### Course Outcome

After the completion of the course, the student will be able to

- CO1.** Utilize the machine learning algorithms to real-life problems.
- CO2.** Implement machine learning through Python Programming.
- CO3.** Employ blind search and heuristic search approaches.
- CO4.** Design neural network models.