Madhav Institute of Technology & Science Gwalior-5

Department: ELECTRICAL ENGINEERING Year 2019-2023 CO Attainment Direct Indirect **Total** Course Outcome S.No Course Attainment Attainment Attainment Explain the fundamental concepts of Complex Variables, Linear Programming 2.09 2.10 2.03 Categorize the principles of Complex Variables, Linear Programming Problems, CO₂ 2.14 2.02 2.12 2100025: Solve complex engineering problems using Numerical methods & LPP. Engineering CO3 2.23 2.15 2.21 Mathematics II Evaluate the application of Complex Variables, Linear Programming Problems, and CO₄ 1.97 2.20 2.02 Create innovative strategies using Numerical Methods and Linear Programming to CO₅ 1.92 2.00 1.94 interpret Maxwell's equations in differential and integral forms, both in time and CO₁ 2.10 2.20 2.12 Define complex permittivity, permeability, conductivity and perfect electric and CO₂ 2.10 2.10 2.10 130301: Electro Derive Poyntings theorem from Maxwells equations and interpret the terms in the CO₃ 2.30 2.41 2.32 2 Magnetic Field Apply vector calculus to understand the behavior of static electric fields in standard CO₄ 2.22 2.30 1.90 Theory Solve engineering problems of Electromagnetic, Electrostatic and Magnetic to CO₅ 2.50 2.38 1.90 Formulate and solve engineering problems of Electromagnetic. CO₆ 2.25 1.90 2.18 Explain the basic concepts of electrical and electronic measurement and measuring CO₁ 2.30 2.03 2.25 Determine errors in a measurement system. CO₂ 2.30 2.24 2.02 CO3 Describe the construction and working of AC and DC bridges and their applications 130302: 2.20 2.19 2.15 3 Measurement & Select suitable measuring instrument, signal Generator, frequency counter, CRO CO₄ 2.30 2.34 2.31 Instrumentation Select appropriate passive, active transducers and A/D & D/A converters for CO₅ 2.30 2.00 2.24 Describe working principle of CT & PT and their applications CO₆ 2.20 1.87 2.13 Handle an instrument and perform basic calibration CO₁ 2.10 2.30 2.14 Estimate the deviations in measurements due to possible errors and measures to 130302: CO₂ 2.20 2.20 2.20 Measurement & Measure unknown resistance, inductance and capacitance CO₃ 4 2.43 2.20 2.38 Instrumentation Teamwork skills for working effectively in groups and develop analytical skills to CO₄ 2.32 2.20 2.30 (LAB) Prepare and present an organized written engineering report on electronic testing of CO₅ 2.30 2.00 2.24

2.20

2.40

2.24

CO1 State different AC and DC networks laws & theorems.

S.No	Course	Course Outcome	Direct Attainment	Indirect Attainment	Total Attainment
		CO2 Apply the knowledge of basic circuital law and simplify the network using	2.20	2.40	2.24
5	130303: Network	CO3 Solve the complicated network using theorems	2.30	2.30	2.30
5	Analysis	CO4 Infer and evaluate transient response, steady state response and network functions.	2.30	2.30	2.30
		CO5 Analyze the series resonant and parallel resonant circuit,	2.51	2.39	2.49
		CO6 Evaluate two-port network parameters.	2.40	2.32	2.38
		CO1 Analyze the Thevenin's equivalent circuits and linear superposition and apply them	2.02	2.22	2.06
		CO2 Relate physical observations and measurements involving electrical circuits to	2.30	2.40	2.32
6	130303: Network Analysis (LAB)	CO3 Predict and measure the transient and sinusoidal steady-state responses of simple	2.37	2.18	2.33
	rinarysis (Erib)	CO4 Teamwork skills for working effectively in groups and develop analytical skills to	2.42	2.49	2.43
		CO ₅ Prepare and present an organized written engineering report on electronic testing of	2.30	2.42	2.32
		CO1 Define working principles of electronic devices e.g. Diode, Zener Diode, LED,	2.19	2.31	2.21
	130304: Analog Electronics	CO2 Categorize the different types of Diode, Power Amplifier, Oscillators and Op-Amp	2.20	2.16	2.19
7		CO3 Explain the different types of characteristic of Diode, Transistor, Power Amplifier	2.30	2.34	2.31
7		CO4 Illustrate the various mathematical model of transistor eg. Hybrid model, re model.	2.30	2.26	2.29
		CO5 Develop an ability and skill to design different types of diode rectifier, transistor	2.30	2.00	2.24
		CO6 Apply the various principles of electronics to design different types of Analog	2.20	2.27	2.21
		CO1 Develop the understanding of diode biasing conditions.	2.20	2.22	2.20
		CO2 Investigate the operation of half-wave and full-wave rectifier, and find their	2.15	2.05	2.13
8	130304: Analog Electronics (LAB)	CO3 Compare transistor configurations on the basis of input-output characteristics.	2.34	1.98	2.27
	Licetomes (Lixb)	CO4 Implement transistor based circuits (Darlington pair, differential amplifier and two-	2.00	2.10	2.02
		CO5 Explain operation of operational amplifier (Op-amp), and design Op-amp based	1.97	1.88	1.95
		CO1 Design engineering problem and validate the results using MATLAB environment.	2.20	1.95	2.15
		CO2 Validate the concepts of network theorems by writing MATLAB codes	2.13	2.31	2.16
9	130305: Software Lab-I	CO3 Analyze the waveforms on parameter variation of PV Array module using	2.27	2.49	2.31
	Luo 1	CO4 Compare the performance of basic converters using MATLAB environment	2.02	2.52	2.12
		CO5 Prepare and present an organized written engineering report on electronic testing of	1.95	2.10	1.98

S.No	Course		Course Outcome		Indirect Attainment	Total Attainment
		CO1	Refer various technical recourses available from multiple field	2.30	2.22	2.28
10	130306 : Self	CO2	Adhere to deadlines and commitment to complete the assignment	2.50	2.05	2.41
10	learning	CO3	Improve performance in self learning domain	2.20	1.98	2.16
		CO4	Acquire additional knowledge for competitive examinations	2.50	2.10	2.42
		CO1	Relate the theoretical aspects learned in classes into practical world	2.20	2.20	2.20
		CO2	Apply the new skills and supplement knowledge other than curriculum	2.40	2.20	2.36
11	130309 : Summer Internship	CO3	Practice communication and teamwork skills	2.27	2.15	2.24
	memsmp	CO4	Apply the knowledge for placement & higher education	2.02	2.08	2.03
		CO5	Troubleshoot the problems related to particular experiment	2.10	2.31	2.14
		CO1	Formulate Complex Variable Functions	2.20	2.20	2.20
	100003:Mathematic s- III		Solve the Complex Integral Problems	2.50	2.20	2.44
12		CO3	Find the Optimal Solution using Various Methods of Linear Programming Problem.	2.10	1.95	2.07
		CO4	Apply different numerical methods in engineering problem	2.02	1.99	2.01
		CO5	Solve Ordinary Differential Equation by Numerical Techniques	1.95	2.00	1.96
		CO1	Comprehend the principles and construction of different AC and DC machines.	2.30	1.90	2.22
		CO2	Demonstrate an understanding of the fundamental control practices such as starting,	2.30	2.10	2.26
12	130402: Electrical	CO3	Distinguish between the application and performance of AC and DC machines.	2.05	1.79	2.00
13	Machines-I	CO4	Develop the equivalent circuits and compute the induced emf, torque, efficiency,	1.98	2.20	2.02
		CO5	Describe the different test conducted for testing the performance of different AC	2.10	1.88	2.06
		CO6	Formulate the various performance parameters of machines under different	2.30	2.10	2.26
		CO1	Estimate which apparatus at what rating is required for a particular experiment	2.42	2.20	2.38
		CO2	Utilise a DC machine for a specific purpose, requirement	2.39	2.20	2.35
14	130402: Electrical Machines-I (LAB)	CO3	Predetermine the efficiency of any transformer, regulation of any transformer	2.14	1.50	2.01
	Triacinines I (LAD)	CO4	Prepare and present an organized written engineering report on electronic testing of	2.20	1.80	2.12
		CO5	Develop the ability to work is team and learns professional ethics.	2.10	2.50	2.18
		CO1	Define Number systems and codes, Logic family, Digital circuits and	2.20	2.40	2.24

S.No	Course	Course Outcome		Indirect Attainment	Total Attainment
		CO2 Simplify the logic expressions using Boolean laws, map method and design them by	2.30	2.10	2.26
15	130401: Digital Electronics &	CO3 Explain the concept of different number system, logic Families and Microprocessor.	2.50	2.30	2.46
13	Microprocessor	CO4 Illustrate different types of Number system, Combinational circuits, sequential	2.30	2.26	2.29
	-	CO5 Develop an ability to design combinational and sequential circuits using Logic gates	2.10	2.10	2.10
		CO6 Apply the various principle of digital electronics and programming skill to develop	2.00	2.10	2.02
		CO1 Develop skill to build, and troubleshoot digital circuits	2.20	2.32	2.22
	130401: Digital	CO2 Correctly operate standard electronic test equipment such as oscilloscopes, signal	2.20	2.10	2.18
16	Electronics & Microprocessor	CO3 Apply troubleshooting techniques to test digital circuits.	2.00	2.14	2.03
	(LAB)	CO4 Prepare and present an organized written engineering report on electronic testing of	2.30	2.20	2.28
		CO5 Develop the ability to work is team and learns professional ethics.	2.40	2.10	2.34
		CO1 Develop mathematical models of mechanical system, electrical system and	2.30	2.28	2.30
	130403 : Control Systems	CO2 Represent the complex system into standard canonical form by signal flow graph	2.50	2.57	2.51
17		CO3 Compute the time and frequency-domain responses of first and second-order	2.30	2.05	2.25
17		CO4 Formulate control engineering problems in state-variable form	2.40	2.37	2.39
		CO5 Evaluate the stability of a closed-loop control system in time-domain as well as in	2.40	2.20	2.36
		CO6 Predict the nature of response for the given input	2.20	2.03	2.17
		CO1 Explain general structure of power systems.	2.30	2.43	2.33
		CO2 Develop the knowledge of generation of electricity based on conventional and	2.10	2.07	2.09
10	130404: Power	CO3 Determine the transmission line parameters.	2.60	2.46	2.57
18	System-I	CO4 Analyze the performance of overhead transmission line.	2.80	2.37	2.71
		CO5 Apply the concept of power plant economics.	2.10	2.00	2.08
		CO6 Compare different types of tariffs and power factor improvement methods	2.30	2.32	2.30
		CO1 Explain basic terminologies of cyber security.	1.90	2.18	1.96
		CO2 Explain the basic concept of networking and internet.	2.30	2.27	2.29
10	100004: Cyber	CO3 Apply various method used to protect data in the internet environment in real world	1.90	2.00	1.92
19	Security	CO4 Discover the concept of IP security and architecture.	2.20	2.03	2.17

S.No	Course	Course Outcome	Direct Attainment	Indirect Attainment	Total Attainment
		CO5 Compare various type of cyber security threats and vulnerabilities.		2.12	2.26
		Develop the understanding of cyber crime investigation and IT ACT 2000.	2.10	2.06	2.09
		CO1 Simulate the performance of DC motor using MATLAB Simulink environment	2.40	2.18	2.36
		Validate the concepts of Induction motor by writing MATLAB codes.	2.50	2.40	2.48
20	130405: Simulation Lab-II:	Analyze the waveforms on parameter variation of PV Array module using	2.30	2.00	2.24
	Luo II.	CO4 Compare the performance of renewable energy sources using MATLAB	2.40	2.03	2.33
		CO5 Design engineering problem and validate the results using MATLAB environment	t 2.40	2.12	2.34
		CO1 Impart knowledge and awareness regarding	2.20	2.18	2.20
	100005: Ethics,	Develop spoken ability in a student so that	2.20	2.27	2.21
21	Economics,	Predict the situation and to be good decision	2.20	2.00	2.16
21	Entreprenership & Management	Develop a sound knowledge about economy and	2.30	2.03	2.25
		Work out needs so as to develop a	2.10	2.12	2.10
		Find out ways of solving / overcoming hurdles that crop up while establishing /	2.10	2.06	2.09
		CO1 Explain the process of sampling and the effects of under sampling.	2.10	2.22	2.12
		CO2 Classify systems based on their properties and determine the response of LSI syst	em 2.40	2.05	2.33
22	130501: Signals &	Apply the concepts of linear algebra to signals.	2.30	2.40	2.32
22	Systems	Analyze the spectral characteristics of continuous-time periodic and a periodic	2.42	2.00	2.34
		Analyze system properties based on impulse response and Fourier analysis.	2.29	2.03	2.24
		Apply the Laplace transform and Z- transform for analysis of continuous-time and	1 2.34	2.12	2.30
		Explain the concepts of single line diagram and per unit system	2.45	2.07	2.37
		Apply different load flow techniques to solve load flow problem	2.30	2.26	2.29
22	130502: Power	Perform fault calculations for symmetrical and unsymmetrical faults	2.18	2.37	2.22
23	System II	Explain the theoretical and practical aspects of Power System Stability, and its	2.30	2.27	2.29
		Elucidate the automatic generation control reactive power, voltage control, series	2.60	2.32	2.54
		Discuss the insulation resistance, capacitance of various types of cables and the	2.15	2.20	2.16
		Demonstrate the performance EHVAC transmission on simulation panel.	2.20	2.43	2.25

S.No	Course	Course Outcome		Indirect Attainment	Total Attainment
		CO2 Determine transmission line parameters.	2.20	2.07	2.17
24	130502: Power System II (Lab)	CO3 Simulate the different types of faults in transmission line using MATLAB.	2.20	2.25	2.21
	System II (Lus)	CO4 Prepare report for presentation.	2.30	1.64	2.17
		CO5 Display team work.	2.20	2.00	2.16
		CO1 Analyze the performance of 3-phase induction and synchronous machines using	2.30	2.24	2.29
		CO2 Explain the constructional details and working principle of three phase transformer	2.30	2.38	2.32
25	130503: Electrical	CO3 Develop phasor diagram and determine voltage regulation of an alternator and its	2.30	2.28	2.30
25	Machine-II	CO4 Determine time constant, various sequence reactance and equivalent circuit	2.30	2.14	2.27
		CO5 Analyze the behavior of synchronous machine connected to infinite bus and parallel	2.30	2.21	2.28
		CO6 Analyze the performance of 3-phase induction and synchronous machines using	2.30	2.24	2.29
	130503:Electrical Machine-II (Lab)	CO1 Demonstrate an understanding of the fundamental control practices associated with	2.23	1.76	2.14
		CO2 Use accepted national and international standards (such as NEMA, IE Code) to	1.40	1.20	1.36
26		CO3 Conduct testing and experimental procedures on different types of electrical	1.90	1.24	1.77
		CO4 Develop the ability to work is team and learns professional ethics	2.30	1.76	2.19
		CO5 Prepare an organized written report	2.34	1.20	2.11
		CO1 Explain static & dynamic characteristics of power electronics devices like Diode	2.20	2.20	2.20
		CO2 Explain the configuration of different commutation methods.	2.40	2.17	2.35
27	130504 : Power	CO3 Describe the configuration of AC to DC converter, Dual converter, chopper, cyclo-	2.30	2.13	2.27
27	Electronics	CO4 Classify converters and identify their applications.	2.10	2.17	2.11
		CO5 Develop different model of different converters to calculate their performance	2.30	2.03	2.25
		CO6 Identify the problems/limitations of power electronics devices, converters and	2.25	2.10	2.22
		CO1 Demonstrate VI characteristics of Semiconductor Devices and Various Firing	2.40	2.20	2.36
		CO2 Demonstrate the performance of various converters AC to DC and DC to AC	3.00	2.17	2.83
20	130504: Power	CO3 Compare the performance of single and three phases VSI Inverter.	2.30	2.13	2.27
28	Electronics (Lab)	CO4 Demonstrate the performance of converters in its different modes of operation.	2.40	2.17	2.35
		CO5 Prepare an organized written report.	2.30	2.03	2.25

S.No	Course		Course Outcome		Indirect Attainment	Total Attainment
		CO6	Develop the ability to work is team and learns professional ethics.	2.25	2.10	2.22
		CO1	Formulate the real-world problems.	2.40	2.24	2.37
29	130505: Minor	CO2	Express the technical ideas, strategies and methodologies.	2.10	2.38	2.16
29	Project-I	CO3	Utilize the new tools, algorithms, techniques to obtain solution of the project.	2.30	2.28	2.30
		CO4	Prepare oral demonstrations.	2.00	2.14	2.03
		CO1	Know the characteristics of industrial environment.	2.53	2.20	2.46
20	130506: Summer	CO2	Apply the technical knowledge in real industrial situations.	2.64	2.17	2.55
30	Internship Project- II	CO3	Write the report in technical work/project.	2.30	2.13	2.27
		CO4	Show engineer's responsibilities & ethics.	2.53	2.17	2.46
	130507:Seminar/Se If Study	CO1	Refer various technical recourses available from multiple field.	2.40	2.08	2.34
2.1		CO2	Adhere to deadlines and commitment to complete the assignment.	2.30	2.15	2.27
31		CO3	Improve his/her performance in self-learning domain.	1.98	2.23	2.03
		CO4	Acquire additional knowledge helpful for competitive examinations.	2.10	2.12	2.10
		CO1	Explain the concepts, theories and features associated with protective devices and	2.30	2.08	2.26
		CO2	Classify relays and circuit breakers based on criterion such as construction, type of	2.30	2.15	2.27
22	130601:	CO3	Select relays and circuit breakers for specific equipments and applications.	2.30	2.23	2.29
32	Switchgear & Protection	CO4	Design protection schemes for generators, motors, transformers and transmission line	2.30	2.12	2.26
		CO5	Analyze the behavior and performance of relays under different loading levels and	2.10	2.04	2.09
		CO6	Select the protective devices and their locations for protecting power systems	2.20	2.00	2.16
		CO1	Operate the Over/Under voltage & over current relays and observe the performance	2.39	2.17	2.35
	130601:	CO2	Analyze the effect of time and current settings on the operating characteristics of an	2.30	2.13	2.27
33	Switchgear &	CO3	Validate the characteristics of percentage biased differential relay for different bias	2.74	2.17	2.63
	Protection Lab	CO4	Prepare an organized written report.	2.30	2.03	2.25
		CO5	Develop the ability to work is team and learns professional ethics.	2.25	2.10	2.22
		CO1	Describe properties and applications of conducting materials	2.30	2.12	2.26
	130602: Electrical	CO2	Explain behavior of semiconductor materials, their classification and applications.	2.50	2.08	2.42

S.No	Course	Course Outcome	Direct Attainment	Indirect Attainment	Total Attainment
34	Engineering	CO3 Explain application of magnetic materials, different terms, classification, hysteresis	2.45	2.15	2.39
	Materials	CO4 Explain dielectric materials, their behavior in different fields, polarization and	2.10	2.23	2.13
		CO5 Select appropriate material depending upon specific requirement	2.20	2.12	2.18
		CO1 Explain unit commitment and different methods for Solving UC problem	2.40	1.90	2.36
	130611 : Computer	CO2 Apply direct method and lamda iteration method for solving economic dispatch	2.10	2.17	2.83
35	Aided Power	CO3 Discuss the concept of reactive power, control of active power and reactive power	2.30	2.40	2.27
33	System Analysis	CO4 Solve the AGC problem in isolated and interconnected power systems	2.30	2.17	2.83
	(DE-1)	CO5 Illustrate Operations Control Centre functions, System monitoring and Contingency	2.30	2.40	2.25
		CO6 Describe various types of ANN and their applications to power system.	2.25	2.60	2.22
		CO1 Analyze architecture of industrial automation system	2.30	2.12	2.26
	130612:Industrial Automation (DE1)	CO2 Select appropriate sensors	2.63	2.24	2.55
36		CO3 Acquire PLC knowledge	2.10	2.38	2.16
36		CO4 Acquire the knowledge of PID control technique	2.60	2.28	2.54
		CO5 Develop small application using PLC & transducer,	2.30	2.14	2.27
		CO6 Compare AC and DC drives for particular applications	2.30	2.12	2.26
		CO1 Formulate the real-world problems.	2.20	2.08	2.18
37	130603: Minor	CO2 Express the technical ideas, strategies and methodologies.	2.45	2.15	2.39
3/	Project-II	CO3 Utilize the new tools, algorithms, techniques to obtain solution of the project.	1.90	2.23	1.97
		CO4 Prepare oral demonstrations.	1.90	2.12	1.94
		CO1 Identify energy demand and relate with available energy resources	2.20	2.30	2.22
	130651: Non	CO2 Analyze harnessing of solar energy.	2.20	2.30	2.22
20	Conventional	CO3 Analyze harnessing of wind energy	2.20	2.30	2.22
38	Energy Resources DE2(SWAYAM/	CO4 Analyze harnessing of Biomass energy	2.20	2.30	2.22
	NPTEL)	CO5 Analyze harnessing of Geothermal and Ocean energies.	2.20	2.30	2.22
		CO6 Analyze Magneto hydrodynamics and Fuel cell technology	2.20	2.30	2.22
		CO1 Propose disaster prevention and mitigation approaches.	2.20	2.24	2.21

S.No	Course	Course Outcome	Direct Attainment	Indirect Attainment	Total Attainment
		CO2 Classify global and national disasters, their trends and profiles.	2.10	2.30	2.14
39	100007:Disaster Management	CO3 Appreciate the impacts of various disasters.	2.40	2.28	2.38
	Management	CO4 Apply Disaster Risk Reduction in management.	2.20	2.40	2.24
		CO5 Find the linkage between disasters, environment and development	2.30	2.12	2.26
		CO1 Explain the basic concepts of Energy Audit & its various terminologies, rules and	2.30	2.12	2.26
	900103: (OC1)	CO2 Acquire fundamental knowledge on the science of energy and on both the	2.30	2.08	2.26
40	Energy Conservation &	CO3 Describe different energy auditing methods and the implementation procedures	2.23	2.15	2.21
	Management	CO4 Identify present scenario of energy utilization, management and corresponding ACT	2.10	2.23	2.13
		CO5 Recognize process billing, energy tariff and power factor improvements to achieve	2.20	2.12	2.18
		CO1 Describe various components of a drive system along with modes of operation,	2.20	2.20	2.20
	130711: Electrical Drives (DE3)	CO2 Explain various drives & loads, their characteristics and control methods under	2.40	2.17	2.35
41		CO3 Explain performance analysis & control of dc drives	2.30	2.13	2.27
41		CO4 Explain performance analysis & control of ac drives	2.20	2.17	2.19
		CO5 Employ the various static converters for speed control of different types of drives	2.30	2.03	2.25
		CO6 Illustrate the functioning of solar, battery powered and traction drives and explain	2.25	2.10	2.22
		CO1 Evaluate the environmental impacts of conventional energy sources and the need of	2.20	2.30	2.22
	130712: Renewable	CO2 Explain the process of PV generation, wind power generation	2.40	2.30	2.38
42	Energy System	CO3 Describe stand-alone and grid connected configuration	2.36	2.30	2.35
	(DE3)	CO4 Explain the process of fuel cell power generation and its applications.	2.28	2.30	2.28
		CO5 Identify the need of hybrid energy systems.	2.41	2.30	2.39
		CO1 Describe transduction principle of sensor based on various energy forms.	2.20	2.20	2.20
	130714: Intelligent	CO2 Explain Smart Sensor Technologies	2.30	2.00	2.24
43	Sensors and Instrumentation	CO3 Explain the MEMS, Intelligent and Network Sensors	2.20	2.10	2.18
	(DE3)	CO4 Identify the component of sensor networking	2.28	2.20	2.26
	. ,	CO5 Discuss Intelligent Instrumentation techniques	2.30	2.30	2.30
		CO1 Identify the role and significance of microgrid in future power systems	2.10	2.17	2.11

S.No	Course	Course Outcome		Direct Attainment	Indirect Attainment	Total Attainment
		O2 Describe differ	ent types and modes of operation of Microgrids	2.20	2.13	2.19
44	130713: IoT in MicroGrid (DE3)	O3 Explain the dif	ferent control strategies available for Microgrid	2.30	2.17	2.27
	Wilefootia (BE3)	O4 Select proper e	nergy storage devices for smooth operation of microgrid	2.30	2.03	2.25
		O5 Describe applic	cations of IoT in Microgrid	2.20	2.10	2.18
	130751:	O1 Apply advance	d knowledge of electrical power system operations and control to	2.10	2.03	2.09
1.5	Introduction to	O2 Conceptualize	the design of smart grid by selecting appropriate communication	2.10	2.03	2.09
45	Smart Grid DE4)	O3 Describe the pr	inciples and requirements of the next generation future power	2.10	2.03	2.09
	(NPTEL)	O4 Describe the la	test trends in IoT for power systems	2.10	2.03	2.09
		O1 Discuss the var	ious types of electrical equipments and their suitable applications.	2.20	2.00	2.16
	900201:Application	O2 Describe the va	arious schemes of AC, DC drives, traction schemes and different	2.10	2.28	2.14
46	s of Electrical Motor & Equipment	O3 Explain the bas	sics of lighting and illumination and its parameters and able to design	2.20	2.10	2.18
		O4 Apply the conc	epts of power electronics technology in efficient utilization of	2.32	2.20	2.30
		O5 Identify the arc	ea for research in field of electric traction & utilization of Electric	2.20	2.13	2.19
		O1 Discuss the nee	ed of MATLAB to illustrate modeling and simulation of any system	2.40	2.20	2.36
		O2 Classify and ev	valuate the performance parameters of a system and then with	2.40	2.00	2.32
47	130701:Control System Lab	O3 Prepare profess	sionals in laboratory to compute or to predict the characteristics of a	2.23	2.17	2.22
	System Lao	O4 Evaluate possib	ble causes of discrepancy in practical experimental observations in	2.30	1.80	2.20
		O5 Demonstrate the	he ability to interact via team work	2.40	1.90	2.30
		O1 Formulate the 1	real world problems.	2.30	2.30	2.30
		O2 Express the tec	hnical ideas, strategies & methodologies.	2.30	2.40	2.32
40	130702: Summer	O3 Utilize the new	tools, algorithms, techniques to obtain solution of the project.	2.30	2.19	2.28
48	Internship Project	O4 Test & validate	the developed prototype/results.	2.20	2.30	2.22
		O5 Write a project	report.	2.30	2.40	2.32
		O6 Prepare oral de	monstrations.	2.50	2.50	2.50
		O1 Identify real tir	ne problems	2.10	2.30	2.14
40	130703: Creative	O2 Practice variou	s methods to solve problems	2.10	2.40	2.16

S.No	Course	Course Outcome		Direct Attainment	Indirect Attainment	Total Attainment
77	Problem Solving	O3 Produce solutions to various problems		2.10	2.30	2.14
		4 Demonstrate various problems solving skil	ls	2.10	2.20	2.12
		1 Imbibe the knowledge of Intellectual Prope	erty and its protection through various	2.40	2.20	2.36
	100008:Intellectual	Apply the knowledge of IPR for profession	al development	2.45	2.15	2.39
50	Property	3 Develop a platform for protection and com	pliance of Intellectual Property Rights	2.10	2.23	2.13
	Rights(IPR)	4 Create awareness amidst academia and ind	ustry of IPR and Copyright compliance	2.20	2.12	2.18
		5 Deliver the purpose and function of IPR an	d patenting.	2.60	2.30	2.54
	130801 :	1 Formulate the real world problems.		2.30	2.42	2.32
		2 Express the technical ideas, strategies & m	ethodologies.	2.20	2.37	2.23
51		3 Utilize the new tools, algorithms, technique	es to obtain solution of the project.	2.30	2.40	2.32
31	Internship/ Project	4 Test & validate the developed prototype/re	sults.	2.50	2.25	2.45
		5 Write a project report.		2.50	2.44	2.49
		6 Prepare oral demonstrations.		2.20	2.51	2.26
	Professional Development	1 Develop intellectual curiosity, competency	and skills	2.30	2.42	2.32
52		2 Develop critical thinking, creativity and ef	fective communication	2.10	2.37	2.15
		3 Display professionalism and ownership of	professional growth and learning	2.40	2.40	2.40