

#### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(Deemed University)
NAAC Accredited with A++ Grade





# PROFESSIONAL SKILLS & COMPETENCIES: 2130713

(Activity Based Learning)

#### **COURSE OBJECTIVES**

- To equip students with essential professional competencies.
- To develop analytical and technical skills.

#### **Module 1: Communication Skills**

Verbal Communication: Public speaking, Group discussions, and Interview handling. Non-verbal Communication: Body language, Gestures, Listening skills. Written Communication: Résumé writing, Email etiquette, Cover letters, Report Writing. Presentation Skills: Visual aids, Audience engagement, Delivery techniques.

**English (Verbal Ability):** Passage/Sentence Rearrangement, Error Detection and Correction, fill in the Blanks, Reading Comprehension Passages, Sentence Completion, Synonyms and Antonyms, Words Completion, Para jumbles etc.

Activities: Mock interviews and GDs, Email & résumé writing workshops, Peer review and instructor feedback.

# **Module 2: General Aptitude**

Quantitative Aptitude: Number systems, Ratios, Percentages, Averages, Time & Work, Probability. Logical Reasoning: Series, Puzzles, Syllogisms, Direction sense, Blood relations. Data Interpretation: Tables, Pie charts, Graphs.

Activities: Weekly quizzes, Group problem-solving sessions, Timed mock aptitude tests.

#### **Module 3: Basic Coding Skills**

Basic Programming Concepts, Syntax and semantics, Input/output handling, Variables, data types, Loops. Functions and recursion. Arrays, strings. Sorting and searching, Pointers (C/C++) / References (Java/Python). Exception handling (Java, Python).

Activities: Technical round based Weekly coding exercises, Mini hands-on projects, Error debugging practice, Mock technical tests.

# **Module 4: Competitive Coding Skills**

Introduction to Data Structures: Linked Lists (Singly, Doubly), Problem solving using linked lists. Stacks, Queues, Trees (Binary, BST, basic traversals), Heaps (Min/Max heap concepts), Graphs (Adjacency list/matrix, BFS, DFS), Sets (HashSet, TreeSet). OOPS concepts: Encapsulation, Abstraction, Inheritance and Polymorphism. Introduction to Databases, ER-model, basics of SQL. Version Control: Git, GitHub.

*Activities:* Weekly coding contests, Problem solving on competitive coding platforms like Leetcode, Codeforces, Hackerrank etc., Peer-to-peer code review, Mock technical interviews.

# **Module 5: Discipline Specific Tools\***

MATLAB, Simulink, Multisim, Homer, Proteus, LTspice,

Activities: Tool-based lab exercises, Branch-specific mini projects, Short presentations on use-cases of tools in industry.

.



## MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR



# **Department of Electrical Engineering**

### **COURSE OUTCOMES**

After completion of the course students will be able to:

- CO1 Demonstrate effective communication strategies in professional scenarios including interviews and group discussions.
- CO2 Solve real-world quantitative and logical reasoning problems with time-bound accuracy.
- CO3 Implement basic algorithms using standard programming languages.
- CO4 Design efficient algorithmic solutions to solve coding problems.
- CO5 Apply discipline-specific tools to simulate, model, or develop solutions relevant to core engineering problems.

| CO-PO Mapping Matrix |     |     |     |     |     |     |     |     |     |      |      |      |
|----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
|                      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
| CO1                  |     |     |     |     |     |     |     | 1   | 3   | 3    |      | 2    |
| CO2                  | 2   | 3   |     |     |     | 2   |     | 1   |     |      |      | 2    |
| CO3                  | 3   | 2   |     |     | 2   |     |     |     |     |      |      | 2    |
| CO4                  | 3   | 3   | 3   | 2   | 2   |     |     |     |     |      |      | 2    |
| CO5                  | 2   | 2   | 2   | 2   | 3   | 3   | 1   |     |     |      | 1    | 2    |

#### MADHAV INSTITUTE OF TECHNOLOGY & SCIENCE, GWALIOR

(Deemed University) NAAC Accredited with A++ Grade





# **Industrial Automation Lab: 2130711**

# **List of Experiments**

- 1. To Realize Logic Gates using PLC ladder programming.
- 2. To observe the Timer and Counter operation in PLC using toggle switch.
- 3. To Realize the Doorbell operation using push buttons at door or main gate.
- **4.** To observe the performance of starter control for 3 phase slip ring induction motor.
- **5.** To control the sequential operation of four motors with delay times.
- **6.** To observe the traffic light control in different traffic density.
- 7. To observe the automatic parking system with sensors control.
- To understand working model of lift elevator simulator using PLC control.
- **9.** To understand working model of Conveyer belt using PLC control.
- 10. To understand working model of Rotary Transfer Unit using PLC control.
- 11. To Implement Water Tank Level Control Using Sensors and PLC
- 12. To implement automate water filling and draining based on upper and lower-level sensors.
- 13. To Simulate Bottle Filling System Using PLC and Proximity Sensor
- 14. To Design Automatic Staircase Lighting System Using Timer in PLC
- 15. To Control Automatic Railway Gate Operation Using PLC and Sensors
- 16. To Implement Temperature Control System Using Thermocouple Sensor and PLC
- 17. To Develop an Automatic Irrigation System Using Moisture Sensors and PLC
- 18. To Simulate Automatic Room Light Control Using Motion Detection Sensors
- 19. To Create an Automatic Toll Collection Simulation Using PLC and RFID

#### **Course Outcomes:**

After completing the course, the students will be able to

- **CO 1. Analyze** industrial automation system with using PLC
- **CO 2. Develop** ladder logic for simple automation tasks
- CO 3. Develop small application using PLC & sensors to the real world
- CO 4. Demonstrate the ability to work collaboratively on automation projects, interpret industrial process requirements, and implement appropriate control logic.